• No results found

Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls

N/A
N/A
Protected

Academic year: 2021

Share "Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Gibson, J.J., Yi, Y. & Birks, S.J., (2016). Isotope-based partitioning of streamflow in

the oil sands region, northern Alberta: Towards a monitoring strategy for assessing

flow sources and water quality controls. Journal of Hydrology: Regional Studies, 5,

131-148.

http://dx.doi.org/10.1016/j.ejrh.2015.12.062

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Social Science

Faculty Publications

_____________________________________________________________

Isotope-based partitioning of streamflow in the oil sands region, northern Alberta:

Towards a monitoring strategy for assessing flow sources and water quality controls

J.J. Gibson, Y. Yi, S.J. Birks

2016

© 2016 The Authors. Published by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (

http://creativecommons.org/licenses/by/4.0/

).

This article was originally published at:

http://dx.doi.org/10.1016/j.ejrh.2015.12.062

(2)

ContentslistsavailableatScienceDirect

Journal

of

Hydrology:

Regional

Studies

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Isotope-based

partitioning

of

streamflow

in

the

oil

sands

region,

northern

Alberta:

Towards

a

monitoring

strategy

for

assessing

flow

sources

and

water

quality

controls

J.J.

Gibson

a,b,∗

,

Y.

Yi

a,b

,

S.J.

Birks

a,c

aAlbertaInnovatesTechnologyFutures,3-4476MarkhamStreet,Victoria,BC,Canada bDepartmentofGeography,UniversityofVictoria,P.O.Box3060STNCSC,Victoria,BC,Canada cAlbertaInnovatesTechnologyFutures,360833rdStreetNW,Calgary,AB,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27October2015 Receivedinrevisedform 18December2015 Accepted23December2015 Availableonline14January2016 Keywords: Stableisotopes Hydrographseparation Groundwater Surfacewater Snowmelt Oilsands

a

b

s

t

r

a

c

t

Studyregion:ThisstudyisbasedontherapidlydevelopingAthabascaOilSandsregion, northeasternAlberta.

Studyfocus:Hydrographseparationusingstableisotopesofwaterisappliedtopartition streamflowsourcesintheAthabascaRiveranditstributaries.Distinctisotopiclabelling ofsnow,rain,groundwaterandsurfacewaterareappliedtoestimatethecontributionof thesesourcestostreamflowfromanalysisofmulti-yearrecordsofisotopesinstreamflow. Newhydrologicalinsightsfortheregion:Theresultsprovidenewinsightintorunoff genera-tionmechanismsoperatinginsixtributariesandatfourstationsalongtheAthabascaRiver. Groundwater,foundtobeanimportantflowsourceatallstations,isthedominant compo-nentofthehydrographinthreetributaries(SteepbankR.,MuskegR.,FirebagR.),accounting for39–50%ofannualstreamflow.Surfacewater,mainlydrainagefrompeatlands,isalso foundtobewidelyimportant,anddominantinthreetributaries(ClearwaterR.,Mackay R.,EllsR.),accountingfor45–81%ofannualstreamflow.Fairlylimitedcontributionsfrom directprecipitationillustratethatmostsnowandraineventsresultinindirectdisplacement ofpre-eventwaterbyfillandspillmechanisms.Systematicshiftsinregionalgroundwater tosurface-waterratiosareexpectedtobeanimportantcontrolonspatialandtemporal dis-tributionofwaterqualityparametersandusefulforevaluatingthesusceptibilityofrivers toclimateanddevelopmentimpacts.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hydrographseparation based onstreamflowdatais one ofthemostwidelyused methodsfor quantifyingsurface water—groundwaterinteractionsatthereachtocatchmentscales(Kalbusetal.,2006).Typically,geochemicalorisotopicdata havebeenusedtotracechangesintheproportionofeventandpre-eventwatercontributionsduringstormsorsnowmelt events.AsnotedinarecentreviewbyKlausandMcDonnell(2013),thesestudieshaveforcedafundamentalre-examination oftheprocessesofwaterdeliverytostreams.Inparticular,theyhaverevealedahighproportionofpre-eventwaterinthe stormhydrograph,evenatpeakflow,(KlausandMcDonnell,2013).Dependingonthedistinctivenessofsoluteorisotope

∗ Correspondingauthor.

E-mailaddress:jjgibson@uvic.ca(J.J.Gibson).

http://dx.doi.org/10.1016/j.ejrh.2015.12.062

2214-5818/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

labellingandcatchmentpropertiesithasbeenpossibleinsomestudiestoresolvetwoorthreeseparatecomponentsofthe hydrograph,andtoinfermechanismsofrunoffgenerationsuchasgroundwaterridgingorvariablesourceareacontributions. Whileavarietyoftracerandnon-tracermethodshavebeenutilizedforhydrographseparation(seeGonzalesetal., 2009), stableisotopesofwaterhavetheadvantageofbeingincorporatedwithinthewatermoleculeandbeing mass-conservativeduringmixing.Stableisotopesofwaterareespecially usefulduetonaturallabellingofflow sourcesthat oftenarisesfromselectionandfractionationprocessesthatoccurinthewatercycle(Gat,1996).Severalexamplesinclude thedistinctlydepletedisotopicsignaturesnormallyassociatedwithsnow(andsnowpack)comparedtorainfallowingto temperature-dependentisotopicfractionationduringcondensationofatmosphericmoisture(Gat,1980),temporalisotopic variabilityinprecipitationwhich servestodistinguishindividualeventsfromlong-termaveragestypically reflectedin meteoricgroundwater(Gat,1996),selectiverecharge,whichmayaccentuatethedifferencebetweenprecipitationevents andmeteoricgroundwater,andevaporativeenrichmentofwetlandwatersorlakesthathaveresidedinsurfacestorage (Gibsonetal.,2015a).Evaporationfromsoilmayalsoleadtodistinctiveisotopiclabellingofshallowsoilwater,particularly inthearidzone(Gat,1981).

Hydrographseparationusingstableisotopesofwaterhasbeendemonstratedmainlyforhillslopesorsmallexperimental catchmentsovereventtimescales(Tetzlaffetal.,2015)withlessemphasisplacedonapplicationatlargerscalesorover seasonaltimeperiods(seeUhlenbrooketal.,2002).Thisstudyexploresuseofisotopehydrographseparationasanintegrated componentofstreamflowmonitoringinmeso-tomacro-scalepeatland-richcatchmentstobetterunderstandthephysical processescontrollingrunoffgeneration.Themainquestionsthatwewishtoanswerinclude:‘Howdopeatlandcatchments reacttosnowmeltandprecipitationevents?’,‘Whatisthetimingandproportionofvariouswatersourcestostreamflow onaseasonal,annualandinterannualbasis?’,‘Whatflowpaths,storageeffects,andrunoffmechanismsareimportant?’ and‘Arethereimportantregionaldifferencesinstreamflowresponse?’Oneoftheprimaryapplicationsweenvisionis betterunderstandingandpredictionofthetemporaldistributionofwaterqualityandcontaminantsinpeatland-dominated systems.Itisalsointerestingtoexplorewhetherinter-annualtime-seriesmonitoringmaybeusefulforassessingpotential changesinstreamflowdriversduetoclimateordevelopment-relatedimpacts.

Previousworkonstreamwaterchemistryincludinghydrographseparationstudieshavebeenconductedintheoilsands regionbySchwartz(1980)andSchwartzandMilne-Home(1982a,b).Basedonathree-yearrecordofmajoriontracersin fivemeso-scalecatchments,theypartitionedthehydrographintodirectprecipitation,groundwaterandmuskegwater,and weresuccessfulinshowingthatmuskeg(i.e.peatland)playsasignificantroleindeterminingthewatershedchemistry, inattenuatingrunoffduringspringmelt,andindilutionofwaterchemistryduringsummer,particularlybetweenrunoff events.Inaddition,theydeterminedthatgroundwaterplaysadominantroleduringwintercontrollingwaterquantityand quality.Notably,thesestudiesalsodemonstratedthatmeaningfulpartitioningcouldbeachievedintheregionoverseasonal tointer-annualtimeperiods.However,asthesestudiesusedgeochemicalratherthanisotopiclabellingforhydrograph separationtheydidnotattempttopartitionsnowmeltfromrainfall.

