• No results found

Appendix 5: Discharge Costs per IE in the Netherlands Appendix 6: IE Calculations for Large Industries Appendix 7: P-list

N/A
N/A
Protected

Academic year: 2021

Share "Appendix 5: Discharge Costs per IE in the Netherlands Appendix 6: IE Calculations for Large Industries Appendix 7: P-list "

Copied!
71
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Appendices

(2)

Appendices

Appendix 1: Paques Product Range

Appendix 2: MBR and Substitute Technology Appendix 3: Paques Membrane Module Appendix 4: MTR Values

Appendix 5: Discharge Costs per IE in the Netherlands Appendix 6: IE Calculations for Large Industries Appendix 7: P-list

Appendix 8: Market Size and Market Share Calculations Appendix 9: Membrane Module Manufactures

Appendix 10: Membrane Modules of Zenon, Kubota and Mitsubishi Appendix 11: References Zenon

Appendix 12: References Kubota Appendix 13: References Mitsubishi Appendix 14: MBR projects

Appendix 15: Technical evaluation

Appendix 16: Estimations of Possible Projects

Appendix 17: Summary of Internal Research Findings Appendix 18: Cost-price Paques’ 2

e

Membrane module Appendix 19: Process train

Appendix 20: Planning Current Projects Appendix 21: Possible Brand Names Appendix 22: Possible Licensees Appendix 23: Checklist

Appendix 24: Interviews

(3)

Appendix 1: Paques Product Range

In the following pages some pamphlets are presented of the different products Paques

produces. Also, some references are included to get an idea of the industries in which

these products are used.

(4)

Appendix 2: MBR and Substitute Technology

MBR (Membrane Bioreactor) technology combines conventional activated sludge treatment processes with membrane separation techniques. In a conventional process train, the separation of sludge and effluent is effected within a settler tank by gravity.

With the MBR technique the influent is treated with activated sludge (as in a conventional process train) and then sucked (outside-in) or pushed (inside-out) through a membrane. The difference between these techniques will be mentioned later on in this appendix. The membranes used, unrelated to the technique used, have different pore sizes, namely: Micro filtration (MF) with a pore size ranging between 0,6 and 0,1µm and Ultra Filtration (UF) with a range between 0,1 and 0,01 µm. Tests are being done with Nano-Filtration (NF) (0,01-0,001 µm) techniques, but so far have not been successful.

Possible applications

The primary application for the membrane module in an MBR installation is wastewater treatment. The membrane itself can also be used for surface water and ground water treatment. The effluent can be applied as pre-treated drinking-water, process water, boiler feed water and cooling-water, possibly after further polishing treatment (for example by means of reversed osmosis or chloride dosing), depending on the situation.

Other possible applications for the loose Paques membrane are:

- Washing-water treatment (from drinking water production);

- sludge thickening;

- sludge digestion;

- bio battery;

- raw material recovery (for example Fe, which can be used as P-removal in WWTP).

Advantages

In general the MBR has two major advantages over conventional techniques:

• Very high-quality effluent

• Small footprint

The reasons for the clean effluent can be found in the fact that the membranes used in the MBR technology can be seen as an absolute barrier. This means that all solid particles have no chance of rinsing out, which can happen with a conventional settler. So, the effluent is free of all solids.

The pore size of the membrane mentioned earlier also makes it possible to keep out

particles, which a conventional activated sludge settling cannot take care of. For example,

the UF keeps out all bacteria and some viruses (see chapter 1). This makes it very

attractive in areas where these criteria are very important, for example swimming water

areas.

(5)

A second advantage of an MBR is that it takes up less space than a conventional treatment plant. First of all, no settler tanks are needed. Settler tanks take up a lot of space in conventional WWTPs (see figure 1a, b). Moreover, no additional processes need to be placed if an effluent quality similar to conventional WWTPs has to be reached (for example a sand filtration unit). Secondly, a smaller aeration tank is needed. The membrane is an absolute barrier, which means more sludge can be kept in this tank to treat the influent water because there is no threat of losing sludge.

However, the amount of sludge which can be kept in the aeration tank is limited and this has bearing on the effectiveness of the sludge in comparison to the amount of air which has to be implemented (alpha factor).

Disadvantages

The biggest disadvantages are:

• The (operational) costs

• Fouling of the membrane

The biggest disadvantage in comparison to a conventional system is that the overall costs are high. Membranes are still expensive and have to be replaced. Secondly, membranes become dirty. This fouling is an important topic for membrane-related research. For the membranes to remain effective they have to be cleaned in the process. This cleaning is conducted in two ways. The membranes can be intensively cleaned (IC). Water treatment is being stopped and the membranes are cleaned. This is being done in a lot of different ways, but basically it is being done with chemicals. Another option is continual (during the water treatment) cleaning. This so-called Mechanical Clean (MC) is done by usage of air, which is blown between the membranes and/or used in a reversed direction of permeate flow, so-called back-pulsing. Finally, a membrane is cleaned just by relaxing it (shutting it down). The membrane is then cleaned by the movement in the water.

Figure 1a: RWZI Soest Figure 1b: 4 settler tanks at RWZI Soest

Source: http://www.wve.nl

This intensive cleaning obviously makes operational costs higher than conventional techniques, because of the use of energy and chemicals. Additionally, personnel have to be trained more extensively.

Cross-flow vs. Submerged

(6)

In the first paragraph of this appendix the so-called inside-out and outside-in principles were mentioned. In general, these correspond with cross-flow and submerged MBR (picture 2).

Figure 2: cross-flow and submerged configurations

Source: Market study Paques

In a cross-flow (picture 3) (inside out) MBR effluent is pushed under high pressure (appr.

20 bar) through the (tubular) membranes. The advantages in comparison to a submerged configuration are that it creates far better fluxes and is easy to operate. Because of the external placement and these high fluxes this set-up it is very attractive for very small and or partial stream implementation (appr. 5m³/h). An obvious, big disadvantage is the high- energy cost related to the high pressure.

Figure 3: cross-flow membrane filtration

Submerged configurations create clean

permeate by suction. So the

configuration in relation to figure 3 is

the other way around, the feed is on the

outside and permeate on the inside of

the tube. The related pressure needed in

this case in much lower, (0.05 to 0.2

bar), also resulting in low fluxes.

