• No results found

Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts"

Copied!
28
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Synthesis of selected cage alkenes and their attempted

ring-opening metathesis polymerisation with

well-defined ruthenium carbene catalysts

O

O

(2)

Synthesis of selected cage alkenes and their attempted

ring-opening metathesis polymerisation with

well-defined ruthenium carbene catalysts

Justus Röscher

M.Sc., H.E.D. (Potchefstroom University for Christian Higher Education)

Thesis submitted for the degree

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

at the Potchefstroom Campus of the North-West University

Promoter:

Dr. A.M. Viljoen

Co-promoter: Prof. H.C.M. Vosloo

Potchefstroom

January 2011

(3)

The contribution of the North-West University towards the completion

of this study is acknowledged.

(4)

Language usage

(5)

Contents

List of schemes

iv

List of figures

vi

List of tables

viii

List of spectral data

ix

Abbreviations

xi

List of structures

xiv

1.

Introduction

1

1.1.

Aim of study

1

1.2. Prelude

1

1.3.

Brief overview of polycyclic cage compounds

4

1.4.

Cage molecules by irradiation of Diels-Alder adducts

6

1.4.1.

The Diels-Alder reaction

6

1.4.2.

Photochemical [2 + 2] cycloadditions

8

1.5.

Ring-opening metathesis polymerisation

9

1.5.1. Introduction

9

1.5.2.

Mechanism of ROMP

10

1.5.3.

Development of well-defined ruthenium carbene ROMP catalysts

11

1.5.4.

Thermodynamics of ROMP

13

1.6. Cage

polymers

14

1.6.1. Introduction

14

1.6.2.

Structure-property relations in polymers

14

1.6.3.

Survey of cage polymers

17

1.6.3.1. Cage pendant polymers from vinyl polymerisation

18

1.6.3.2. Cage pendant polymers from ROMP

19

1.6.3.3. Backbone cage condensation polymers

20

1.6.3.4. Backbone cage polymers from metathesis reactions

22

1.6.3.5. Conclusions about the properties of cage polymers

24

1.7.

Some applications of molecular modelling in organic chemistry

25

1.7.1.

Potential energy surfaces, reaction pathways and geometric optimisations

26

1.7.2. Reactivity

28

2.

Synthesis of cage alkenes as possible monomers in ROMP

31

2.1.

Potential cage monomers for ROMP

31

2.1.1.

Examples of endocyclic cage alkenes

31

2.2.

Synthesis of derivatives of tetracyclo[6.3.0.0

4,11

0

5,9

]undec-2-en-6-one 36

2.2.1.

Synthesis of cage alkenes utilising the Diels-Alder reaction

41

2.3.

Synthesis of derivatives of 4-isopropylidenepentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]-undecane -8,11-dione

54

(6)

Contents

3.3.

Rationalisation of the experimental results

80

3.3.1. Ring

strain

80

3.3.1.1. ROMP and RSEs of cage alkenes

81

3.3.2.

Energy profiles and the ROMP mechanism

85

3.3.2.1. Energy profiles for the ROMP of cage monomers

86

3.3.3.

The effect of substituents on ROMP reactivity

91

3.3.3.1. The effect of substituents on HOMO-LUMO interactions during ROMP

93

3.4.

Potentially improved ROMP monomers

94

3.4.1.

Preparation of potentially improved monomers

94

3.4.2.

ROMP of potentially improved monomers

98

3.5. Conclusion

99

4.

Experimental

102

4.1. Analytical

apparatus

102

4.2.

Synthesis of tetracyclo[6.3.0.0

4,11

0

5,9

]undec-2-en-6-one and derivatives

102

4.2.1. Tetracyclo[6.3.0.0

4,11

0

5,9

]undec-2-en-6-one 102

4.2.2.

Endo-tetracyclo[6.3.0.0

4,11

.0

5,9

]undec-2-en-6-ol 103

4.2.3.

Endo-tetracyclo[6.3.0.0

4,11

.0

5,9

]undec-2-en-6-yl acetate

103

4.2.4. 4,5,6,7,16,16-Hexachlorohexacyclo[7.6.1.0

3,8

.0

2,13

.0

10,14

]hexadec-5-en-11-one 105

4.2.5.

Exo-11-hydroxy-4,5,6,7,16,16-hexachlorohexacyclo[7.6.1.0

3,8

.0

2,13

.0

10,14

]hexadec-5-ene

106

4.2.6. Hexacyclo[7.6.1.0

3,8

.0

2,13

.0

10,14

]hexadec-5-ene 106

4.2.7. Tetracyclo[6.3.0.0

4,11

.0

5,9

]undec-2-ene 107

4.3.

Synthesis of 10-isopropylidenetetracyclo[6.3.0.0

4,11

.0

5,9

]undec-2-en-6-one 108

4.3.1. 6,6-Dimethylfulvene

108

4.3.2.

Exo-11-(propan-2-ylidene)tricyclo[6.2.1.0

2,7

]undeca-4,9-diene-3,6-dione 109

4.3.3. 4-Isopropylidenepentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-8,11-dione 110

4.3.4.

8-(Ethylene ketal)-4-isopropylidenepentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-11-one

111

4.3.5.