ThispaperoffersbasicconfirmationofsomeofSchwartz’sresultsfortheMuskeg,FirebagandSteepbankRivers,aswell assomeclarificationontheroleofdifferentrunoffcomponentsineachseasonandinter-annuallyfortheseandseveral additionalbasins(Mackay,Ells,ClearwaterandseveralstationsalongtheAthabascaRiver),basedondatasetsthatextend foroveradecadeinsomecases.Wepresentamethodologyforpartitioningofsnowmelt,rainfall,groundwaterandsurface waterusingstableisotopesofwaterandapplyittoinfersomeofthemajorprocessescontrollingrunoffformesoscale catchmentsaswellasfortheAthabascaRiverbothupstreamanddownstreamoftheoilsandsregion.Weidentifythe underlyingsourcesofrunoffandrunoffgenerationmechanismsthatproducespatialandtemporalvariationsinstreamflow inthewetland-muskegrunoffregime.Understandingrunoffgenerationintheregionisimportantasitisanessentialcontrol onwaterqualityandaquatichabitat,yetmaybechangingduetoongoingdevelopmentforoilsandsorduetoimpactof climaticchangesthatareknowntohaveaffectedpermafrostthawingandotherrunoffgenerationprocessesintheregion (Gibsonetal.,2015a,b).

1.1. Studyarea

ThestudyarealieswithintheAthabascaRiverbasin,Alberta,Canada.TheAthabascaRiverflowsnortheastover1,231km fromitsoriginsintheRockyMountainstothePeace-AthabascaDeltaandLakeAthabasca,draining156,000km2of land-scapevaryingfromsnow-cappedandglaciatedmountainstoagriculturalplains,borealforestandwetlands.Nodamsare constructedalongtheriverandconsumptivedivergencesofwateraresmallduetominimalagriculturaluse(Jasechkoetal., 2012).TheriverispartoftheMackenzieRiversystem,anditswaterseventuallyflowtotheArcticOcean.Thelowerreaches oftheAthabascaRivercoincidewiththeAthabascaOilSandsregion(AOSR).Here,approximately1%oftheriversannual flowisdivertedforuseasmake-upwaterforoilsandsminingandprocessingoperations(Canada,GovernmentofCanada, 2013).

Theclimateishighlyseasonalwithmonthlymeantemperaturesthatvaryfrom−19◦CinJanuaryto17CinJuly,with ameanannualtemperaturenear0◦C.Annualprecipitationis450mm,with60%fallingasrain.Reliefissubduedwiththe exceptionoflargeriverincisions.Fine-grainedsoils,incombinationwiththeclimate,haveresultedinformationofabundant wetlandsacrosstheregion.Ombrogenous(precipitation-fed)bogsandgeogenous(groundwater-fed)fens,whichtogether occupymorethan50%ofwatershedareasintheAOSR(Gibsonetal.,2015a),governhydrologyandinfiltrationatthesurface (Vittetal.,1994).Mineralsoiluplandsarealsocommoninthelower,incisedportionsofriverbasins.Peatlandsandmineral

(4)

Table1

Summaryofmonitoringstations,periodofrecordandsitecharacteristics.

StationID Stationname Daterangeofisotopesampling Area(km2) Discharge

Mean(m3/s) 1␴(m3/s)

07BE001 AthabascaR.atAthabasca 07/2002–05/2014 74,602 429 429

07DA001 AthabascaR.belowMcMurray 06/2002–05/2014 132,585 609 541

07DA0980a AthabascaR.atFirebagR. 08/2007–05/2014 n.a. n.a. n.a.

07DD011 AthabascaR.nearOldFort 05/2003–05/2014 156,000 768 750

07DA008 MuskegR. 06/2008–05/2014 1457 4.8 6.5 07DA006 SteepbankR. 04/2011–05/2014 1350 6.1 8.1 07DC001b FirebagR. 04/2011–05/2014 5990 29.4 25.4 07DB001 MackayR. 04/2012–05/2014 5570 16.9 28.3 07DA017 EllsR. 04/2011–05/2014 2450 7.1 12.1 07CD001 ClearwaterR. 04/2011–05/2014 30800 115.6 91.2

aWaterqualitystationonly.

bNotethatsampleswerecollectedslightlydownstreamatAB07DC0110.

soiluplandsareunderlainbyglacio-fluvialandglacio-lacustrinesedimentsthatcanexceed300mdepthinsomeareas overlyingburiedpaleochannels(AndriashekandAtkinson,2007).Permafrostintheregionissporadic,mainlyoccurringin bogsbutactivelydegrading(Vittetal.,1999).

RiverhydrologyintheAOSRisstronglyseasonal,withhighflowsassociatedwiththesnowmeltperiodinApril–May–June, andlowflowsassociatedwithice-coveredperiodsinNovembertoMarch.TheAthabascaRiverbelowFortMcMurraysustains flowsrangingfrom75to4700m3/s,withameandischargeof609m3/s(Canada,EnvironmentCanada,2015).Tributarypeak flowsintheAOSRaretypicallylessthan50m3/swithlowflowsoflessthan1m3/s(RAMP,2015).

RecentstudiesbyJasechkoetal.(2012),Gueetal.(2015),andGibsonetal.(2013)havedescribedthegeochemicaland isotopicsignaturesofnumerousspringsandbroaderseepagealongthelowerreachesoftheAthabascaRiver.Thesestudies revealtheroleofsalinebedrockformationwaterinsupplyingasmallproportion(upto3%)oftheflowtothelowerAthabasca River.Tributaries,asnotedbySchwartzandMilne-Home(1982b),arefedpredominantlybyshallowersourcesinglacial driftunits.OneexceptiontheynotedwasfortheSteepbankRiverwhichmayhavederived∼5%ofitsgroundwaterfrom deeperbedrockunits.

1.2. Samplecollectionandanalysis

TheAthabascaRiverandseveraltributariesweresampledonamonthlybasisaspartoftheLong-TermRiverNetwork monitoringprogramoperatedbyAlbertaEnvironmentalMonitoring,EvaluationandReportingAgencyanditspredecessors (Fig.1).Alistofsamplingstations,datesandbasiccharacteristicsofthewatershedsareshowninTable1.Watersamples werecollectedin30mLhigh-densitypolyethylenebottles(HDPE)followingstandardprotocolsforwaterqualitysampling (AlbertaEnvironment,2002).HDPEbottleshavebeenshowntobeveryeffectiveatpreventingisotopicfractionationfor periodsinexcessof1year(Spangenberg,2012).Snowdatawereobtainedfromaone-timeregionalsurveyofthesnowpack acrosstheoilsandsregionwhichincluded67isotopicanalysesofintegratedsnowpacksamples(Birksetal.,2014).Snowpack sampleswerefullymeltedinHDPEbagspriortobeingtransferredtoHDPEsamplebottles.Dataforrainfallwereobtained in2011–2012fromeventsamplingprogramssponsoredbytheCumulativeEnvironmentalManagementAssociationin twowatershedssituatedwithin70kmofFt.McMurray.SurfacewaterdatawereobtainedfromGibsonetal.(2015a)who reportedvaluesfor50lakesintheregionovera9-yearperiod.

Allisotoperesultswereanalyzedbyisotoperatiomassspectrometer,eitherattheUniversityofWaterloousinga Micro-massIsoPrimeDualInlet/GasChromatograph(pre-2009)oratAlbertaInnovatesTechnologyFutures,VictoriausingaThermo ScientificDeltaVAdvantageDualInlet/HDevicesystem.Inallcasesanalysesweremadewithin1yearofsamplecollection. Resultsarereportedin␦notationinpermil(‰)relativetoViennaStandardMeanOceanWater(V-SMOW)andnormalized totheSMOW-SLAPscalewhereSLAPisStandardLightArcticPrecipitation(seeCoplen,1996).Analyticaluncertaintyis estimatedtobebetterthan±0.1‰forı18Oand±1‰forı2H.

2. Theory

Massbalanceequationsarepresentedwhichdescribetherelativecontributionsofwatersourcestostreamflowunder asimplebatch-mixingmodelwithconservativetracers(Gibsonetal.,2000).Whileanapproachthataccountsforspatial andtemporalvariabilityinend-membersmaybemorerealistic(e.g.Harrisetal.,1995;OgunkoyaandJenkins1993),we currentlylackdetailedinformationtotracksystematicisotopicvariationsthatmaybeoccurringinthesourcewaters.Asa firstapproximationweapplythesimplebatchmixingmodeltoseparateinstantaneousstreamflowdischargeintoitssource componentsorend-members.

(5)

Fig.1.Mapshowinggaugingstationsintheoilsandsregionwhereisotopicsamplingwasconducted.Watershedboundariesfortributariesarealsoshown.

Forathree-componentsystem,theinstantaneousstreamflowdischargeQisequaltothesumofthecontributionsfrom thestreamflowsources(x1,x2,x3):

x1+x2+x3=Q (1)

Iftheisotopiccompositionofthewatersourcesisalsowell-constrainedthenadditionaltracerbalancescanbeconstructed. Inthecaseofı18Oandı2H,whicharemassconservative,themassbalanceequationsare:

x1ı181 +x2ı182 +x3ı183 =Qı18Q (2)

(6)

Fig.2.ı2H-ı18Oplotshowingtheisotopiccompositionofmajorstreamflowsourcesaswellastheiraveragevaluesmeasuredin2013.MWLismeteoric waterline.TwoareshownincludingtheGlobalMeteoricWaterLineofCraig(1961)(dashedline)andtheCanadianMeteoricWaterLineofGibsonetal., 2005(greyline).

whereı18

1 ,ı182 ,ı183 andı21,ı22,ı23aretheı18Oandı2Hofwatersourcesx1,x2,x3,respectively.