(7)

These submerged configurations seem to have the most promising future of the two, because of the relatively low operational

costs and the relative robustness of the membranes.

Submerged: Flate plate vs. Hollow-fiber

These submerged membranes can be divided into two types, namely: Flat-plate and hollow- fiber (also capillary). Hollow-fiber uses straws to suck the permeate through. An advantage over flat-plated membranes is that the effective separation area is much more efficient. This means that the actual advantage of a small footprint is largest with hollow- fiber membranes, approximately with a factor of 1 to 4. A disadvantage may lie in the fact that the membranes seem less robust, which makes them more difficult to clean.

Figure 4: Flat-plate Kubota membrane sheet

Flat-plated membranes make use of two sheets of membranes from between which permeate is extracted (figure 4). The disadvantage compared to hollow-fiber is that it has a larger footprint (appr. 4 to 1). The advantage is that it is more robust.

Another advantage seems to lie in the fact that it is easier to use.

Sheets are very easily interchanged (figure 5).

Figure 5

:

Submerged Flate- plated MBR module

Source: US patent nr. US06287467B1

NB. (figure five) As can be seen in this picture, membrane sheets can be easily

extracted. Also, the Mechanical Clean (MC) mentioned earlier, can be seen at the bottom.

Source: Membrane technology no. 83 p. 5

Membrane placement

Source: www.epa.state.oh.us

(8)

There can also be a difference in the placement of the membranes. They can be directly hung in the aeration tank, or can be placed in a separate tank which communicates with the aeration tank (picture 6).

Figure 6: (a) direct placement of membranes in aeration tank; (b) separate placement of membranes

(a) (b)

Aeration tank Aeration tank separate tank

The principle of water treatment is the same in both cases, both use submerged membranes. However in the first case no additional tank needs to be built and/or extra energy costs need to be spent on pumping the water around. The advantage of the other setup is that it is easier to maintain the membranes and usage of chemicals can be controlled more easily.

Sand filtration and dead-end UF

An advantage of the MBR technology is that it keeps out all solids. However, membranes are not the only technique which can achieve this result. Sand filtration (see figure 7) also keeps out solids. The advantages of this technology over MBR are that it is a more proven technology and on large scale it still has a cost advantage.

Figure 7:

continuous sand filtration (astrasand®)

To reach the same quality effluent as an MBR, an Ultra Filtration unit has to be placed behind this process step.

In principle, the same membrane modules could be

used for this dead-end Ultra Filtration. However, the

water that is treated is much cleaner (it is biologically

treated and free of all solids) so membranes can be used

under higher pressure. In practices this means that in

most cases inside-out cross-flow membrane units are

used.

(9)

Source: Paques N.V.

Hybrid setup

An MBR has problems in handling hydraulic fluctuations, because all the effluent has to pass through the membranes. If these fluctuations are too large to be handled by a buffer, a hybrid setup can be opted for. This has a conventional setup besides an MBR. The MBR is constantly fed and only excessive water is treated by the conventional system.

This not only takes away the hydraulic problem, but can also lower the investment costs

considerably.

(10)

Appendix 3: Paques Membrane Module

The Paques MBR module is a flat-plate submerged membrane module with a total membrane surface of 200m². It consists of 50 membrane envelopes (1m * 2m), each with 4m² (2*(1*2)) membrane surface (see picture 1).

Picture 1: membrane envelopes

A membrane envelope, which is made up of two sheets, is constructed with two headers and a santopreen strip, which is the reason for the extreme flexibility in the module (see figure 2). The membranes are made more robust by placing a backing on the sheets, which is done externally.

A corrugated PP plate is put within the envelope (between the two sheets) to strengthen the frame and guide permeate out of the module. Each envelope is hung in a PP frame and is put under tension by springs, but has the ability to move. The effluent is sucked out on both ends of the envelope through the headers mentioned earlier.

At the bottom of the frame three aeration tubes produce air bubbles for the in-process cleaning mentioned in appendix 2. In the first module the aeration was done by round domes (see picture 3).

Besides cleaning by aeration, the membrane can be cleaned by: relaxation, Maintenance Cleaning (by in-situ chemical back-pulsing) and by Intensive Cleaning (by lifting the membranes out of the aeration tank and placing them in a bath of chemicals). The MC is done by reversing the flow (pushing instead of sucking) in combination with adding the chemicals. The IC is done by hoisting the membranes out of the tanks using an external crane.

Figure 3: dome aeration elements under the first generation Paques membrane module

(11)

Appendix 4: MTR Values

This appendix is presented in Dutch. In general it shows the values for all harmful substances, which will be allowed in the near future (in the Netherlands). It shows that the values are becoming more strict, which could favor MBR.

Minimumkwaliteit (MTR) en Streefwaarden voor water, sediment en grondwater

IJkpunten voor stoffen in watersystemen (MTR: korte termijn, Streefwaarde: lange termijn)

De getalswaarden voor de totale concentratie in water gelden voor een zwevend-stof concentratie van 30 mg/l. De getalswaarden voor sediment gelden voor de standaard van 10% organische stof en 25% lutum. Voor standaard zwevend stof (20% organische stof en 40% lutum) liggen de getalswaarden voor metalen een factor 1,5 hoger en voor organische verbindingen een factor 2 hoger dan voor sediment. De streefwaarde en MTR voor metalen zijn inclusief de landelijke achtergrondconcentratie. De achtergrondconcentraties voor metalen in grondwater gelden voor het diepe grondwater (>10 m), voor de Noordzee gelden ze voor het midden.

OPPERVLAKTEWATER (opgelost)

OPPERVLAKTEWATER (totaal)

SEDIMENT (droge stof)

GRONDWATER (opgelost)

METALEN

achtergrond concentratie Noordzee ug/l

landelijke streefwaarde ug/l

MTR ug/l

landelijke streefwaarde ug/l

MTR ug/l

landelijke streefwaarde mg/kg d.s.