Endo-8-(ethylene-ketal)-11-hydroxy-4-isopropylidenepentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]- undecane-8-one

112

4.3.6.

Endo-11-hydroxy-4-isopropylidenepentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]-undecane-8-one

112

4.3.7.

Halogenation of cage alcohols

113

4.3.7.1. 11-Hydroxypentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-8-one 113

4.3.7.2. Endo-pentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-8-ol 113

4.3.8.

Exo-4,11-dibromo-4-isopropylpentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-8-one 115

4.3.9.

Reductive dehalogenation of the dibromoketone 151 116

4.4.

Synthesis of Hexacyclo[8.4.0.0

2,9

.0

3,13

.0

4,7

.0

4,12

]tetradec-5-en-11,14-dione 117

4.4.1. Hexacyclo[8.4.0.0

2,9

.0

3,13

.0

4,7

.0

4,12

]tetradec-5-ene 117

4.5. ROMP

reactions

118

4.5.1.

General method for ROMP

118

(7)

4.5.3.

GC-MS analysis of the 1/Grubbs-II reaction mixture

122

4.6. Molecular

modelling

122

4.6.1. Hardware

specifications

122

4.6.1.1. Desktop

computer

122

4.6.1.2. High performance computing cluster

122

4.6.2. Software

specifications

122

4.6.3.

Molecular modelling techniques

123

4.6.3.1. Geometry

optimisation

123

4.6.3.2. Conformation

search

124

4.6.3.3. Transition state calculations

125

5.

Spectral data

127

5.1. IR

spectra

127

5.2. MS

spectra

133

5.3. NMR

spectra

140

6.

XRD data

175

7.

Summary

179

8.

Opsomming

184

9.

References

189

List of schemes ... iv 

List of figures ... vi 

List of tables ... viii 

List of spectral data ... ix 

Abbreviations ... xi 

List of structures ... xiv 

1. Introduction ... 1 

1.1.  Aim of study ... 1 

1.2.  Prelude ... 1 

1.3.  Brief overview of polycyclic cage compounds ... 4 

1.4.  Cage molecules by irradiation of Diels-Alder adducts ... 6 

1.4.1.  The Diels-Alder reaction ... 6 

1.4.2.  Photochemical [2 + 2] cycloadditions ... 8 

1.5.  Ring-opening metathesis polymerisation ... 9 

1.5.1.  Introduction ... 9 

1.5.2.  Mechanism of ROMP ... 10 

1.5.3.  Development of well-defined ruthenium carbene ROMP catalysts ... 11 

1.5.4.  Thermodynamics of ROMP ... 13 

1.6.  Cage polymers ... 14 

1.6.1.  Introduction ... 14 

1.6.2.  Structure-property relations in polymers ... 14 

1.6.3.  Survey of cage polymers ... 17 

1.6.3.1.  Cage pendant polymers from vinyl polymerisation ... 18 

1.6.3.2.  Cage pendant polymers from ROMP... 19 

1.6.3.3.  Backbone cage condensation polymers ... 20 

1.6.3.4.  Backbone cage polymers from metathesis reactions ... 22 

1.6.3.5.  Conclusions about the properties of cage polymers ... 24 

1.7.  Some applications of molecular modelling in organic chemistry ... 25 

1.7.1.  Potential energy surfaces, reaction pathways and geometric optimisations ... 26 

1.7.2.  Reactivity ... 28 

2. Synthesis of cage alkenes as possible monomers in ROMP ... 31 

2.1.  Potential cage monomers for ROMP ... 31 

2.1.1.  Examples of endocyclic cage alkenes ... 31 

2.2.  Synthesis of derivatives of tetracyclo[6.3.0.04,1105,9]undec-2-en-6-one ... 36 

2.2.1.  Synthesis of cage alkenes utilising the Diels-Alder reaction ... 41 

2.3.  Synthesis of derivatives of 4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]-undecane-8,11-dione ... 54 

3. Attempted ROMP of cage alkenes ... 75 

3.1.  ROMP of cage alkenes ... 75 

3.2.  NMR investigation of the ROMP reaction ... 77 

3.3.  Rationalisation of the experimental results ... 80 

3.3.1.  Ring strain ... 80 

3.3.1.1.  ROMP and RSEs of cage alkenes... 81 

3.3.2.  Energy profiles and the ROMP mechanism ... 85 

3.3.2.1.  Energy profiles for the ROMP of cage monomers ... 86 

3.3.3.  The effect of substituents on ROMP reactivity ... 91 

3.3.3.1.  The effect of substituents on HOMO-LUMO interactions during ROMP ... 93 

3.4.  Potentially improved ROMP monomers ... 94 

3.4.1.  Preparation of potentially improved monomers ... 94 

3.4.2.  ROMP of potentially improved monomers ... 98 

3.5.  Conclusion ... 99 

4. Experimental ... 102 

4.1.  Analytical apparatus ... 102 

4.2.  Synthesis of tetracyclo[6.3.0.04,11.05,9]undec-2-en-6-one and derivatives ... 102 

4.2.1.  Tetracyclo[6.3.0.04,11 .05,9 ]undec-2-en-6-one51 ... 102 

4.2.2.  Endo-tetracyclo[6.3.0.04,11.05,9]undec-2-en-6-ol51 ... 103 

4.2.3.  Endo-tetracyclo[6.3.0.04,11.05,9]undec-2-en-6-yl acetate ... 103 

4.2.4.  4,5,6,7,16,16-Hexachlorohexacyclo[7.6.1.03,8.02,13.010,14]hexadec-5-en-11-one ... 105 