SolvingthesystemofEqs.(1)through(3)forthefractionalcontributionsofthecomponentsoftotalstreamflowyields: x1 Q =



ı18 Q −ı183





ı2 Q−ı23

 

ı18 2 −ı183



/



ı2 2−ı23





ı18 1 −ı183





ı2 1−ı23





ı18 2 −ı183



/



ı2 2−ı23





(4a) x2 Q =



ı18 Q −ı183





ı2 Q−ı23





ı18 1 −ı183



/



ı2 1−ı23





ı18 2 −ı183





ı2 2−ı23





ı18 1 −ı183



/



ı2 1−ı23





(4b) x3 Q =



ı18 Q −ı181





ı2 Q−ı21





ı18 2 −ı181



/



ı2 2−ı21





ı18 3 −ı181





ı2 3−ı21





ı18 2 −ı181



/



ı2 2−ı21





(4c) Itshouldbenotedthatx1/Q,x2/Qandx3/QadduptounityasconstrainedbyEq.(1).AnanalyticalsolutiontoEqs.(4a–c) alsorequiresthatx1,x2,x3arenotcollinearinı2H-ı18Ospace.

3. Results

3.1. Isotopecharacteristics

Fourprimarystreamflowwatersourceswereidentifiedfortheoilsandsregion:snow,rain,surfacewaterand groundwa-ter.Theisotopiccompositionofsnow,rainandsurfacewaterwerecharacterizedbasedonwatersamplingprogramsinthe vicinityofFortMcMurray(Fig.2,Table2).Snowwasfoundtoplotclosetothemeteoricwaterline(MWL)forCanadagiven byı2H=8ı18O+8.5(Gibsonetal.,2005)andwassignificantlydepletedinheavyisotopesrelativetootherstreamflow sources.Similarpatternswerenotedpreviouslyforlong-termsnowsamplinginthelowerLiardValleybySt.Amouretal. (2005)andusedeffectivelyforsnowmelthydrographseparationinmesoscalebasins.Incontrast,summerrainwasfound tobeenrichedinheavyisotopes,plottingnearbutslightlybelowtheMWL.Surfacewatersaredistinguishedbysystematic evaporativeenrichment,plottingalongalocalevaporationline(LEL)givenbyı2H=5.20ı18O50.6(Gibsonetal.,2015a). Thisisa9-yeardatasetbasedonsamplingin50lakesacrosstheregion.Waterinpeatlands(fensandbogs)subjectto evapo-rationhasasimilarevaporativesignatureplottingalongtheLEL,andasaresultarecountedassurfacewatercontributions.

(7)

Table2

Summaryofend-memberisotopiccompositionsandtheirvariability.

End-member N ı180 ı2H

Mean Max. Min. 1 Mean Max Min. 1

SN 67 −27.14 −25.60 −29.03 0.6 −206.7 −199.4 −220.5 3.5

RN 12 −4.07 −11.06 −16.98 1.9 −110.4 −87.3 −132.4 15.4

SW 50 −13.75 −10.35 −17.52 2.0 −121.1 −101.6 −143.2 10.7

GW 15 −20.75 −19.63 −22.56 0.8 −157.5 −148.5 −172.0 6.5

Note:SN—snow;RN—rain;SW—surfacewater;GW—groundwater.

Fig.3.Schematicshowingthetwo3-pointmixingscenariosusedinthehydrographseparation.Scenario1wasappliedduringthewinterandspring freshetperiodswhereasscenario2wasappliedduringsummer/fall.

StreamflowintributariesandtheAthabascaRivergenerallyhasanisotopiccompositionthatisintermediatebetweenthe

majorrunoffsources(Fig.2).

Theisotopiccompositionofregionalgroundwatersources,whichindirectlyreflectthemixingofsnowandrain,were estimatedastheinterceptofthewinterbaseflowrecessionandthemeteoricwaterlineinı2H-ı18Ospace.Regressionof winterstreamflowisotopicrecordswasmadebasedonseveralyearsofrecordinfivetributaries(MuskegR.[2008–2014], FirebagR.[2011–2014],SteepbankR.[2011–2014],EllsR.[2011–2014],andMackayR.[2011–2014])usingthemeteoric waterlineforCanada,givenbyı2H=8ı18O+8.5(Gibsonetal.,2005).Theregressionmethodwasusedinsteadofraw groundwaterdatatoensurethatthevaluesusedwereappropriatelyweightedtoreflectconditionsinthecatchmentsunder investigation.Maxima,minimaandaveragesarefoundtobesimilartotherangepreviouslyreportedforawidesurvey ofgroundwaterscollectedfromQuaternary,CretaceousandDevonianunitsintheoilsandsregion(Gibsonetal.,2013, 2015a;AndriashekandParks,2002),aswellasfromproprietarydatasetsownedbyAlbertaInnovatesTechnologyFutures.A verysimilaraveragevalueisobtainedastheinterceptoftheLELandtheMWL(ı18O=−21.11‰;ı2H=−160.4‰),which indicatesthemeansourceofinput(i.e.meanannualprecipitation+groundwater)tolakes.Groundwaterinourclassification includesallsubsurfaceflowcontributingtostreamflowandincorporatesshallowinterflowinpeatlandsaswellassurficial andbedrockaquifers.Itispresumedthatshallowinterflowinpeatlandswouldhavebeenclassifieddifferently,asmuskeg waters,bySchwartz(1980)andSchwartzandMilne-Home(1982a,b)basedongeochemicaltyping.

3.2. Modelsetupandoutputs

Asfourdistinctrunoff componentswereidentifiedand onlytwotracerswereused(Table2)somemethodological simplificationswererequired.Fortunately,duetothelimiteddurationofthesnowmeltperiod,mixinginthesystemcould beadequatelyapproximatedbasedontwotime-dependentthree-pointmixingscenarios.DuringAprilandMay,isotopic variationsduetomixingbetweensnowmelt,groundwaterandsurfacewaterweremodelledbasedonscenario1(Fig.3); fromJunetoOctoberisotopicchangesweresimulatedbasedonmixingbetweengroundwater,surfacewaterandsummer rainaccordingtoscenario2(Fig.3),andvariationsduringwintermonthsofNovembertoMarchweremodelledagainusing

(8)

Fig.4.Time-seriespartitioningsummaryforgroundwater-dominatedtributaries(a)MuskegR,2008–2014;(b)FirebagR.2011–1014;(c)SteepbankR., 2011–2014.

scenario1(Fig.3).Notethatthispartitioningapproachignorestheeffectofrainfallduringthesnowmeltperiod,butwas anecessarysimplificationtodealwithmixingoffourcomponentswithonlytwotracers.Ineffect,rainandsnowmixtures duringsnowmeltweretreatedasgroundwater—areasonableassumptiongiventhatthesewaterswillrarelyinteractoutside thegroundwaterenvironment.Junewasconsistentlytreatedasasummermonthinthis analysis,applyingscenario2, althoughitisalsopossibletotreattransitionmonthsaseithersnowmeltorsummermonthsdependingonwhenpeak snowmeltoccurs.

Bundlesofeightmixingcalculationswereusedforeachscenariobasedoncombinationsofpossiblemixingtriangles, choosingeithermaximumorminimumvaluesforeachend-member.Bundleswerethenaveragedratherthanusingsingle average-valuerunsinordertocapturepotentialuncertaintyintheend-members.Whileisotope-basedpartitioningwas conductedonmonthlybasis,andouranalysisandsummaries arebasedstrictlyupon themonthlyresults,forplotting purposesinFigs. 4–7wealsointerpolatedthepartitioningresultstomatchthedailyrecordofdischarge.Astep-wise interpolationmethodwasappliedusingfluxesofwaterratherthanpercentagesofthevariouscomponents.Similarresults

(9)

Fig.5.Time-seriespartitioningsummaryforsurface-water-dominatedtributaries:(a)ClearwaterR,2011–2013;(b)MackayR.2011–1014;(c)EllsR., 2011–2014.

werealsoobtainedintrialsusingalinearinterpolationmethodalthoughthestep-wiseapproachwasadoptedheredueto operationalsimplicity.Wealsopresentsummariesforthreedistinctperiodswithinthehydrologicalyear,consideredto runfromNovembertoOctober.Theseinclude:(i)theice-onperiod(November–March),(ii)thespringfreshet(April–May), characterizedbysnowmelt-drivenprocesses,and(iii)summer/fall(June–October),characterizedbymorevariableflows relatedtorainfall-drivenprocesses.