MTR- sed mg/kg d.s.

landelijke streefwaarde ug/l

cadmium 0.03 0.08 0.4 0.4 2 0.8 12# 0.06

anorganisch kwik

0.003 0.01 0.2 0.07 1.2 0.3 10# 0.01

methyl-kwik - 0.01 0.02 0.06 0.1 0.3 1.4 0.01

koper 0.3 0.5 1.5 1.1 3.8 36 73 1.3

nikkel - 3.3 5.1 4.1 6.3 35 44 2.1

lood 0.02 0.3 11 5.3 220 85 530 # 1.7

zink 0.4 2.9 9,4 12 40 140 620 24

chroom - 0.3 8.7 2.4 84 100 380 # 2.5

arseen - 1 25 1.3 32 29 55 # 7.2

antimoon - 0.4 6.5 0.4 7.2 3 15 # 0.15

barium - 75 220 78 230 160 300 200

beryllium - 0.02 0.2 0.02 0.2 1.1 1.2 0.05

cobalt - 0.2 2.8 0.2 3.1 9 19 0.7

molybdeen - 4.3 290 4.4 300 3 200 # 3.6

seleen - 0.09 5.3 0.09 5.4 0.7 2.9 0.07

thallium - 0.04 1.6 0.06 1.7 1 2.6 2

(12)

tin - 0.2 18 2.2 220 - - 2.2

vanadium - 0.9 4.3 0.9 5.1 42 56 1.2

boor @ - 6.5 650 - - - - 6.5

tellurium @ - - - - - - - -

titanium @ - - - - - - - -

uranium @ - 0.01 1 - - - - 0.01

zilver @ - 0.0008 0.8 - - - 5.5 0.0008

zoute wateren - 0.01 1.2 - - - - -

OPPERVLAKTEWATER SEDIMENT GRONDWATER

(opgelost)

ORGANISCHE

VERBINDINGEN MTR

opgelost

streefwaarde totaal

MTR totaal

streefwaarde droge stof

MTR-sed droge stof

landelijke streefwaarde

PAK ug/l ug/l ug/l mg/kg d.s. mg/kg d.s. ug/l

naftaleen 1.2 0.01 1.2 0.001* 0.1* 0.01

anthraceen 0.07 0.0008 0.08 0.001* 0.1* 0.0007

fenantreen 0.3 0.003 0.3 0.005* 0.5* 0.003

fluorantheen 0.3 0.005 0.5 0.03* 3* 0.003

benz(a)anthraceen 0.01 0.0003 0.03 0.003* 0.4* 0.0001

chryseen 0.3 0.009 0.9 0.1* 11* 0.003

benzo(k)fluorantheen 0.04 0.002 0.2 0.02 * 2* 0.0004

benzo(a)pyreen 0.05 0.002 0.2 0.003 * 3* 0.0005

benzo(ghi)peryleen 0.03 0.005 0.5 0.08 * 8* 0.0003

indenopyreen 0.04 0.004 0.4 0.06 * 6* 0.0004

vluchtige halogeen koolwaterstoffen

ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

pentachloorbenzeen 300 3 300 1 100 3

hexachloorbenzeen 9 0.09 9 0.05 5 0.09

chloorfenolen ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

pentachloorfenol 4000 40 4000 2 300 40

organochloorverbindingen ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

aldrin 0.9 0.01 1 0.06 6 0.009

dieldrin 12 0.4 39 0.5 450 0.1

endrin 4 0.04 4 0.04 4 0.04

DDT 0.4 0.009 0.9 0.09 9 0.004

DDD 0.4 0.005 0.5 0.02 2 0.004

DDE 0.4 0.004 0.4 0.01 1 0.004

(13)

a-endosulfan 20 0.2 20 0.01 1 0.2

a-HCH 3300 33 3300 3 290 33

b-HCH 800 9 860 9 920 8

j-HCH (lindaan) 910 9 920 0.05 230 9

heptachloor 0.5 0.005 0.5 0.7 68 0.005

heptachloorepoxide 0.5 0.005 0.5 0.0002 0.02 0.005

chloordaan 2 0.02 2 0.03 3 0.002

organofosforverbindingen ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

azinfos-ethyl 11 0.1 11 0.005 0.5 0.1

azinfos-methyl 12 0.1 12 0.009 0.9 0.1

chloorfenvinfos 2 0.02 2 0.0006 0.06 0.02

chloorpyrifos 3 0.03 3 0.01 1 0.03

cumafos 0.7 0.007 0.7 0.0006 0.06 0.007

demeton 140 1 140 - - 1

diazinon 37 0.4 37 0.01 1 0.4

dichloorvos 0.7 0.007 0.7 0.00003 0.003 0.007

dimethoaat 23000 230 23000 0.8 78 230

disulfoton 82 0.8 82 0.03 6 0.8

ethoprofos 63 0.6 63 0.003 0.3 0.6

fenitrothion 9 0.09 9 0.007 0.7 0.09

fenthion 3 0.03 3 0.004 0.4 0.03

foxim 82(!) 0,8(!) 82(!) 0,08(!) 8(!) 0.8(!)

heptenofos 20 0.2 20 0.003 0.3 0.2

malathion 13 0.1 13 0.009 0.9 0.1

mevinfos 2 0.02 2 0.0006 0.06 0.02

oxydemeton-methyl 35(!) 0,4(!) 35(!) 0,0003(!) 0,03(!) 0.4(!)

parathion(-ethyl) 2 0.02 2 0.001 0.1 0.02

parathion-methyl 11 0.1 11 0.01 1 0.1

pyrazofos 40 0.4 40 0.02 2 0.4

tolclofos-methyl 790(!) 8(!) 790(!) 1(!) 130(!) 8(!)

triazofos 32 0.3 32 0.007 0.7 0.3

trichloorfon 1 0.01 1 0.00002 0.002 0.01

organische tin- en silicium verbindingen

ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

tetrabutyltin-verbindingen 1600(!) 16(!) 1600(!) 0,8(!) 78(!) 16(!)

zoute wateren: 17(!) 0,2(!) 17(!) 0,008(!) 0,8(!) -

tributyltin-verbindingen 14 0.1 14 0.02 10 0.1

(14)

zoute wateren: 1 0.01 1 0.007 0.7 -

trifenyltin-verbindingen 5 0.05 5 0.003 6 0.05

zoute wateren: 0.8 0.009 0.9 0.01 1 -

silicium-verbindingen 0.4 0.005 0.5 0.02 2 0.004

zuren (fenolherbiciden &

chloorfenoxycarbonzuur- herbiciden)

ug/l ug/l ug/l ug/kg d.s. ug/kg d.s. ug/l

bentazon 64(!) 0,6(!) 64(!) 1(!) 130(!) 0.6(!)