4.2.5.  Exo-11-hydroxy-4,5,6,7,16,16-hexachlorohexacyclo[7.6.1.03,8.02,13.010,14]hexadec-5-ene ... 106 

4.2.6.  Hexacyclo[7.6.1.03,8.02,13.010,14]hexadec-5-ene ... 106 

4.2.7.  Tetracyclo[6.3.0.04,11 .05,9]undec-2-ene ... 107 

4.3.  Synthesis of 10-isopropylidenetetracyclo[6.3.0.04,11.05,9]undec-2-en-6-one ... 108 

4.3.1.  6,6-Dimethylfulvene232 ... 108 

4.3.2.  Exo-11-(propan-2-ylidene)tricyclo[6.2.1.02,7]undeca-4,9-diene-3,6-dione ... 109 

4.3.3.  4-Isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione183 ... 110 

4.3.4.  8-(Ethylene ketal)-4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]undecane-11-one ... 111 

4.3.5.  Endo-8-(ethylene-ketal)-11-hydroxy-4-isopropylidenepentacyclo[5.4.0.02,6 .03,10 .05,9]- undecane-8-one ... 112 

4.3.6.  Endo-11-hydroxy-4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]-undecane-8-one ... 112 

4.3.7.  Halogenation of cage alcohols ... 113 

4.3.7.1.  11-Hydroxypentacyclo[5.4.0.02,6.03,10.05,9]undecane-8-one ... 113 

4.3.7.2.  Endo-pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8-ol ... 113 

4.3.8.  Exo-4,11-dibromo-4-isopropylpentacyclo[5.4.0.02,6.03,10.05,9]undecane-8-one ... 115 

4.3.9.  Reductive dehalogenation of the dibromoketone 151... 116 

4.4.  Synthesis of Hexacyclo[8.4.0.02,9.03,13.04,7.04,12]tetradec-5-en-11,14-dione ... 117 

4.4.1.  Hexacyclo[8.4.0.02,9.03,13.04,7.04,12]tetradec-5-ene ... 117 

4.5.  ROMP reactions ... 118 

4.5.1.  General method for ROMP ... 118 

4.5.2.  General method for ROMP NMR experiments ... 121 

4.5.3.  GC-MS analysis of the 1/Grubbs-II reaction mixture ... 122 

4.6.  Molecular modelling ... 122 

4.6.1.  Hardware specifications ... 122 

4.6.1.1.  Desktop computer ... 122 

4.6.1.2.  High performance computing cluster ... 122 

4.6.2.  Software specifications ... 122 

4.6.3.  Molecular modelling techniques ... 123 

4.6.3.1.  Geometry optimisation ... 123 

4.6.3.2.  Conformation search ... 124 

4.6.3.3.  Transition state calculations ... 125 

5. Spectra ... 127  5.1.  IR spectra ... 127  5.2.  MS spectra ... 133  5.3.  NMR spectra ... 140  6. XRD data ... 175  7. Summary ... 179  8. Opsomming ... 184  9. References ... 189 

(8)

List of schemes

List of schemes

Scheme

Annotation

Page

Scheme 1.1

Initially envisaged synthesis scheme.

2

Scheme 1.2

Preparation of trione 4 from 9. 2

Scheme 1.3

Preparation of trione 4 through the in situ generated diene 17. 3

Scheme 1.4

Preparation of 4 through ozonolysis of 23. 3

Scheme 1.5

Synthesis of adamantane.

5

Scheme 1.6

Synthesis of adamantane by hydrogenation and rearrangement.

5

Scheme 1.7

Synthesis of dodecahedrane from pagodane.

6

Scheme 1.8

Synthesis of cage molecules by irradiation of Diels-Alder adducts.

7

Scheme 1.9

The simplest example of a Diels-Alder reaction.

7

Scheme 1.10 Formation of exo- and endo-adducts. 8

Scheme 1.11 Use of photocyclisation in the synthesis of cubane.

9

Scheme 1.12 Synthesis of pentacyclo[5.4.0.0

2,6

.0

3,10

.0

5,9

]undecane-8,11-dione. 9

Scheme 1.13 Different ways to polymerise cycloalkenes.

10

Scheme 1.14 General mechanism of ROMP of cycloalkenes.

10

Scheme 1.15 Well-characterised olefin metathesis catalysts that contain molybdenum.

11

Scheme 1.16 Adamantane-containing methacrylate monomers with spacer groups.

19

Scheme 1.17 Synthesis and polymerisation of cubane-containing ROMP monomers.

20

Scheme 1.18 Synthesis of cubane-containing condensation polymers.

21

Scheme 1.19 Synthesis of polyamides.

21

Scheme 1.20 Preparation of backbone cage polymers by ADMET polymerisation.