Uncertaintyforindividualsingle-valuemixingrunswasfirstestimatedbasedonthemethodofPhillipsandGregg(2001)

whichconsidersanalyticaluncertainty,samplesizeandstandarddeviationofend-members,aswellaspropagationoferrors duringmathematicalderivations.Basedonthisapproachuncertaintyforindividual(unbundled)runswasfoundtorange from±3%to±87%,withaveragevaluescloseto±27%.Thelargevariabilityinuncertaintycanbepartiallyattributedto mathematicalpropagationoferrors.Forbundledscenariosusedhereweestimateuncertaintybasedonstandarddeviation betweenrunstobesomewhatimproved:±9%forsnowmeltproportions,±12%forgroundwaterand±22forsurfacewater duringthefreshetandwinterperiods(i.e.Scenario1).Uncertaintyforsummerperiodswashigher:±26%forrain,±26%for groundwaterand±19%forsurfacewater(i.e.Scenario2).Greateruncertaintyinsummer/fallisprimarilyrelatedtoamore variableisotopicsignatureofrainthansnow.Overall,whiletheseuncertaintiesremainwithinausefulrangeforquantitative assessments,partitioningduringthesummerandfallneedstobeinterpretedmorecautiously.Thesystematicregional

(10)

Fig.6.Time-seriespartitioningsummaryforAthabascaR.atAthabasca,2002–2014.

Fig.7.Time-seriespartitioningsummaryforAthabascaR.belowFt.McMurray,2002–2014.

evolutioningroundwater/surface-waterratiospresentedlateronisstrongevidencethattheproportionsdeterminedare generallyconservativeandmeaningful.

3.3. Hydrographcharacteristics

Streamflowregime,thegeneralpatternofseasonalvariationinstreamflow,isinfluencedbywatersupply(e.g.snowmelt, rainfall,glaciermelt),waterlosses(e.g.evaporation)andstoragemodificationbylakes,wetlands,reservoirsandgroundwater (WooandThorne,2003).Smallstreamsintheoilsandsregionarecommonlyclassifiedaswetlandormuskegregime(see

Church,1974)wherelowreliefandaccumulationofpeatlandscreatesahighwaterretentioncapacityandresistancetoflow ofwaterwhichpromotesevaporation.Streamflowintheseareasistypicallyreducedduringthesummerperiodcompared tonon-wetlandregimes,andapronouncednival(snowmelt-generated)freshetmayoccurinlatespringwhenorganicsoils arestillfrozenandunabletoabsorbmeltwaterreleasedbysnow(Church1974).WooandThorne(2003)describedthe streamflowregimeintheAthabascaRiverbelowFortMcMurrayashavinganearlyhydrographriseduetosnowmeltin lowlands,followedbyasummerpeak,possiblysustainedbyglacierandhigh-elevationsnowmelt.Severeicejamsmayalso formalongtheAthabascaRiveratFortMcMurrayduringbreakupwhichcansignificantlyinfluencechannelstorageand waterlevels(AndresandDoyle,1984;Sheetal.,2009;Unterschultzetal.,2009).

Inter-annualvariationsinstreamflowclearlyrevealdifferentstylesofrunoffforthewatershedsexaminedhere(see totaldischarge,Figs.4–7),includingsharpandbroadpeaksinsomeyears.Severaldominantpeaksmayoccurinassociation witheithersnowmeltorsummer/fallstorms,withflashinesscontrolledalsobyfreezingconditions,antecedentmoisture andbyconnectivityofwetlandsandwaterbodies.Riverflowsaresomewhatmoresustainedherethanformorenortherly permafrostregionswhichmayceasetoflowduringwintermonths.

(11)

Table3

Seasonalandannualsourcewaterpartitioningsummaryforgroundwater-andsurface-water-dominatedtributariesintheoilsandsregion,northern Alberta.NotethattheMuskegR.isclassifiedasgroundwaterdominatedbasedonice-onflowconditions.Blankvaluesindicatethatthecomponentwas assumedtobezeroforthespecifiedtimeperiod.Smallnegativenumbersforgroundwaterandsnowmeltsuggestthattheyarelikelynotpresent.

River Timeperiod Flowcondition %GW %SW %SN %RN GW/SW

Groundwater-dominated

SteepbankR. Apr–May Freshet 51 27 17 1.89

Jun–Oct Summer/Fall 29 17 51 1.70

Nov–Mar Ice-on 69 26 −1 2.65

Annual Average 50 23 3 19 2.17

MuskegR. Apr–May Freshet 35 42 18 0.83

Jun–Oct Summer/Fall 23 39 34 0.59

Nov–Mar Ice-on 54 40 −1 1.35

Annual Average 39 40 3 14 1.00

FirebagR. Apr–May Freshet 49 29 17 1.69

Jun–Oct Summer/Fall 32 27 37 1.19

Nov-Mar Ice-on 51 35 9 1.46

Annual Average 44 31 7 14 1.42

Surface-waterdominated

MackayR. Apr–May Freshet 35 42 19 0.83

Jun–Oct Summer/Fall 14 46 36 0.30

Nov–Mar Ice-on 45 44 5 1.02

Annual Average 31 45 6 14 0.69

EllsR. Apr–May Freshet 8 77 10 0.10

Jun-Oct Summer/Fall -2 78 19 Undef.

Nov–Mar Ice-on 9 86 −1 0.10

Annual Average 5 81 2 7 0.06

ClearwaterR. Apr–May Freshet 38 52 4 0.73

Jun–Oct Summer/Fall 2 51 43 0.04

Nov–Mar Ice-on 29 69 −4.2 0.42

Annual Average 20 59 −1 14 0.34

Usingstableisotopesweendeavortotakeacloserlookattheunderlyingcausesofflowvariationsatspecificsitesinthe

followingsection.

3.4. Isotopictime-series

Isotopictimeseriesforı18OareshownforselectedstationsontributariesandtheAthabascaRiver(Fig.4–7).The

charac-teristicisotopicpatternnotedformostrecords/yearsisthatofarapiddeclineinisotopiccompositionduringsnowmeltwith agradualshifttowardsmoreenrichedvaluesinsummer/fallwhichextendsover-winter.Minorfluctuationsareattributed toraineventsinsummerandfall.Themostcommonvariationnotedisthatofaweakerordelayedspringmeltwhichresults inamoresubtleisotopicdepletion,oftenaccompaniedbyabroaderpeakinthehydrographitself.Examplesinclude2006 and2010forstationsalongtheAthabascaRiverand2010fortheMuskegRiver.Similartemporalvariationswerefoundfor ı2H(notshown)andwehavealreadyillustratedsystematicvariationsinı18Oandı2Hrelativetoflowsources(seeFig.2). 3.5. Partitioningofstreamflowcomponents

Partitioningresultsareshownforsixtributaries(MuskegR.,FirebagR.,SteepbankR.,ClearwaterR.,MackayR.,Ells R.;Figs.4and5)andtwostationsalongtheAthabascaRiver(Figs.6and7),wherethemajorsourcecomponents(rain, snow,surfacewaterandgroundwater)areshownascolour-codedbandsreflecting weightedcontributionstothetotal discharge.Overall,morethan609separatepartitioningdeterminationsweremadefor10stationsincludedinthemonitoring network,thevastmajority(95%)yieldingpositivepercentagesforendmembers.Thepartitioningresultsrevealasignificant groundwatercontributiontototalstreamflow(Tables3and4,Fig.8),evenduringhighflowepisodes.

Bothgroundwater-dominatedandsurface-waterdominatedtributariesareidentified.Forgroundwater-dominated sys-tems(SteepbankR.,MuskegR.,FirebagR.),groundwateraverages9–50%oftotaldischarge,rangingbetween23and32% duringsummer/fallwhensurfaceflowpathwaysaremostactive,51–69%duringwinter,and35–49%duringfreshet.Schwartz andMilne-Home(1982b)foundsimilargroundwater-dominatedconditionsintheMuskegandFirebagRiversbasedon hydrographseparationusingmajorions.Schwartzalsolookedatsmallersub-basinsoftheMuskegsuchasHartleyCreek andfoundevenhighergroundwatercontributions,sothesequantitiesareexpectedtobesomewhatvariableatsmaller scales.Schwartzdescribedthegroundwaterflowinthesetributariesasdominatedbyflowthroughglacialdrift(i.e. Quater-narydeposits),withasmallpercentagederivedfrombedrocksources.Overall,hepostulatedthatgroundwaterdischarge tosurfacewatersystemsintheuplandportionofthebasinswasdominatedbyshallowflowsystems,whereasitisderived increasinglyfromdeeperflowsystemswhichareintersectedinthelowerreachesofthebasinsasthestreamchannelbecomes moreincised.Surfacewateranddirectprecipitationaretheothermajorsourcesofrunoffingroundwaterdominatedsystems.

(12)

Athabasc

a R.