2,4-D 10 0.1 10 0.3 27 0.1

dichloorprop 40 0.4 40 32 3200 0.4

dinoseb 0.03 0.0003 0.03 0.003 0.3 0.0003

dinoterb 0.03 0.0003 0.03 0.1 11 0.0003

DNOC 21 0.2 21 0.7 280 0.2

MCPA 2 0.02 2 0.05 5 0.02

mecoprop 4 0.04 4 0.02 2 0.04

2,4,5-T 9(!) 0,09(!) 9(!) 0,5(!) 50(!) 0.09(!)

carbamaten & dithio- carbamaten

ng/l ng/l ng/l

ug/kg d.s. ug/kg d.s. ng/l

aldicarb 98 1 98 0.001 0.1 1

benomyl 150 2 150 0.006 0.6 2

carbaryl 230 2 230 0.03 3 2

carbendazim 110 1 110 0.03 3 1

carbofuran 910 9 910 0.02 2 9

maneb als ETU - als ETU - - -

metam-Natrium 35(!) 0,4(!) 35(!) 0,006(!) 0,6(!) 0.4(!)

methomyl 80 0.8 80 0.001 0.1 0.8

oxamyl 1800 18 1800 0.01 1 18

pirimicarb 90 0.9 90 0.02 2 0.9

propoxur 10 0.1 10 0.0001 0.01 0.1

thiram 32 0.3 32 0.008 0.8 0.3

tri-allaat 1900 19 1900 0.2 160 19

zineb als ETU - als ETU - - -

"triazinen, pyridazinen &

triazolen"

ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

anilazin 85 0.9 85 0.02 2 0.9

atrazin 2900 29 2900 0.2 (!) 26 29

chloridazon 73000 730 73000 3 350 730

cyanazin 190 2 190 0.01 (!) 2 2

(15)

desmetryn 34000(!) 340(!) 34000(!) 4(!) 370(!) 340(!)

metamitron 10000 100 10000 1 95 100

simazin 140(!) 1(!) 140(!) 0,009(!) 0,9(!) 1(!)

synthetische pyrethroiden ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

bifenthrin 1 0.01 1 0.05 5 0.01

cypermethrin 0.09 0.001 0.1 0.004 0.4 0.0009

deltamethrin 0.3 0.004 0.4 0.01 1 0.003

permethrin 0.2 0.003 0.3 0.009 0.9 0.002

aniliden & dinitro-anilinen ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

metazachloor 34000(!) 340(!) 34000(!) 3 260 340(!)

metolachloor 200 2 200 0.03 3 2

propachloor 1300 13 1300 0.06 6 13

quintozeen 2900 31 3100 - - 29

trifluralin 37(!) 0,4(!) 38(!) 0,1(!) 19(!) 0.4(!)

fenylureum-herbiciden (aromatische chloor- aminen)

ng/l ng/l ng/l ug/kg d.s. ug/kg d.s. ng/l

diuron 430 4 430 0.08(!) 9 4

isoproturon 320 3 320 0.05 5 3

linuron 250 3 250 0.09 9 3

metabenzthiazuron 1800 18 1800 0.7 67 18

metobromuron 10000 100 10000 1 110 100

carboximiden ng/l ng/l ng/l mg/kg d.s.. mg/kg d.s. ng/l

captafol 28(!) 0,3(!) 28(!) 0,03(!) 3(!) 0.3(!)

captan 110 1 110 0.01 1 1

overige stoffen (getalswaarden uit ENW)

ng/l ng/l ng/l mg/kg d.s. mg/kg d.s. ng/l

NTA - - 200 - - 0.2

minerale olie - - - 50 1000 50

PCB's ug/l ug/l

ug/l

ug/kg d.s. ug/kg d.s. ug/l

PCB-28 - - - 1 4 -

PCB-52 - - - 1 4 -

PCB-101 - - - 4 4 -

PCB-118 - - - 4 4 -

PCB-138 - - - 4 4 -

PCB-153 - - - 4 4 -

PCB-180 - - - 4 4 -

screeningsparameters ug/l ug/l ug/l mg/kg d.s. mg/kg d.s. ug/l

(16)

EOX - - - 0.3 - -

VOX - - 5 - - -

ETU - - 0.005 - - -

cholinesterase remming - - 0.5 - - -

OPPERVLAKTEWATER Sediment Grondwater

achtergrond concentratie Noordzee

landelijke

streefwaarde MTR

landelijke streefwaarde

MTR - sed

landelijke

streefwaarde MTR

tot-fosfaat (mg P/l) 0,02 (w) 0,05 (z) 0,15

(z)

- - 0.4/3(z/kv) -

tot-stikstof (mg N/l) 0,15 (w) 1 (z) 2,2

(z)

- - - -

nitraat (mg N/l) - - - - - 5.6 11.3

ammoniak (mg N/l) - - 0.02 - - - -

ammoniumverbindingen - - - - - 2.0/10 (z/kv) -

chlorofyl-a (ug/l) - - 100

(z)

- - - -

ZOUTEN

chloride (mg Cl/l) - - 200 - - 100** -

fluoride (mg F/l) - - 1.5 500

(mg/kg)***

- 0.5 ** -

bromide (mg Br/l) - - 8 20 (mg/kg) - 0.3 ** -

sulfaat (mg SO4/l) - - 100 - - 150 ** -

tot-sulfiden (ug S/l) - - - 2 (mg/kg) - 10 -

ALGEMENE PARAMETERS

achtergrond concentratie Noordzee

landelijke streefwaarde

MTR achtergrond concentratie Noordzee

streefwaarde MTR

(17)

OPPERVLAKTEWATER ZWEVENDE STOF

RADIOACTIEVE

STOFFEN achtergrond concentratie Noordzee

landelijke

streefwaarde MTR

achtergrond concentratie

Noordzee streefwaarde MTR

(1Bq = 27 pCi) mBq/l mBq/l mBq/l Bq/kg Bq/kg Bq/kg

totale a-activiteit (j) 500 100 - - - -

rest b-activiteit (j) 300 200 - - - -

tritium-activiteit (j) 10000 10000 - - - -

radium-226 5 5 - - - -

strontium-90 15 10 - - - -

cesium-137 20 - - - 40 -

lood-210 - - - 100 100 -

polonium-210 - - - 100 100 -

cobalt-58 - - - 10 10 -

cobalt-60 - - - 10 10 -

jodium-131 - - - - 20 -

overige j-stralers - - - < 2 2 -

Legenda

# : getalswaarde = interventiewaarde

! : extra onzekerheidsfactor 10 i.v.m. weinig data (EPA/1000) - geen getalswaarde vastgesteld