22

Scheme 1.21 Preparation of backbone cage polymers by ROMP.

23

Scheme 2.1

Attempted synthesis of adamantene.

32

Scheme 2.2

The use of Diels-Alder reactions in the synthesis of endocyclic cage

alkenes.

33

Scheme 2.3

Synthesis of hexacyclo[8.4.0.0

2,9

.0

3,13

.0

4,7

.0

4,12

]tetradec-5-en-11,14-dione. 33

Scheme 2.4

Synthesis of heptacyclo[1.0.2.1.1

5,8

.0

2,11

.0

4,9

.0

2,6

.0

7,11

]hexadec-13-en-3,10-dione.

34

Scheme 2.5

Synthesis of hexacyclo[6.5.1.0

2,7

.0

3,11

.0

4,9

.0

10,14

]tetradeca-5,12-diene. 35

Scheme 2.6

Synthesis of tetracyclo[6.3.0.0

4,11

0

5,9

]undec-2-en-6-one. 36

Scheme 2.7

Synthesis of derivatives of tetracyclo [6.3.0.0

4,11

0

5,9

]undec-2-en-6-one. 37

Scheme 2.8

Utilisation of the Diels-Alder reaction to synthesise cage alkenes.

41

Scheme 2.9

Diels-Alder reaction between the ketoalkene 1 and 9. 44

Scheme 2.10 Reduction of ketones with NaBH

4

-CeCl

3

. 49

Scheme 2.11 Mechanism of reduction with sodium borohydride applied to 126b. 50

Scheme 2.12 Synthesis of 10-isopropylidenetetracyclo[6.3.0·0

4,11

.0

5,9

]undec-2-en-6-one. 54

Scheme 2.13

Synthesis of 11-(propan-2-ylidene)tricyclo[6.2.1.0

2,7

]undeca-4,9-diene-3,6-dione.

55

Scheme 2.14 Equilibrium between the ketol 134a and hemiketal 134b. 61

(9)

Scheme 2.16 Mechanism of the Appel reaction.

66

Scheme 2.17 Reaction of 134a with neat SOCl

2

. 69

Scheme 2.18 Reductive

dehalogenation

of

a

cage

bromoketone with

zinc and

acetic

acid.

69

Scheme 2.19 HOMO orbitals and Mulliken charges of selected atoms in 134a and 134b 71

Scheme 2.20 Possible conversion of 134a to 134b. 73

Scheme 2.21 Possible outcomes of reductive dehalogenation of 151. 73

Scheme 3.1

Homodesmotic reaction used to calculate RSEs of cyclic alkenes.

80

Scheme 3.2

Homodesmotic reaction used to calculate RSE of norbornene.

81

Scheme 3.3

Homodesmotic reaction used to calculate RSEs of cage alkenes.

83

Scheme 3.4

Stepwise opening of the rings of norbornene.

83

Scheme 3.5

Influence of substituents on the rate of ROMP.

91

Scheme 3.6

ROMP of syn- and anti-isomers of 7-methylnorbornene.

91

Scheme 3.7

ROMP of substituted deltacyclene.

93

Scheme 3.8

Decarbonylation of cage ketones.

94

Scheme 7.1

Synthesis of derivatives of 1. 179

Scheme 7.2

Synthesis of hexacyclo[7.6.1.0

3,8

.0

2,13

.0

10,14

]hexadec-5-ene (127). 180

Scheme 7.3

Attempted synthesis of 125 and 124. 180

Scheme 7.4

Synthesis of 10-isopropylidenetetracyclo[6.3.0.0

4,11

.0

5,9

]undec-2-en-6-one. 181

Scheme 7.5

Methods used for halogenation of 134b/134b. 181

Skema 8.1

Sintese van derivate van 1. 184

Skema 8.2

Sintese van heksasiklo[7.6.1.0

3,8

.0

2,13

.0

10,14

]heksadek-5-een (127). 185

Skema 8.3

Pogings om 125 en 124 te sintetiseer.

185

Skema 8.4

Sintese van 10-isopropilideentetrasiklo[6.3.0.0

4,11

.0

5,9

]undek-2-een-6-oon. 186

Skema 8.5

Metodes aangewend om 134a/134b te halogeneer.

186

Scheme 1.1 2  Scheme 1.2 2  Scheme 1.3 3  Scheme 1.4 3  Scheme 1.5 5  Scheme 1.6 5  Scheme 1.7 6  Scheme 1.8 7  Scheme 1.9 7  Scheme 1.10 8  Scheme 1.11 9  Scheme 1.12 9  Scheme 1.13 10  Scheme 1.14 10  Scheme 1.15 11  Scheme 1.16 19  Scheme 1.17 20  Scheme 1.18 21  Scheme 1.19 21  Scheme 1.20 22  Scheme 1.21 23  Scheme 2.1 32  Scheme 2.2 33  Scheme 2.3 33  Scheme 2.4 34  Scheme 2.5 35  Scheme 2.6 36  Scheme 2.7 37  Scheme 2.8 41  Scheme 2.9 44  Scheme 2.10 49  Scheme 2.11 50  Scheme 2.12 54  Scheme 2.13 55  Scheme 2.14 61  Scheme 2.15 62  Scheme 2.16 66  Scheme 2.17 69  Scheme 2.18 69  Scheme 2.19 73  Scheme 2.20: 73  Scheme 3.1 80  Scheme 3.2 81  Scheme 3.3 83  Scheme 3.4 83  Scheme 3.5 91  Scheme 3.6 91  Scheme 3.7 93  Scheme 3.8 94  Scheme 7.1 179  Scheme 7.2 180  Scheme 7.3 180  Scheme 7.4 181  Scheme 7.5 181  Skema 8.1 184  Skema 8.2 185  Skema 8.3 185  Skema 8.4 186  Skema 8.5 186 