%GW

0 10 20 30 40 50 60 70 80 90 100

% SW

0 10 20 30 40 50 60 70 80 90 100

% RN

+ SN

0 10 20 30 40 50 60 70 80 90 100 Freshet Summer/Fall Winter

Ground

water-Dominated

Tribu

taries

%GW

0 10 20 30 40 50 60 70 80 90 100

% SW

0 10 20 30 40 50 60 70 80 90 100

% RN

+ SN

0 10 20 30 40 50 60 70 80 90 100

Surface-Water

Domina

ted

Tribu

taries

%GW

0 10 20 30 40 50 60 70 80 90 100

% SW

0 10 20 30 40 50 60 70 80 90 100

% RN

+ SN

0 10 20 30 40 50 60 70 80 90 100

Fig.8.Ternaryplotsshowingpartitioningresultsfor(a)AthabascaRiverstations,(b)groundwater-dominatedtributaries(SteepbankR.,MuskegR.,Firebag R.),and(c)surface-waterdominatedtributaries(ClearwaterR.,MackayR.,EllsR.).Contributionsarenormalizedto100%forplottingpurposes.Notein(a) thatsizeofdatapointsincreasesdownstream.

(13)

Table4

SeasonalandannualsourcewaterpartitioningsummaryforAthabascaRiverstationsintheoilsandsregion,northernAlberta.

Station Timeperiod Flowcondition %GW %SW %SN %RN GW/SW

Athabasca Apr–May Freshet 39 43 13 0.91

Jun–Oct Summer/fall 47 22 27 2.14

Nov–Mar Ice-on 45 44 6 1.02

Annual Average 45 34 5 11 1.32

FortMcMurray Apr–May Freshet 37 49 8 0.76

Jun–Oct Summer/fall 39 31 26 1.26

Nov–Mar Ice-on 41 49 4 0.84

Annual Average 39 42 3 11 0.93

Firebag Apr–May Freshet 39 45 10 0.87

Jun–Oct Summer/fall 31 34 31 0.91

Nov–Mar Ice-on 35 57 2 0.61

Annual Average 35 47 3 11 0.75

OldFort Apr–May Freshet 38 48 9 0.79

Jun–Oct Summer/fall 28 39 29 0.72

Nov–Mar Ice-on 36 55 2 0.65

Annual Average 33 48 2 12 0.68

Ouranalysisalsoextendstosurface-water-dominatedsystemswhichincludetheClearwater,MackayandEllsRivers.

Surfacewater,mainlyderivedfrompeatlandsandlakes,accountsfor45–81%oftotaldischargefromthesewatersheds,

rangingfrom46to78%duringsummer/fall,44–86%duringice-onperiod,and42–77%duringspringfreshet.Groundwater

isthesecondlargestsourceinthesewatershedsaccountingfor5–31%ofstreamflow.Surface-waterdominatedflowshave

alsobeennotedinsimilarlow-reliefterrainsuchaspeatlandwatershedsintheJamesBayLowlands(OrlovaandBrianfireun,

2014).

Groundwater/surface-waterratios(GW/SW;Tables3and4)areusefulfordistinguishingbetweenstations/seasonsthat aregroundwater-dominatedand thosethataresurface-waterdominated.Thegroundwater/surface-waterratiosinthe tributariesalsoappeartoinfluencetheratiosdeterminedalongthemainstemoftheAthabascaRiver.TheAthabascaRiver transitionsfromgroundwater-dominatedconditionsupstreamoftheoilsandsregionatAthabascatobalancedconditions nearFortMcMurrayandthenbecomessurface-waterdominatedinthedownstreamreachesneartheconfluencewiththe FirebagandatOldFort(Table4).Evolutionofthegroundwater/surface-waterratiosacrosstheregion(Fig.9)appearsto showthatflowfromsurface-waterdominatedtributariesbecomesprogressivelymoreimportantdownstream.

Oneofthemoststrikingfeaturesofourpartitioninganalysisisthatgroundwaterappearstobeasignificantcontributor tohighrunoff,includingbothsnowmeltandrainevents.Therehasbeenconsiderablediscussionanddebatewithinthe hydrologicalcommunityonmechanismsthatcanpromotegroundwater-dominatedrunoffduringpeakflows.Sklashand Farvolden(1979)suggestedthatgroundwaterincreasesduringstormeventswereduetogroundwaterridging,i.e., pre-cipitationcausesconversionofthenear-surfacetension-saturatedcapillaryfringeintophreaticwater,particularlyalong footslopesandvalleybottoms,leadingtoenhancedflowofgroundwatertostreams.Buttle(1994)alsosuggestedthat trans-latoryflowordisplacementofpre-eventwaterbyeventwatercouldbeimportant.Translatoryflowsoftenoriginatefrom alimitedportionofthedrainagebasin,asinthenearchannelareasorpermanentwetlandswheresurfacesaturationis maintained.Onemechanismthatiswidelyknowntooperateinwetland-dominatedareasissaturationoverlandfloworfill andspill(St.Amouretal.,2005;SpenceandWoo,2003),wherebyfrozenorunfrozensoilsmaybecomelocallysaturateddue tosnowmeltorrainevents,andoncedepressionstoragecapacityisexceeded,mayresultinflowoverlandorinmacropores. Inthiscasetherunoffistranslatoryinthatitwillcontainamixtureofeventwaterandgroundwater.Near-surfacepipes orrillshavealsobeenshowntobeimportantconduitsforpre-eventwatermovementfromhillslopestostreamsinsimilar wetlandterrain(Gibsonetal.,1993).Thesemechanisms,operatingsinglyorincombination,areareasonablehypothesisto explaintheincreasesingroundwaterdischargeduringbothrainandsnowmelteventsinthetributaries.

Surfacewatercontributionstototalstreamflow(asapercentage)werefoundtobegreatestinwinterforboth surface-andgroundwater-dominatedsystems.Whilewintergroundwaterdischargeisexpected,thedrainageofpeatlandwaters alsoapparentlyoccursthroughoutthewinteratallstations.Whilenotevidentinallsystems(exceptionsbeingtheEllsand MackayRivers),minimumcontributionsfromsurfacewatertendtooccurinsummer/fallduringtimesoflowantecedent moistureconditions.Surface-water-dominatedsystemssuchastheEllsandMackayRiversappeartobufferthiseffect, possiblyduetotheprevalenceoflakedrainageduringdryperiods.

Annualcontributionsfromdirectprecipitationsourcesrangedbetween0and7%forsnowmeltand7–19%forrainfall. Itislikelythatproportionsofthesesourcesmaybeunderestimatedattimesifeventsoccurredintheintervalsbetween sampling.Therelativecontributionsofgroundwater,surfacewateranddirectprecipitationareshowninFig.8.Overall,the dominantpatternisforwinterdischargetoliealongtheSW-GWaxis(i.e.directprecipitationisminimal),andfreshetand summer/fallperiodstendprogressivelytohavemoredirectprecipitationcontributions.Directprecipitationcontributions typicallyreflectfastrespondingrunoffgenerationmechanismssuchason-channelprecipitation,near-channelrunoffand overlandflow,althoughthelatterislikelytobeminorwithoutgroundwaterinteractioninpeat-dominatedterrain.Fast respondingsourcesalsotendedtodeclineslightlyatthelargerscale,accountingforlessthan50%ofstreamflowforthevast majorityofmonthlyrunsatstationsalongtheAthabascaR.ascomparedtoupto60%fortributaries.Thehighproportionof

(14)

Fig.9. Evolutionoftheisotope-basedgroundwater/surface-waterratiointheoilsandsregion.Notethattheinputofsurface-waterdominatedtributaries (ClearwaterR.,MackayR.,EllsR.)causesanapparentdeclineinratiosalongthemainstemoftheAthabascaRiver.

directprecipitationformanypeakflowshighlightstheimportanceofnear-channelareasforrunoffgenerationbothduring freshetandinsummer/fall.Contrastingresponsesarealsonotedforgroundwater-andsurface-waterdominatedsystems. Surface-waterdominatedsystemstendtohavelessgroundwaterinfluenceduringthesummer/fallbutincreasedinfluence duringwinter(Fig.8).

3.6. Monthlypatternsandinter-annualvariability

Thisisthefirststudytoourknowledgethathaslookedatmulti-yearsourcepartitioningsignalsacrossanetworkof mesoscaletributariesandalongalargeriversuchastheAthabascaR.Oneinterestingaspectofthisworkistoexamine thestabilityofthepartitioningresultsinmultipleyears.Forthegroundwater-dominatedtributaries,averystable inter-annualpictureemerges(Fig.10),with%groundwaterpeakinginlatefallandgraduallydecliningover-winterandintothe freshetandsummerperiods.Absolutequantitiesofgroundwaterareshowntomimicthetotalhydrograph,peakingduring thehighflowmonths(MaytoJuly),andreflectingtheroleofeventsintheoverallmechanismofgroundwaterdischarge. FortheSteepbankR.,theonlysignificantinter-annualvariabilitywasobservedinJanuaryandApril,althoughthespecific causeisunknown.Negativecorrelationsarenotedbetweenmeanairtemperatureand%groundwaterforthe groundwater-dominatedtributaries,suggestingthatcolderconditionsandicecoverfavorhighergroundwatercontributions.Notealso thelowerproportionsofgroundwaterintheEllsR.(<20%),asurface-waterdominatedtributary(Fig.10).Oneofthemost interestingobservationsismadefortheAthabascaRiverstationsincludingthestationbelowFortMcMurray(Fig.10),where wefindthatpercentageofgroundwaterpeaksatthesametimeasabsolutegroundwatercontribution,duringthehighflow period.Thisiscontrarytothegenerallyheldviewthatgroundwaterproportionstypicallypeakundericeinnorthern wetland-dominatedriversystems(seeGibsonandProwse,2002).Itisapparentfromourpartitioninganalysisthatgroundwaterplays animportantroleinrunoffgenerationthroughouttheyear.