* geen bodemtypecorrectie voor zandige sedimenten (org.stof < 10 %)

**: herbeoordeling toelatingsdossier door CTB in 97/98

*** bodemtypecorrectie: F = 175 + 13 L (L = % lutum)

@ de afleiding van deze MTR's wijkt af van de standaardprocedure voor metalen, omdat onvoldoende data beschikbaar zijn voor het vaststellen van een landelijke

kleur, geur, schuim,

vast afval, troebeling

niet zichtbaar of ruikbaar verontreinigd

temperatuur (C) - - 25

zuurstof (mg/l) - - 5

zuurgraad (pH) - - 6.5 - 9

doorzicht (z,meter) - - 0.4

BACTERIOLOGISCHE

PARAMETERS

thermotolerante coli's (80 perc. , MPN/ml)

- - 20

enterovirussen / fagen - - afwezig

in 10 l

(18)

achtergrond- concentratie, maar zijn voorlopig opgenomen n.a.v. een zaak bij het Europese Hof over de uitvoering van de Richtlijn 76/464/EEG. Bij deze

milieukwaliteitsnormen dient de lokale achtergrondconcentratie te worden opgeteld.

w : wintergemiddelde waarden

z : zomergemiddelde waarde voor eutrofieringsgevoelige, stagnante wateren z/kv eerstgenoemde waarde geldt voor zandgebieden, de tweede waarde geldt voor klei- en veengebieden

Source: 4e nota waterhuishouding: www.broks-messelaar.nl/

(19)

Appendix 5: Discharge Costs per IE in the Netherlands

Below the discharge costs per IE within different regions are presented. The Table is in Dutch and figures are in euros.

Verontreinigsheffingen 2002 - 2003

(in Euro's per vervuilingseenheid)

Landelijk 2002 2003

Gemiddeld 47,99 49,88 Hoogste 60,24 62,09 Laagste 35,88 37,68 Rijkswateren

Zoet 31,76 31,76 Zout 31,76 31,76 Groningen

Waterschap Noorderzijlvest 56,28 57,36 Waterschap Hunze en Aa's 55,08 57,42 Friesland

Waterschap Friesland 46,74 48,24 Drenthe

Waterschap Reest en Wieden 60,24 60,24 Waterschap Velt en Vecht 59,70 62,09 Overijsssel

Waterschap Regge en Dinkel 42,09 43,45 Waterschap Groot-Salland 44,16 48,12 Flevoland

Waterschap Zuiderzeeland 56,06 59,20 Gelderland

Zuiveringsschap Rivierenland 51,24 52,56 Waterschap Veluwe 40,20 41,88 Waterschap Rijn en IJssel 39,24 40,80 Utrecht

Waterschap de

Stichtse Rijnlanden 52,20 52,20 Waterschap Vallei en Eem 48,72 52,20 Noord-Holland

Hoogheemraadschap van de Uitwaterende Sluizen in Hollands Noorderkwartier

50,00 55,94 Hoogheemraadschap 50,52 52,68

(20)

Amstel, Gooi & Vecht

Zuid-Holland

Hoogheemraadschap Delfland 53,40 56,64 Hoogheemraadschap Rijnland 40,00 40,00 Hoogheemraadschap Schieland 47,20 49,08

Zuiveringsschap Hollandse

Eilanden en Waarden 44,28 46,56 Zeeland

Waterschap

Zeeuws Vlaanderen 57,50 58,00 Waterschap de

Zeeuwse Eilanden 52,00 55,38 Noord-Brabant

Hoogheemraadschap West-Brabant 38,50 41,00 Waterschap De Dommel 41,76 43,44 Waterschap De Aa 35,88 37,68 Hoogheemraadschap

Alm en Biesbosch 51,12 53,28 Waterschap De Maaskant 43,32 43,32 Limburg

Zuiveringsschap Limburg 38,40 39,90 Source: http://www.industriewater.net/

(21)

Appendix 6: IE Calculations for Large Industries

German IE:

Op basis van COD:

120 gr total COD of 80 gr bezonken COD per EW Op basis van BOD:

60 gr total BOD of 40 gr bezonken BOD per EW Dutch IE:

Q*(COD + 4.57 KjN)

136

(22)

Belgium IE :

H = N x T

Het eenheidstarief werd vastgelegd op 22,3 EUR/VE en wordt jaarlijks geïndexeerd. Het geïndexeerd eenheidstarief T bedraagt 26,36 EUR/VE voor het heffingsjaar 2002 en 26,72 voor het heffingsjaar 2003.

N = N1 + N2 + N3 + Nk

N1 = [Qd / 180] * [{a} + {0,35 * ZS / 500} +

{(0,45 * (2 * BZV + CZV)) / 1.350}] * [0,40 + 0,60 * d]

N1 = vuilvracht veroorzaakt door het lozen van zuurstofbindende en zwevende stoffen (VE)

a = 0 indien in oppervlaktewater geloosd wordt en heffingsplichtige beschikt over een vergunning voor lozing in oppervlaktewater.

a = 0,2 in alle andere gevallen (lozingsplaats)

Qd = dagdebiet geloosd afvalwater (l)

ZS = concentratie aan zwevende stoffen (mg/l)

BZV = biologisch zuurstofverbruik (mg/l)

CZV = chemisch zuurstofverbruik (mg/l)

d = seizoensgebonden factor indien minder dan 225 kalenderdagen afvalwater geloosd wordt is deze factor het quotient tussen van

het aantal dagen waarop afvalwater geloosd wordt en 225

N2 = [Qj * {40 * (Hg) + 10 * (Ag + Cd) + 5 * (Zn + Cu) +

2 * (Ni) + 1 * (Pb + As + Cr)}] / 1.000

(23)

N2 = vuilvracht veroorzaakt door het lozen van zware metalen (VE)

Qj = jaarvolume afvalwater (m³)

Hg, Ag, Cd, Zn, Cu, Ni, Pb, As, Cr = concentratie aan de respectievelijke zware metalen (mg/l)

N3 = Qj * (N + P) / 10.000

N3 = vuilvracht veroorzaakt door het lozen van nutriënten (VE)

Qj = jaarvolume afvalwater (m³)

N, P = concentratie aan respectievelijk stikstof en fosfor (mg/l)

Nk = K * 0,0004 * a

Nk = vuilvracht veroorzaakt door het lozen van thermisch belast koelwater (VE)

K = koelwatervolume (m³)

a = 0,550 vanaf heffingsjaar 1996

(24)

Appendix 7: P-list

In the presented list all the companies in Flanders which need to be disconnected from

the sewer system in the near future are presented. All these companies need to invest in

wastewater treatment intensively, which could mean MBR is an option.