(10)

List of figures

List of figures

Figure

Annotation

Page

Figure 1.1

Variations on the first well-defined ruthenium alkylidene complex.

12

Figure 1.2

A classification of cage polymers.

15

Figure 1.3

Adamantane-containing methacrylate monomers.

18

Figure 1.4

Recognising minima, maxima, and transition states on a PES.

26

Figure 1.5

A simplified two-dimensional PES.

27

Figure 1.6

Generalised energy diagram for frontier orbital interactions.

28

Figure 1.7

Reagents with favourably orientated HOMO and LUMO lobes.

29

Figure 1.8

LUMO lobes protruding from the total electron density.

29

Figure 2.1

Classifications of cage alkenes suitable for ROMP.

31

Figure 2.2

Possible isomers of 126 and the representation of the XRD data obtained.

43

Figure 2.3

Energy profiles for the formation of 126a and 126b. 44

Figure 2.4

Energy profiles for the formation of different Diels-Alder adducts.

46

Figure 2.5

Conformation search for 118. 47

Figure 2.6

Comparison of the HOMO-LUMO interaction of 1 and 118 with 9. 48

Figure 2.7

Electrostatic potential maps of 1 and 118. 49

Figure 2.8

Representation of the LUMO and total electron density of 1. 51

Figure 2.9

Energies for the cycloaddition of 1,4-benzoquinone (11) to

6,6-dimethylfulvene (21).

55

Figure 2.10

Expected NOESY interactions in 132. 59

Figure 2.11

The HOMO and NHOMO electron density of 144 and 144. 67

Figure 2.12

Possible products from the reaction of 134a/134b with hydrobromic acid.

70

Figure 2.13

Carbocations that could precede the formation of 150 and 151. 72

Figure 2.14

Possible products from the reaction of 151 with zinc and acetic acid.

74

Figure 3.2

Monitoring of the possible ROMP of 1 in the presence of Grubbs-II.

77

Figure 3.1

Monitoring of the ROMP of 3 in the presence of Grubbs-II.

78

Figure 3.3

Progress of the possible ROMP reactions of 1 and 3. 79

Figure 3.4

Correlation between calculated and experimental RSEs.

81

Figure 3.5

RSE

f

s of various monomers.

84

Figure 3.6

Hypothetical energy profile for ROMP.

86

Figure 3.7

Energy profiles for the reaction of the Grubbs-I catalyst with various

monomers.

87

Figure 3.8

Comparison of the geometry of D-Gr

II

-159 and D-Gr

II

-83. 88

Figure 3.9

Importance of Step 5 in the catalytic cycle.

88

Figure 3.10

A possible structure of F-Gr

II

-159. 89

Figure 3.11

Possible structures of F-Gr

II

-3 and F-Gr

II

-158. 90

Figure 3.12

HOMO-LUMO interaction of norbornene and the active catalytic species.

93

Figure 4.1

Irradiation apparatus.

110

Figure 4.2

Apparatus used for polymerisation reactions.

118

(11)

Figure 4.4

Setup for geometry optimisation with DMol

3

. 123

Figure 4.5

Electronic setup for geometry optimisation with DMol

3

. 124

Figure 4.6

Determination of the dihedral angle.

124

Figure 4.7

Setup for a conformational search in Spartan

®

'08. 125

Figure 4.8

Properties determined for geometry-optimised structures.

125

Figure 4.9

Setup for determination of a transition state in DMol

3

. 126

Figure 1.1 12

 

Figure 1.2 15

 

Figure 1.3 18

 

Figure 1.4 26

 

Figure 1.5 27

 

Figure 1.6 28

 

Figure 1.7 29

 

Figure 1.8 29

 

Figure 2.1 31

 

Figure 2.2 43

 

Figure 2.3 44

 

Figure 2.4 46

 

Figure 2.5 47

 

Figure 2.6 48

 

Figure 2.7 49

 

Figure 2.8 51

 

Figure 2.9 55

 

Figure 2.10 59

 

Figure 2.11 67

 

Figure 2.12 70

 

Figure 2.13 Error! Bookmark not defined.