(15)

Ells R.

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% G ro u nd water -10 0 10 20 30 40 50 m 3 /s 0 5 10 15 20

Steepbank

R.

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% G roun d w at er 0 20 40 60 80 100 m 3/s 0 10 20 30 40 50

Athabasca

R.

McMurray

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% G rou nd w a te r 10 20 30 40 50 60 70 80 m 3 /s 0 500 1000 1500 2000

Fig.10.Partitioningresultsfor%groundwaterandgroundwaterflow(m3/s)showinginter-annualvariabilitybymonth.EllsR.andSteepbankR.are exam-plesofsurface-andgroundwater-dominatedtributaries,respectively.NegativegroundwaterproportionsshownfortheEllsR.particularlyinAugust/Sept. suggestthatitislikelyabsentatthistime.

Surfacewater,whichislabelledinthisstudybytheuniqueisotopicsignaturethatwateracquireswhenexposedto evaporation,isalsoshowntobeanimportantflowregulatorinallseasons.Percentageofsurfacewaterisfairlystablefor tributariesoverthecourseoftheyearwiththeexceptionofsomesummermonths(particularlyJuly)forsurface-water dominatedtributariessuchastheEllsR.(Fig.11).Slightlyhigherproportionsareusuallyobservedinwinter,although thedifferencesaresubduedcomparedtogroundwater.Absolutequantitiesofsurfacewaterarelowestinwinterwhen hydrologicalpathwaysarefrozenordisconnected,highestinspringwhenthegroundismoresaturatedanddepression storageisgreater,withmorevariabilityduringthesummer/fallrelatedtocyclingofantecedentmoistureconditions.While %surfacewaterintheElls,MackayandClearwaterRiversmayaccountforcloseto100%ofdischargeinsomemonths, contributionsingroundwater-dominatedtributariesisoftenlimitedtolessthan40%,asrunofftypicallycontainsamixture ofsurfacewater,groundwaterandeventwater.Limitationsinthemixingmodelapproachusedarereflectedinsomemonths byproportionsofsurface-waterestimatedtobebelow0%orexceeding100%.Whilecomparativelymeaningfultheseresults needtobeinterpretedcautiously.

4. Discussion

Theapplicationofstableisotopetracerstodetectrunoffcomponents,combinedwithanunderstandingofthehydrologic settingofthelandscapeintheoilsandsregionenablesaconceptualmodelofrunoffgenerationmechanismstobeoutlined (Fig.12).Themajorprocessesidentifiedincludeon-channelprecipitationandnear-channeloverlandflow,whicharethought tobeimportantsourcesofdirectsnowmeltandrainfallrunoff.Inunsaturatedoff-channelareasinfiltrationcapacityisoften toohighfortheseprocessestooccur.Inwetlands,mixedwatersourcesaredeliveredtothestreamviafillandspill,which involveseventwaterraisingthegroundwatertableuntildepressionstorageissatisfiedandthenflowoccurs.Macroporeflow involvesflowofmixedwaterpredominantlythroughorganicsoilsandinterflow/returnflowsareshallowgroundwaters thatflowbetweenmineralsoilandpeat,contributingeithertofillandspillormacroporeflow.Thefillandspillprocess

(16)

Ells R.

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% S u rf ac e W a te r 0 20 40 60 80 100 m 3 /s 0 50 100 150 200

Steepbank R.

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% S u rf ac e W a te r 0 20 40 60 80 100 m 3 /s 0 5 10 15 20 25

Athabasca R.

McMurray

Month

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

% S u rf a c e W a te r 0 10 20 30 40 50 60 70 80 m 3 /s 0 500 1000 1500 2000

Fig.11. Partitioningresultsfor%surfacewaterandsurfacewaterflow(m3/s)showinginter-annualvariabilitybymonth.EllsR.andSteepbankR.are examplesofsurface-andgroundwater-dominatedtributaries,respectively.Whilecomparativelymeaningfulproportionsbelow0%andabove100%suggest limitationswithourquantitativemixingmodel.

Fig.12.Conceptualmodelofrunoffgenerationinwetland-dominatedtributariesintheoilsandsregion.Importantflowmechanismsareidentified. Notethaton-channelprecipitationandnear-channeloverlandflowproduceevent-dominatedrunoff,shallowrunoffcomponents(2–5)typicallyproduce mixturesofsurfacewaterandgroundwaterwhereasdeeprunoffcomponents(6–8)areexclusivelygroundwater-fed.

(17)

alsoappliestolargerbodiesofsurfacewaterincludinglakesandpondsthatareoftenconnectedbypermanentoutletsto thetributaries.Flowfromthesesourcesisisotopicallylabelledassurfacewaterduetoexposuretoevaporativeisotopic enrichment.Groundwatersourcesalsoincludeshallowflowindriftaquifersanddeepersources,includingbedrockaquifers orregionalgroundwater.

Ingeneral,theresidencetimeofwaterincreasesfromrunoffcomponent(1)throughto(8)(seeFig.12).Deeper ground-watersourcesalsotendtobemoreimportantlowerdowninthedrainagenetworkasthechannelsbecomemoreincised,in placeswithinbedrock.Ifgroundwaterridgingisoccurringinthewatersheds,thenitmustleadtointeractionwithorganic soils,otherwisewewouldnotseeincreasesinbothgroundwaterandsurfacewatercontributionsduringthefreshetor dur-ingrainevents.Translatoryflowsappeartodominaterunoff.Microtopography(hollowsandhummocks)inorganicterrain isimportantinthefillandspillprocessbecauseitpromotessubsurfaceinteractions(Freietal.,2010)andtranslatoryflows. Thefateofeventwater,ifitdoesnotfallinnear-channelareas,istobecomemixedwithgroundwaterifrecharged,orsurface waterifitlandsonsaturatedwetlandsandisexposedtoevaporation.

ThisstudyrefinesandextendstheinterpretationsofSchwartzandMilne-Home(1982a,b),particularlyfortheMuskeg andFirebagtributaries.SchwartzestimatedthegroundwatercontributiontotheMuskegR.during1976–1978torange between30and50%duringsummer,reducingto14–18%duringfreshet,and increasingto70–80%duringwinter.Our analysis,albeit foradifferentandextended timeperiod,suggestsanaveragegroundwatercontributionof34%during freshet,23%duringsummer,and54%duringwinter.SchwartzandMilne-Home(1982b)foundtheFirebagRivertocontain between10and20%groundwaterduringsummer,reducingtoaslowas2%duringfreshet,toashighas65%(butaveraging ∼30%)inwinter.Wefind32%groundwaterduringsummer,46%duringfreshetand51%duringwinter.Schwartzdeclinedto partitiontheSteepbankR.flowsasitderivedsignificantgroundwaterfrombedrock,anend-memberthathedidnotevaluate geochemically.FortheSteepbankRiver,ouranalysissuggeststhatgroundwater(includingbothdriftandbedrocksources) averages27%duringsummer,69%duringwinter,and49%duringthefreshet.