(25)

Appendix 8: Market Size and Market Share Calculations

Below, the most important quotes in relation to the size and possible growth of the MBR market are presented. Because it is very difficult to compare these figures (because of different definitions, industries, etc.) they are leveled out. This leveling out is presented in between brackets.

ƒ Judd & Jefferson - The EU membrane market is likely to increase by 93% from its 2000 level of $ 198 million to $382 million by 2007

1

. (21% of this is related to wastewater reuse (see figure 1: global installed MF/UF installations). This comes down to 40 million)

ƒ (Waterforum) - Grow in Europe of 7,4% in Europe annually until 2009, up to 54 million. Starting with 32,8 million in 2002. The top will be reached in the Netherlands and Belgium in 2005. Germany and Italy will have a boost before end of 2005 because of the upcoming up coming legislation, were MBR in small plants will be attractive

2

(Frost & Sullivan). (Total investment in MBR projects (municipal and industrial) in 2002 in Europe, 32,8 million euros, with additional works. So, 1/3 (see figure2: cost diversification MBR projects of 32,8 mil. Is 11 million total market share)

ƒ (Paques internal) - Submerged membranes 120-180 million euro in Europe

3

a year.

Also has to be taken into account that by placing membranes on the market a replacement demand is created, because of the unique characteristics of the used membranes. This is estimated at about 2-3 million per year. (again 1/3 of projects involve membranes relating to a investment of 40 million)

ƒ ( STOWA) – The STOWA thinks approximately 750,000 square meters of membrane will be sold in the Dutch municipal market, up to 2010. (This relates to 3750 Paques modules (750,000m²/200m²). 3750 * 16,000 (selling price used in this example) = 60 million in 10 years, so 6 million in the Dutch municipal sector per year.

109090600

4

/16192800 inhabitants = a factor of approximately 6,7 * 6 million = 40 million).

1 Filtration & Seperation, Developments inIndustrial water re-use, Dec. 2002

2 www.netserver1.net/waterforum/template_a1.asp?paginanr=1683

3 market assessment Hans Wouters

4 http://europa.eu.int/comm/eurostat (GER+BE+NL)

(26)

Appendix 9: Membrane Module Manufactures

(27)

manufacturer nametype mod surface cassette (aantal modules) character Zenon Zeeweed 500 D hollow fibre 31,5 1-48 (64)31,5/1512UF PVDF Zeeweed 500 C hollow fibre 20 1tm22 20/440 UFPVDF KubotaE510 (also A&F) flat plate 0,8 50-150 (diff. Cassettes) 40/120 MFPO Mitsubishi SteraporeSUN hollow fibre 1,5 70 105 MFPE USFilter/memcor Memcor® (CMF-S) hollow fibre 1tm8(12)MFPVDF or S-10 PP Huber VRM 20 or 30/… rotating plates3(20) or 6(30) 6 of 8 (in cirkel) 10-50 cirkel180/2880 UFPAN or PES Puron*PURON Filter modulehollow fibre app. 3,3 153 (17*9) or (23*9)=207 500/690 UF ?PES sup. on polyester Seghers Keppel UNIBRANE flat plate UFPVDF orelis Rhodia (side stream) PLEIADE flat plate 0,35 20/250 6tm88 UFPES, PVDF eidos hollow fibre 2 1tm15 2tm30 MF? TriquaSubtriq thick hollow pipes3,3 - 41,7 A3 ( distributed by WARBAG) maxflow flat plate 40 (Abfall, Abwasser, Anlagentech) flux 17,625 hydronautics hollow fibre Norit/X-flow** *ref.:Eifel & Ruhr: simmertath 750 VE **The future expectations of Norit for the use of MBR lies in the small decentralized urban (municipal) projects. besides the big three competitors, two seem very promising. These are described on the next pages.

(28)

S e g h e rs K e ppe l S egh er s is r ec e nt ly t ake n o v er b y K eppe l C o rpor a ti o n. I n N ove m b er 2002 a n a ss et p ur c ha se b y K eppe l cor p . o f 19.1 m il li o n E ur o w as re a liz ed . S eg he rs w il l ho ld h er o w n B e lg iu m id e n ti ty , b u t w ill ha ve a mu lt i mil lio n S in ga p o re a n c o m p a n y b e h in d t he m ( ne t sa le s o f 1 5 1 m il li o n E ur o i n t he fi rs t ni ne m o nt hs o f 2002 ). Se gh er s is 100% o w ne d b y K eppe l T he su b m e rg ed m e m b ra ne o f S egh e rs K eppe l, t h e so -c al le d U N IB R A N E ( m ad e up o f T o ra y m e m b ra ne s hee ts s in ce 2001) , is r e la ti ve ne w in c o m p a ri so n to t he o th er t h re e co mp et ito rs . I t is a fl a t s h ee t me mb ra ne , w h ic h a ls o wo rk s w it h th e o u ts id e- in pr in c ip le. S e gh e rs K ep p el a ls o re co g n iz es t he p o ss ib ilit ie s in C h in a a nd h a s a s tra te g ic a gr ee m e n t w it h c h in a e ve rb rig h t in te rn a ti o na l L td . B ec a us e th is U N IB R A N E i s r e la ti v e ly ne w t h e y ha ve o n ly 1 r e fe re nc e a nd o ne u nd er c o ns tr uc ti o n. St ra te g y In co nt ra ry t o f o r e x a m p le Z e no n, w h ic h t ry t o m ake th e m e m b ra ne a c o m m o d it y good, th e co m p e ti ti ve a d va nt a ge o f S e gh er s K eppe l li es c lea rl y in t he inno va ti ve ne ss o f th e ir pr od uc ts . T he y ha ve a b ig t ec hni ca l k now -h o w w it h w h ic h t he y tr y to s o lv e co mp lic at ed wa st e w at er is su es . S e g h e rs K e ppe l: i n n ovat iv e , pr o b le m s o lv e rs , h u m a n c a p it a l, ( p ro b a bl y e x p e n si v e )