 

Figure 2.14 74

 

Figure 3.2 77

 

Figure 3.1: 78

 

Figure 3.3 79

 

Figure 3.4 81

 

Figure 3.5 84

 

Figure 3.6 86

 

Figure 3.7 87

 

Figure 3.8 88

 

Figure 3.9 88

 

Figure 3.10 89

 

Figure 3.11 90

 

Figure 3.12 93

 

Figure 4.1 110

 

Figure 4.2 118

 

Figure 4.3 123

 

Figure 4.4 123

 

Figure 4.5 124

 

Figure 4.6 124

 

Figure 4.7 125

 

Figure 4.8 125

 

Figure 4.9 126

 

(12)

List of tables

List of tables

Table

Annotation

Page

Table 1.1

Thermodynamic parameters for ROMP as a function of monomer ring size

14

Table 1.2

Commonly reported properties of polymers

15

Table 1.3

Some structure-property relations in polymers

17

Table 1.4

Effect of water and monomer-to-catalyst ratio on polymerisation

24

Table 1.5

Properties of cage polymers

25

Table 2.1

Derivatives of ketoalkene 1 37

Table 2.2

1

H and

13

C NMR data of 1 38

Table 2.3

1

H and

13

C NMR data of 118 39

Table 2.4

1

H and

13

C NMR data of 121 40

Table 2.5

1

H and

13

C NMR data of 126 42

Table 2.6

1

H and

13

C NMR data of 127 45

Table 2.7

Comparison of the LUMOs and total electron densities of 1, 124 and 126b 52

Table 2.8

LUMO, SLUMO and total electron density of 128 and 129 53

Table 2.9

Reaction of 6,6-dimethylfulvene and 1,4-benzoquinone in water

56

Table 2.10

1

H and

13

C NMR data of 23 58

Table 2.11

1

H and

13

C NMR data of 132 58

Table 2.12

1

H and

13

C NMR data of 133 60

Table 2.13

Summary of the Appel reaction of selected cage alcohols

62

Table 2.14

HOMO, NHOMO and total electron densities of selected cage alcohols

64

Table 2.15

Halogenation of non-cage alcohols

66

Table 2.16

Literature methods used to convert cage alcohols to halogen compounds

68

Table 2.17

Summary of further work convert cage alcohols to halogen compounds

68

Table 2.18

Methods used for conversion of 134a/134b to an iodine compound

74

Table 3.1

ROMP of cage monomers with Grubbs-I and Grubbs-II

76

Table 3.2

Calculated and experimental RSEs of norbornene and cage compounds

82

Table 3.3

Total and fractional ring strain energies of selected monomers

84

Table 3.4

Reference compounds

86

Table 3.5

Influence of substituents on the ROMP reactions

92

Table 3.6

HOMO, NHOMO and total electron density of cage alkenes tested in this

study

95

Table 3.7

1

H and

13

C NMR data of 159 98

Table 3.8

1

H and

13

C NMR data of 175 98

Table 3.9

ROMP of new cage monomers with Grubbs-I and Grubbs-II

99

Table 3.10

Possible link between RSEf and ROMP yield

100

Table 1.1 14  Table 1.2 15  Table 1.2 16  Table 1.2 17  Table 1.3 17  Table 1.4 24  Table 1.5 25  Table 2.1 37  Table 2.2 38  Table 2.3 39  Table 2.4 40  Table 2.5 42  Table 2.6 45  Table 2.7 52  Table 2.8 53  Table 2.9 56  Table 2.10 58  Table 2.11 58  Table 2.12 60  Table 2.13 62  Table 2.15 66  Table 2.14 64  Table 2.16 68  Table 2.17 68 

Table 2.14 Error! Bookmark not defined.  Table 2.18 74  Table 3.1 76  Table 3.2 82  Table 3.3 84  Table 3.4 86  Table 3.5 92  Table 3.6 95  Table 3.7 98  Table 3.8 98  Table 3.9 99  Table 3.10 100 

(13)

List of spectral d

ata

List of spe

c

tr

al data

Compoun

d number

Ty

p

e

Page

.3.0.0

4,11

.0

5,

9

]undec-2-en

-6-one

1

IR 127

MS 133

NMR 140

4,

1

1

.0

5,

9

]unde

c-2-en-6-ol

118

IR 127

MS 134

NMR 142

4,

1

1

.0

5,

9

]unde

c-2-en-6-yl acetate

121

IR 128

MS 134

NMR 145

6-Hexachlorohexacyclo[7.6.1.0

3,8

.0

2,1

3

.0

10,14

]hexadec-5-en-11-one

126b

IR 128

MS 135

NMR 147

.6.1.0

3,8

.0

2,

1

3

.0

10,14

]hexad

ec-5-ene

127

IR 129

MS 135

NMR 150

.3.0.0

4,11

.0

5,

9

]undec-2-en

e

159

IR 129

MS 236

NMR 152

2,6

.0

3,

1

0

.0

5,

9

]u

ndecane-8,1

1-dione

23

IR 130

MS 136

NMR 155

(14)

ectral data

Name

Compoun

d number

Ty

p

e

Page

8-(Ethylene ketal)-4-isop

ropylidenepentacyclo[5.

4.0.0

2,6

.0

3,

1

0

.0

5,9

]undeca

n

e-11-one

132

IR 130

MS 137

NMR 157

Endo

-8-(ethylene

-ketal)-11-hydroxy-4-isopropylidenepentacyclo[5.4.0.0

2,

6

.0

3,

1

0

.0

5,

9

]-undecane-8

-one

133

IR 131

MS 137

NMR 160

Endo

-11-hydroxy-4-isop

ropylidenepentacyclo[5.