ThemaindifferencebetweenourassessmentandthatofSchwartzand Milne-Home(1982b)isthegreaterrolewe determinegroundwaterfluxestoplayduringthespringfreshet,whichisclearlyillustratedinFig.10.Thismayreflectbias intechnique,asourpartitioningapproachincludesshallowpeatlandgroundwater(whichisnotevaporativelymodified)in thegroundwaterclassification,whereasSchwartzandMilne-Homewouldhaveclassifiedthisasmuskegwater.Ourstudy alsousedthethree-componentsnowmelt-mixingscenario(Scenario1;Fig.3.)duringAprilandMayneglectedtheroleof rainfall,andmaythereforehaveledtoaslightoverestimationofgroundwatercontributionbyafewpercentduringthis time.Wefindadefinitivedecreaseintheproportionofgroundwaterduringfreshetascomparedtowinterandsummer/fall. However,moderatereductioninproportionsofgroundwatercombinedwithasignificantincrease instreamdischarge impliessignificantincreasesingroundwaterfluxesduringthefreshet.Meanwhileassumptionsmadeintheanalysisby Schwartz,includingthatprecipitationcontainednodissolvedions,seemstobeoversimplified.Anotherdifferencebetween ourassessmentandthatofSchwartzandMilne-Home(1982b)isthatwefindsimilarsourcepartitioningduringwinterin theMuskegandFirebagRivers,whereastheyfindaweakergroundwaterresponseintheFirebagRiver.Oneexplanation mightbethatflowpathsforgroundwateraredeeperintheMuskegRiverwhichwouldtendtoinfluencechemistrymore thanisotopiccompositionofstreamflow.Isotope-basedpartitioningalsoincludesshallowsubsurfacewaterasgroundwater, regardlessofthepathwaythatitentersthestream.Itisconceivablethatinsomecasesthiswatermayhavegeochemical propertiesthataremoresimilartopeatlandwaters.Ourapproachappearstocapturetheenhancedroleofgroundwater duringfreshetingroundwater-dominatedtributariesascomparedtosurface-waterdominatedtributaries,asillustratedin

Fig.10,whichdemonstratesencouragingsensitivityofthemethod.

Overall,ourmethodrevealsawiderangeinthegroundwatercontributionacrosstheregion.Wecanordertheriversin termsofgroundwaterdominanceasfollows:

fortributaries:Steepbank>Firebag>Muskeg>Mackay>Clearwater>Ells fortheAthabascaRiver:Athabasca>McMurray>Firebag>OldFort

GiventhatisotopicrecordsontheAthabascaRiveratFt.McMurraysometimesreachminimumvaluesaslateasJune orJuly,andthis occurswellafterlocalsnowmelthasconcluded,wepositthatsummerflowsalongthelowerreaches oftheAthabasca Rivermaybesupportedbysnowor glacialmeltin themountains,assuggestedbyWooandThorne (2003).ContributionofhighelevationrunofftostreamflowinJune/Julywouldresultinmorenegativeisotopevaluesfor thesemonthsandanoverestimationofgroundwatercontributioninthesummerperiod.Overall,glacialcontributionsare expectedtobeaminorsourceofflow,estimatedat0.8%ofdischargeduring2000–2007(Marshalletal.,2011).

Rasoulietal.(2013)showedthatflowintheAthabascaRiveratFt.McMurrayhasdeclinedbyroughly30%between1960 and2010,whichhashadalargeimpactonLakeAthabascawaterlevels.WooandThorne(2003)alsoreportedthatthe variabilityofdischargeintheAthabascaRiveratFt.McMurrayincreasedinthelatterhalfofthe20thcentury.Wepostulate thatthehighproportionofgroundwaterinthetotaldischargelikelyplaysasignificantroleinbufferingvariabilityand long-termtrendsinthetotaldischargeintheAthabascaRiver.Surface-waterdominatedtributariesthathavemorelimited groundwaterinputsmaybeespeciallysusceptibletoclimateordevelopmentimpacts.Assuch,wesuggestthatonefocus offutureresearchmightbetolookintolong-termtrendsintheindividualstreamflowcomponentstobetterunderstand thedriversofcurrentchange.ThiswouldlikelycomplementrecentstudiesofchangesinrunoffgenerationbyPetersetal. (2013).Anotheroneofthefundamentalimplicationsofthisresearchisthatthemethodmaybesuitableforexamining theunderlyingcausesofwaterqualitychanges,asthesemaybemoretightlycontrolledbytheoriginofthestreamflow andrunoffgenerationmechanismsthanthetotaldischarge.Forexample,thedistributionofsomeorganicspecies(such

(18)

asdissolvedorganiccarbon)maybecloselytiedtosurfacewatersourcesiftheyoriginatefrompeat,andsome(suchas naphthenicacids)maybemorecloselytiedtovariationsingroundwatercontributioniftheyoriginatefromcontactwith bitumenoranthropogenicsources.Monitoringofindividualrunoffcomponentsmayalsoaidincharacterizingdevelopment relatedimpactssuchasremovalofpeatland,forestsorgroundwaterabstractionthatmaydifferentiallyimpacttherunoff generationpathwaysacrosstheoilsandsregion.

5. Summary

• MonthlyisotopicrecordsofstreamflowarepresentedfortheAthabascaRiveranditstributariesintheAthabascaOilSands region,northeasternAlberta,withrecordsdatingbackto2002forsomestations.

• Anisotopicdatabaseofsourcewatersincludingsnow,rain,groundwaterandsurfacewaterwasusedtoestimatethe proportionofeachcomponentinstreamflowduringfreshet,summer/fallandwinterperiods.

• Groundwater- and surface-water-dominatedsystems are identified.Groundwater-dominated tributaries include the Steepbank,Muskeg,andFirebagRivers,wheregroundwateraccountedfor39to50%ofannualstreamflow,and surface-water-dominatedsystems,mainlysustainedbydrainagefromlakesandpeatlands,whichincludetheClearwater,Mackay, andEllsRivers.

• Evolutionofgroundwatertosurface-waterratiosacrosstheregionrevealsanoverallincreaseinsurfacewatersources downstream.

• Streamflowsourcesareexpectedtobeimportantunderlyingcontrolsonwaterquality,andmayinfluenceclimateand developmentimpactsonstreamflowandotherprocessesinarearivers.

Acknowledgements

FundingwasobtainedviaanNSERCDiscoveryGranttoJJGandviaanAlbertaInnovatesTechnologyFutures(AITF) ProgramInvestmentGrant.WethankEmilyTaylor,AITFforGISsupport.WeespeciallythankPrestonMcEachern,Purlucid Technologiesforassistanceandforesightininitiatingthesamplingprogramin2002andJessicaDiMariaandColinCooke, AEMERAforhelptomaintainandexpandtheprogram.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at

http://dx.doi.org/10.1016/j.ejrh.2015.12.062. References

AlbertaEnvironment,2002.WaterQualitySamplingMethods.WaterMonitoringGroup,ComplianceBranch,RegionalServices,AlbertaEnvironment. Andriashek,L.D.,Atkinson,N.,2007.Buriedchannelsandglacial-driftaquifersintheFortMcMurrayregion,northeasternAlberta.AlbertaEnergyUtilities

Board/AlbertaGeologicalSurveyReportESR.2007–01(March2007),160pp.

Andriashek,L.D.,Parks,K.,2002.BaselineinvestigationsintothegroundwaterresourcesoftheAthabascaoilsands(insitu)area,NortheastAlberta. AlbertaEnergyandUtilitiesboard,AlbertaGeologicalSurveyEUB/AGSSpecialReport98,480pp.

Andres,D.D.,Doyle,P.F.,1984.AnalysisofbreakupandicejamsontheAthabascaRiveratFortMcMurray,Alberta.Can.J.CivilEng.11,444–458.

Birks,J.,Y.,Yi,S.,Cho,E.Taylor,J.,Gibson,2014.CharacterizingtheorganiccompositionofsnowandsurfacewateracrosstheAthabascaRegion:Phase2. OSRINReportNo.TR-64.47pp.

Buttle,J.M.,1994.Isotopehydrographseparationsandrapiddeliveryofpre-eventwaterfromdrainagebasins.Prog.Phys.Geogr.18,16–41.

Canada,EnvironmentCanada,2015.WatersurveyofCanadaarchivedhydrometricdata,AthabascaRiverbelowFt.McMurray,

http://www.ec.gc.ca/rhc-wsc.(accessed17.09.15.).

Canada,GovernmentofCanada,2013.Oilsandswatermanagement—factsheet.

https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/pdf/eneene/pubpub/pdf/11-%20OS-factsheetWater%20Management-eng-February-2013.pdf; (accessed29.09.15.).

Church,M.,1974.HydrologyandpermafrostwithreferencetonorthernNorthAmerica.In:Proceedings,WorkshopSeminaronPermafrostHydrology. CanadianNationalCommittee,InternationalHydrologicalDecade,Ottawa,pp.7–20.

Coplen,T.B.,1996.Newguidelinesforreportingstablehydrogen,carbon,andoxygenisotope-ratiodata.Geochim.Cosmochim.Acta60,3359–3360.

Craig,H.,1961.Isotopicvariationsinmeteoricwaters.Science133,1702–1703.

Frei,S.,Lischeid,G.,Fleckenstein,J.H.,2010.Effectsofmicro-topographyonsurface-subsurfaceexchangeandrunoffgenerationinavirtualriparian wetland—amodellingstudy.Adv.WaterResour.33,1388–1401.

Gat,J.R.,1980.Theisotopesofhydrogenandoxygeninprecipitation.In:Fritz,P.,Fontes,J.C.H.(Eds.),HandbookofEnvironmentalIsotopeGeochemistry, 1.Elsevier,Amsterdam/Oxford/NewYork,pp.21–47.