(29)

US M e m co r U S filte r, o w ne r o f m e mc o r, is p ar t o f t h e wo rl d s la rg es t e n v ir o n m e n ta l s er v ic e co m p a n y in t he wo rl d , V eo lia . In 2002 U S F il ter ge ne ra te d a s a le s o f $ 4 b illio n, a nd h as a b o ut 1 5 ,000 e m p lo ye es o ve r 800 fa c ilit ie s. I n N o v e m b er 2003 V eo li a st a ted to s e ll pa rt of t he US F ilte r gr o up (c o ns u m er a nd c o mme rc ia l b us in es s) . M e m co r L td . is a n E n g lis h c o m p a n y, w h ic h ha s a p a te nt ed C o n tin uo s M e mb ra ne F iltra ti o n (C M F ) ho llo w fib er sy st e m , w h ic h i s a c ro ss - fl ow s ys te m . A ls o a s ub m er ge d ve rs io n e x is ts , t he so -c a lle d C M F- S. O ver 200 C M F/ C M F- S in st a lla ti o ns a re imp le m e nte d wo rl d w ide in d u st ri a l w is e. T he se t w o ty pe s o f fi lt ra ti o n a re bot h dea d -e nd s o lu ti o n s. In 2002 t he se m icr o fi lt ra ti o n m o d u le s o f M e m cor w he re adj us te d a nd co m b in ed w it h th e b io lo g ic a l a nd f lu id t ran sf er k no w le d ge of J et te c h in a n M B R s ys te m . T h is s o -c a lle d M e mje t c a n b e fitte d w it h t w o m e mb ra ne t yp es , na me ly : P V D F o r P o ly p ro p y le ne . In 2003 a s m a ll pr e- as se m b le d M B R uni t w as de ve loped, t he s o -c a lle d Fa st Pac. I n t h is uni t th e M e m je t m o d u le i s in te gr a te d . T he se u n it s ar e m ade fo r s m a ll a p p li cat io ns u p t o 100.000 ga llo n s a da y. T he ir s ys te m a ls o ha s a back p u ls e- c lea ni ng de vi ce. A ls o , in -s it u c he m ic a l c le a ni ng is po ss ib le . B e si de a ir , w h ic h is d is tr ib u te d in b etw ee n a b u nd le o f fib e rs ( lik e P ur o n ), a ls o mix ed li q uo r is b lo w n p ara lle l to t he me m b ra ne fib ers . B eca us e t h is m e m jet s yst e m i s re la ti ve ly n e w n o f u ll- sca le E ur o p ea n re fe re nces c a n be f o un d. St ra te gy T he y ar e t h e lead in g co m p a n y in w ast e w at er t reat m e nt f ac il it ies i n A m er ica. T he m a in s tr at eg y i s f o cu se d o n sc al e ad va nt ag es ( p ri ce le ad er ) a nd o ff e ri n g a to ta l ra n ge o f p ro d uc ts in -h o u se . T he ir M B R s tra te g y s ee m s to b e fo c us ed o n s m a ll ap p lic a ti o ns . U S M e m cor : s cal e ( cos t) ad va n tage , t o ta l p roce ss t rai n , s m a ll M B R ap pl ic a ti o n s

(30)

Appendix 10: Membrane Modules of Zenon, Kubota and Mitsubishi

In this appendix some pictures of the modules of the three main competitors are presented.

Zenon

Zeeweed 500 D Cassette Zeeweed 500 C Cassette

NB. As can be seen clearly from the pictures is that the modules look a like. It seems the ZW D is a combination of two ZW 500 C.

Module in process

One singular elements

(31)

Kubota

E 510 cassette

Module in process

One singular element

(32)

Mitsubishi

Sterapore sun Cassette

Module in process

NB. What can be seen clearly from these pictures is that the hollow fibers of the Sterapore Sun are fabricated horizontally. This in comparison to the vertical setup of Zenon.

One singular element

(33)

Appendix 11: References Zenon USA / Canada

Municipal water :

Customer Application Flow

1 Powell River, British Columbia Municipal waste 3.800 – 7.500 m³/d 2 Lone Tree WWTP, Colorado Municipal waste 3.800 – 5.300 m³/d 3 Lone Tree WWTP, Colorado Municipal waste Upgrade to 9.084 m³/d 4 Port Mc Nicoll, Ontario Municipal waste 1.900 – 4.300 m³/d 5 Anthem (Desert Hills), Arizona Municipal waste 1.900 m³/d

6 Anthem (Desert Hills), Arizona Municipal waste Upgrade to:

5.600 – 8.500 m³/d 7 Cohasset, Massachusetts Municipal waste 1.514 – 3.936m³/d 8 Burnt Store, Florida Municipal waste 1.900 – 3.700 m³/d 9 Iqaluit, North West Territories Municipal waste 1.800 – 3.600 m³/d 10 Key Colony, Florida Municipal waste 1.287 – 3.217 m³/d

11 LeHigh, Florida Municipal waste 1.893 – 2.839 m³/d

12 Milton, Ontario Municipal waste 1.000 m³/d

13 Laguna Country, California Municipal waste 1.893 m³/d 14 Creemore, Ontario Municipal waste 860 – 1.450 m³/d 15 Mansfield, New Jersey Municipal waste 660 – 1.325 m³/d 16 Oakwood Village, New Jersey Municipal waste 660 – 1.320 m³/d 17 Mount Washington, Brit.