4.0.0

2,6

.0

3,

1

0

.0

5,9

]undeca

n

e-8-one

134

IR 131

MS 138

NMR 163

Exo

-4,11-dibromo-4-isopropylpentacyclo[5.4.0.

0

2,6

.0

3,

1

0

.0

5,

9

]undecane-8

-one

151

IR 132

MS 138

NMR 165

Hexacyclo[8

.4.0.0

2,9

.0

3,

1

3

.0

4,7

.0

4,

1

2

]tetr

adec-5-en-11,14-dione

3

IR 132

MS 139

NMR 168

Hexacyclo[8

.4.0.0

2,9

.0

3,

1

3

.0

4,7

.0

4,

1

2

]tetr

adec-5-ene

175

IR 133

MS 139

NMR 170

(15)

Abbreviations

Abbreviations

G

Gibbs free energy change

H

Enthalpy change

S

Entropy change

[M]

eq

Equilibrium

concentration

a

Anti

Ac Acetyl

Ad

ADMET

Acyclic diene metathesis

Bu

BuLi

Bu

t

CM Cross

metathesis

COSY Correlated

spectroscopy

COT 1,3,5,7-Cyclooctatetraene

CPU

Central processing unit

Cy

DCM Dichloromethane

DEPT

Distortionless enhancement of polarisation transfer

DFT

Density functional theory

DMAP 4-(N,N-dimethylamino)pyridine

DMF Dimethylformamide

DMSO Dimethyl

sulphoxide

DNP

Double numeric polarised basis set

DSC

Differential scanning calorimetry

Et

FMO

Frontier molecular orbital

GC Gas

chromatography

GC-MS

Gas chromatography-mass spectrometry

GGA

Generalised gradient approximation

(16)

Abbreviations

HPC

High performance computing

HSQC

Heteronuclear multiple quantum coherence

IMes

N

N

Mes

Mes

LUMO

Lowest unoccupied molecular orbital

Mes

n

M

Number average molecular mass

Ms Mesyl

(methanesulphonyl)

MSD

Mass selective detector

w

M

Mass average molecular mass

NHOMO

Next-to-highest occupied molecular orbital. Also

indicated as HOMO-1.

NMP

N-methyl-2-pyrrolidone

NMR

Nuclear magnetic resonance spectroscopy

NOESY

Nuclear Overhauser effect spectroscopy

PCU Pentacycloundecane

PDI Polydispersion

index

PES

Potential energy surface

Ph

POP

Persistent organic pollutant

Pr

i

PTS

p-Toluenesulphonic acid

py Pyridine

RCM Ring-closing

metathesis

ROESY

Rotating-frame Overhauser spectroscopy

ROMP

Ring-opening metathesis polymerisation

ROP

Ring-opening polymerisation

HSAB

Hard and soft acids and bases

SCF

Self consisted field

SLUMO

Second lowest unoccupied molecular orbital. Also

(17)

RSE Ring

strain

energy

RSE

f

Fractional ring strain energy

SI Semi-empirical

s

Syn

TCU Tetracycloundecane

TGA Thermogravimetric

analysis

THF

Tetrahydrofuran

TMSCl Trimethylsilyl

chloride

Ts

O

S

O

O

TS Transition

state

(18)

List of structures

List of structures

O

O

O

O

1

2

3

O

O

O

O

O

O

O

O

O

H

OH

O

4

5

6

O

Br

H

O

O

O

Cl

Cl

Cl

Cl

Cl

Cl

7

8

9

Cl

Cl

Cl

Cl

CH

3

O

OCH

3

O

O

O

O

CH

3

O

OCH

3

Cl

Cl

Cl

Cl

10

11

12

CH

3

O

OCH

3

Cl

Cl

Cl

Cl

OH

OH

CH

3

O

OCH

3

OH

OH

O

13

14

15

EtO

OEt

Br

Br

EtO

OEt

O

O

EtO

OEt

16

17

18

(19)

O

O

EtO

OEt

19

20

21

O

O

O

O

N

N

N

N

22

23

24

CH

3

O

O

O

OCH

3

O

O

CH

3

O

2

C

CO

2

CH

3

CO

2

CH

3

CH

3

O

2

C

25

26

27

O

O

CH

3

O

2

C

CO

2

CH

3

O

O

CO

2

CH

3

CO

2

CH

3

COOH

COOH

28

29

30

31

32

33

34

35

36

(20)

List of structures

O

O

O

O

40

41

42

Cl

Cl

Cl

Cl

Cl

Cl

O

O

Cl

Cl

Cl

Cl

Cl

Cl

43

44

45

O

O

Br

O

O

O

Br

46

47

48

O

O

O

Br

Br

Mo

N

O

Cl

C

Cl

O

Pr

i

Pr

i

Bu

t

H

Mo

N

OR

OR

Pr

i

Pr

i

C

Bu

t

H

49

50

51

PPh

3

Ru

PPh

3

Cl

Cl

Ph

Ph

PPr

i

3

Ru

PPr

i

3

Cl

Cl

Ph

Ph

PCy

3

Ru

PCy

3

Cl

Cl

Ph

Ph

52

53

54

PCy

3

Ru

Ph

PCy

3

Cl

Cl

N

N

Mes

Mes

Ru

Ph

PCy

3

Cl

Cl

O

OCH

3

55

56

58a

(21)