Gat,J.R.,1981.Groundwater.In:Gat,J.R.,Gonfiantini,R.(Eds.),StableIsotopeHydrology:DeuteriumandOxygen-18intheWaterCycle,10.International AtomicEnergyAgency,Vienna,pp.223–240.

Gat,J.R.,1996.Oxygenandhydrogenisotopesinthehydrologicalcycle.Annu.Rev.EarthPlanet.Sci.24,225–262.

Gibson,J.J.,Prowse,T.D.,2002.Stableisotopesinriverice:identificationofprimaryover-winterstreamflowsignalsandtheirhydrologicalsignificance. Hydrol.Processes16,873–890.

Gibson,J.J.,Edwards,T.W.D.,Prowse,T.D.,1993.RunoffgenerationinahighborealwetlandinnorthernCanada.NordicHydrol.24,213–224.

Gibson,J.J.,Fitzgerald,D.,Aravena,R.,Price,J.S.,Maloney,D.,2000.Streamflowgenerationinahypermaritimebog-forestupland.Hydrol.Processes14, 2711–2730.

Gibson,J.J.,Edwards,T.W.D.,Birks,S.J.,Amour,St.N.A.,Buhay,W.,McEachern,P.,Wolfe,B.B.,Peters,D.L.,2005.Progressinisotopetracerhydrologyin Canada.Hydrol.Processes19,303–327.

Gibson,J.J.,Fennell,J.,Birks,S.J.,Yi,Y.,Moncur,M.,Hansen,B.,Jasechko,S.,2013.EvidenceofdischargingsalineformationwatertotheAthabascaRiverin thenorthernAthabascaoilsandsregion.Can.J.EarthSci.50,1244–1257,dx.doi.org/10.1139/cjes-2013-0027.

(19)

Gibson,J.J.,Birks,S.J.,Yi,Y.,Vitt,D.,2015a.Runofftoboreallakeslinkedtolandcover,watershedmorphologyandpermafrostmelt:a9-yearisotopemass balanceassessment.Hydrol.Processeshttp://dx.doi.org/10.1002/hyp.10502.

Gibson,J.J.,Birks,S.J.,Yi,Y.,2015b.Highertritiumconcentrationsmeasuredinpermafrostthawlakes,northernAlberta.Hydrol.Processes(accepted 24.06.15.).

Gonzales,A.L.,Nonner,J.,Heijkers,J.,Uhlenbrook,S.,2009.Comparisonofdifferentbaseflowseparationmethodsinalowlandcatchment.Hydrol.Earth Syst.Sci.13,2055–2068.

Gue,A.E.,Mayer,B.,Grasby,S.E.,2015.OriginandgeochemistryofsalinespringwaterintheAthabascaoilsandsregion,Alberta,Canada.Appl.Geochem. 61,132–145.

Harris,D.M.,McDonnell,J.J.,Rodhe,A.,1995.Hydrographseparationusingcontinuousopensystemisotopemixing.WaterResour.Res.31,157–171.

Jasechko,S.,Gibson,J.J.,Birks,S.J.,Yi,Y.,2012.QuantifyingsalinegroundwaterseepageintheAthabascaoilsandsregion.Appl.Geochem.27,2068–2076.

Kalbus,E.,Reinstorf,F.,Schirmer,M.,2006.Measuringmethodsforgroundwater-surfacewaterinteractions:areview.Hydrol.EarthSyst.Sci.10,873–887.

Klaus,J.,McDonnell,J.J.,2013.Hydrographseparationusingstableisotopes:reviewandevaluation.J.Hydrol.505,47–64.

Marshall,S.J.,White,E.C.,Demuth,M.N.,Bolch,T.,Wheate,R.,Menounos,B.,Beedle,M.,Shear,J.M.,2011.Glacierwaterresourcesontheeasternslopesof theCanadianRockyMountains.Can.WaterResour.J.36,109–134.

Ogunkoya,O.O.,Jenkins,A.,1993.Analysisofstormhydrographandflowpathwaysusingathree-componenthydrographseparationmodel.J.Hydrol. 142,71–88.

Orlova,J.,Brianfireun,B.A.,2014.SurfacewaterandgroundwatercontributionstostreamflowintheJamesBayLowland,Canada.ArcticAntarcticAlpine Res.46,236–250.

Peters,D.L.,Atkinson,D.,Monk,W.A.,Tenenbaum,D.E.,Baird,D.J.,2013.Amulti-scalehydroclimaticanalysisofrunoffgenerationintheAthabascaRiver, westernCanada.Hydrol.Processes27,1915–1934.

Phillips,D.L.,Gregg,J.W.,2001.Uncertaintyinsourcepartitioningusingstableisotopes.Oecologia127,171–179.

RAMP,2015.RegionalAquaticsMonitoringProgram,http://www.ramp-alberta.org/data/ClimateHydrology/hydrology/Hydrograph.aspx,(accessed 17.09.15.).

Rasouli,K.,Hernandez-Henriquez,M.A.,Dery,S.J.,2013.StreamflowinputtoLakeAthabasca,Canada.Hydrol.EarthSyst.Sci.17,1681–1691.

Schwartz,F.W.,1980.HydrogeologicalinvestigationofMuskegRiverbasin,Alberta.AlbertaOilSandsEnvironmentalResearchProgram,Report48,97pp. Schwartz,F.W.,Milne-Home,W.A.,1982a.Watershedsinmuskegterrain:1.Thechemistryofwatersystems.J.Hydrol.57,267–290.

Schwartz,F.W.,Milne-Home,W.A.,1982b.Watershedsinmuskegterrain:1.Evaluationsbasedonwaterchemistry.J.Hydrol.57,291–305.

She,Y.,Andrishak,R.,Hicks,F.,Morse,B.,Stander,E.,Krath,C.,Keller,D.,Abarca,N.,Nolin,S.,Tanekou,F.,Mahabir,C.,2007.AthabascaRiverIceJam formationandreleaseevents,2006and2007.J.ColdRegionsSci.Technol.55,249–261,SpecialIssueonRiverIce.

Sklash,M.G.,Farvolden,R.N.,1979.Theroleofgroundwaterinstormrunoff.J.Hydrol.43,45–65.

Spangenberg,J.E.,2012.Cautiononthestorageofwatersandaqueoussolutionsinplasticcontainersforhydrogenandoxygenstableisotopeanalysis. RapidCommun.MassSpectrom.26,2627–2636.

Spence,C.,Woo,M.K.,2003.HydrologyofsubarcticCanadianShield:soilfilledvalleys.J.Hydrol.279,151–166.

Amour,St.N.A.,Gibson,J.J.,Edwards,T.W.D.,Prowse,T.D.,Pietroniro,A.,2005.Isotopictime-seriespartitioningofstreamflowcomponentsin wetland-dominatedcatchments,lowerLiardRiverBasin,NorthwestTerritories,Canada.Hydrol.Processes19,3357–3381.

Tetzlaff,D.,Buttle,J.,Carey,S.K.,McGuire,K.,Laudon,H.,Soulsby,C.,2015.Tracer-basedassessmentofflowpaths,storageandrunoffgenerationin northerncatchments:areview.Hydrol.Processes29,3475–3490.

Unterschultz,K.,vanderSanden,J.,Hicks,F.E.,2009.PotentialofRADARSAT-1fortheMonitoringofRiverIce:resultsofacasestudyontheAthabasca RiveratFortMcMurray,Canada.J.ColdRegionsSci.Technol.55,238–248,SpecialIssueonRiverIce.

Uhlenbrook,S.,Frey,M.,Leibundgut,C.,Maloszewski,P.,2002.Hydrographseparationinamesoscalemountainousbasinateventandseasonal timescales.WaterResour.Res.38(6),1096,http://dx.doi.org/10.1029/2001WR000938.

Vitt,D.H.,Halsey,L.A.,Zoltai,S.C.,1994.TheboglandformsofcontinentalwesternCanadainrelationtoclimateandpermafrostpatterns.ArcticAlpine Res.26,1–13.

Vitt,D.H.,Halsey,L.A.,Zoltai,S.C.,1999.ThechanginglandscapeofCanada’swesternborealforest:thecurrentdynamicsofpermafrost.Can.J.For.Res.30, 283–287.

Referenties

GERELATEERDE DOCUMENTEN

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica.. Universiteit

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica.. Universiteit

De rol die de tweede afgeleide speelt voor functies van ´ e´ en variabele, wordt overgenomen door het 2-de orde polynoom in de Taylorontwikkeling van een functie f van

Minstens ´ e´ en van deze intervallen kan niet door eindig veel elementen van U overdekt worden, zeg F 1. Hak F 1 weer op in twee intervallen van

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica.. Universiteit

Indien de Hessiaan in een stationair punt ~a te veel eigenwaarden 0 heeft, geeft deze geen

Indien de Hessiaan in een stationair punt ~a te veel eigenwaarden 0 heeft, geeft deze geen informatie.. We moeten dan op een andere manier het gedrag van f rond ~a

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica. Universiteit