O

OBu

t

O

OCy

O

OAd

58b

58c

58d

O

O

OH

O

O

Ad

58e

60

61

Br

HO

Ad

O

O

Ad

62

63

64

OH

O

O

Cl

HO

R

65

66

67

O

O

R

R = H, I

OH

HO

O

O

68

70

(22)

List of structures

H

2

N

R

NH

2

R =

(a)

(b)

O

(c)

O

S

O

(d)

(e)

71

Cl

Cl

O

O

R

Cl

O

O

Cl

R = (a)

(b)

73

74

NH

2

H

2

N

OH

OH

Br

Br

75

78

79

2

2

Mo

N

OC(Me)(CF

3

)

2

OC(Me)(CF

3

)

2

Pr

i

Pr

i

C

Ph(CH

3

)

2

C

H

80

82

R

R = Ph, TMS, Bu

Mo

N

OBu

t

OBu

t

Pr

i

Pr

i

C

Ph(CH

3

)

2

C

H

83

84

89

(23)

I

I

COOOBu

t

COOOBu

t

90

91

92

O

H

3

C

CH

3

CH

3

CH

3

O

93

94

95

O

O

O

O

O

O

96

97

98

O

O

O

O

99A

99B

100

O

O

O

O

O

O

101

102

103

O

O

O

O

O

104

105

106

(24)

List of structures

O

O

O

O

Cl

Cl

Cl

Cl

O

O

Cl

Cl

Cl

Cl

O

O

O

107

108

109

O

O

Cl

Cl

Cl

Cl

O

O

O

O

O

Cl

Cl

Cl

Cl

O

O

110

111

112

O

O

O

O

113

114

115

O

O

H

OH

O

Br

H

OH

H

116

117

118

H

Cl

H

AcO

119

120

121

O

O

O

HO

H

122

123

124

(25)

Cl

Cl

Cl

Cl

Cl

Cl

HO

H

O

Cl

Cl

Cl

Cl

Cl

Cl

O

Cl

Cl

Cl

Cl

Cl

Cl

125

126a

126b

Cl

Cl

O

Cl

Cl

Cl

Cl

O

Cl

Cl

Cl

Cl

Cl

Cl

126c

126d

127

O

O

Cl

Cl

Cl

Cl

Cl

Cl

O

O

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

OH

OH

Cl

128

129

130

Cl

Cl

Cl

Cl

Cl

OH

OH

Cl

O

O

O

O

O

H

OH

131

132

133

O

H

OH

H

OH

O

O

Cl

H

134a

134b

135

(26)

List of structures

O

OH

Cl

136

137

138

O

H

OH

H

OH

P

Ph

Ph

Ph

Cl

C

Cl

Cl

Cl

139

140

141

P

Ph

Ph

Ph

O

R

Cl

HO

O

O

OH

143

144

145

OH

H

OH

O

H

Cl

146

147

148

O

H

Br

Br

O

Br

H

H

O

Br

H

Br

H

149

150a

150b

O

Br

H

Br

O

Br

H

Br

O

H

OH

H

151a

151b

152a

(27)

O

H

OH

H

O

H

OH

H

H

O

OH

152b

152c

152d

H

O

OH

H

O

OH

OH

H

OH

152e

152f

153a

H

OH

OH

H

O

O

153b

154

155

HN

NH

O

O

O

156

157

158

159

160

161

(28)

List of structures

O

O

O

O

O

O

PCy

3

Ru

PCy

3

Cl

Cl

165

166

167

168a

168b

O

O

N

O

O

H

O

O

N

O

O

H

O

N

O

O

O

170

171

N

O

O

CF

3

CF

3

OR

O

O

OR

R =

5

CN

172

173

175

Referenties

GERELATEERDE DOCUMENTEN

Faase 2 Arbeidsbestel Verantwoordelijkheid en aansprakelijk­ heid van intermediaire

Zeker gezien de moeilijker wordende concurrentiepositie van Drentse steden, zal het steeds lastiger zijn om werkgelegenheidsgroei en economische groei te bereiken vanuit het

Drawing from the Pega survey (2017), raising awareness for AI (products) should be focused on reducing perceived risk and informing consumers about the construct ‘AI’ and

In terms of the thesis of the factual requisite of law, the questions as to what the law, including the constitution, entails, and to what extent it has remained stable and / or

Wellicht is dit niet voldoende om een generalisatie te kunnen maken voor alle scholen binnen de Sirius-scholengroep, maar er kan naar aanleiding van het uitgevoerde onderzoek wel

This study focuses on candidate neurocognitive domains, aiming to identify pathways associated with social and occupational resilience among South African women exposed to

Predacious arthropods are most influenced by anthropological and disturbance activities associated with maize fields as the urban disturbance had little effect, despite

3) Radome Shape: The above parameters and inputs are used to determine the inner and outer radome shape. The wall thickness is used as the perpendicular distance