Columbia

Municipal waste 760 – 1.111 m³/d 18 Ganges, British Columbia Municipal waste 340 m³/d

19 Ganges upgrade, British Columbia Municipal waste 800 m³/d 20 Grand Targhee, Wyoming Municipal waste 314 – 511 m³/d 21 Hidden Meadows, New Jersey Municipal waste 200 – 400 m³/d 22 Mansion Ridge, New Jersey Municipal waste 200 – 400 m³/d 23 Brass Castle, New Jersey Municipal waste 82 m³/d

24 Jackson Square, New Jersey Municipal waste 45 m³/d 25 Several plants Canadian Armee Municipal waste Mobile 26 Several plants US Armee Municipal waste Mobile 27 Several plants commercial

buildings

Municipal waste 100 – 500 PE

28 Wards Island, New York Centrate Waste- demonstration 79,5 m³/d

29 Crane Mountain, New Brunswick Leachate waste 87 m³/d

(34)

Water treatment:

Customer Application Flow

1 Thunder Bay, Ontario Surface/ drinking water 34.000 m³/d 2 Collingwood, Ontario Surface/ drinking water 28.000 m³/d 3 Collingwood, Ontario Surface/ drinking water 4.540 m³/d

4 Seekonk, Massachusetts Wells-/ drinking water 13.250 – 16.280 m³/d 5 Parry Sound, Ontario Surface/ drinking water 12.000 m³/d

6 East China, Michigan Surface/ drinking water 10.220 – 10.600 m³/d 7 Sylacauga, Alabama Surface/ drinking water 6.320 – 7.570 m³/d 8 Fairfield (Amhertsview), Ontario Surface/ drinking water 4.000 – 6.000 m³/d 9 Marco Island, Florida Lime softening water plant 6.320 m³/d

10 Walkerton, Ontario Groundwater 5.000 m³/d

11 Sioux Lookout, Ontario Surface/ drinking water 5.300 m³/d 12 Picture Butte, Alberta Surface/ drinking water 4.500 m³/d

13 Fenelon Falls, Ontario Surface/ drinking water 1.800 – 4.100 m³/d 14 Anthem (Desert Hills), Arizona River water / drinking water 3.785 m³/d

Upgrade to: 11.355 m³/d 15 Little Current, Ontario Surface/ drinking water 3.100 m³/d

16 Santa Monica, California Storm water filtration 1.893 – 2.839 m³/d 17 Wikwemikong, Ontario Surface/ drinking water 2.420 m³/d

18 Rothesay, New Brunswick Wells/ drinking water 1.325 – 2.271 m³/d 19 God`s Lake, Manitoba Surface/ drinking water 1.325 m³/d

20 Shammattawa, Manitoba Surface/ drinking water 1.135 m³/d

21 God´s River, Manitoba Surface/ drinking water 924 m³/d

22 Beausoleil, Ontario Surface/ drinking water 893 m³/d

23 Littlestown, Pennsylvania Surface/ Drinking water 820 m³/d

24 Weyerhauser, Alberta Surface/ drinking water 757 m³/d

25 Shoal Lake, Ontario Surface/ drinking water 570 m³/d

26 Poplar Hill, Ontario Surface/ drinking water 150 – 420 m³/d

27 Eagle Lake, Ontario Surface/ drinking water 390 m³/d

28 Newport Borough, Pensilvania Surface/ drinking water 435 – 680 m³/d

29 Bear Island Tamagami, Ontario Surface/ drinking water 280 m³/d

30 Orangeburg, South Carolina Filter Backwash water 1.908 m³/d

(35)

Under construction :

Customer Application Flow

1 City of Redlands, California Municipal waste 22.712 m³/d

2 American Canyon, California Municipal waste 9.500 – 14.400 m³/d 3 Cauley Creek, Georgia Municipal waste 9.464 – 13.627 m³/d 4 Port Mc Nicoll, Ontario Municipal waste Upgrade to 5.400 m³/d 5 City of Corona, California Municipal waste 3.785 m³/d

6 Creemore, Ontario Municipal waste Upgrade to:

1.400 – 2.800 m³/d 7 Town of Epping, New Hampshire Municipal waste Phase 1 : 1.325 m³/d

Phase 2 : 1.987 m³/d 8 Ashland, Oregon Tertiary Treatment 15.142 m³/d

9 Mahopac, New York Tertiary Treatment 681 – 1.908 m³/d

10 Pemex, Mexico Tertiary Treatment 24.224 m³/d

11 Olivenhain, California Surface/ drinking water 94.625 m³/d 12 Fairmont, West Virginia Surface/ drinking water 37.850 m³/d 13 Perris, California River water/ drinking water 37.850 m³/d 14 Duck River, Tennessee Surface/ drinking water 35.960 m³/d 15 Sweetwater, Texas Surface/ drinking water 30.280 m³/d 16 Anthem Phase III, Arizona River water/ drinking water 30.280 m³/d

17 Anthony Henday, Alberta Surface/ drinking water 11.000 – 27.200 m³/d 18 Pendleton, Oregon River water/ drinking water 22.710 m³/d

19 Georgina, Ontario Surface/ drinking water 20.060 m³/d 20 Dickson County, Tennessee Surface/ drinking water 18.930 m³/d 21 Maryville, Missouri Settled water 18.925 m³/d 22 Marysville, Washington Ground water 11.700 m³/d 23 Evergreen, Colorado Surface/ drinking water 9.100 m³/d 24 Evergreen, Colorado Filter Backwash water 1.140 m³/d

25 Austin, Texas Settled water 3.785 m³/d

26 Sudbury, Canada Drinking water 37.850 m³/d

(36)

Industrial waste :

Customer Application Flow

1 General Motors, Manfield, Ohio Oily waste 230 m³/d 2 General Motors, Windsor, Ontario Oily waste 760 m³/d

3 General Motors, Mexico Oily waste 38 m³/d

4 General Motors, Delhi, India Oily waste 115 m³/d

5 Chrysler Motors, Mexico Oily waste 152 m³/d

6 Orlick Industries, Ontario Oily waste 19 m³/d 7 Orlick Industries, Ontario Oily waste 4,5 m³/d

8 ITT Automotive, Ohio Oily waste 75 m³/d

9 Tecumseh Products, Michigan Oily waste 230 m³/d

10 Tecumseh Products, GA Oily waste 110 m³/d

11 Columbia Beverage, Washington Food industry, Pepsi 455 m³/d

12 Cheesborough-Ponds, Puerto Rico Cosmetic waste 110 m³/d, waterrecycle 13 Aramis Estee New Jersey Cosmetic waste 450 PE

14 EXXON Chemical, LA Petrochemicals 165 m³/d

15 Philips petroleum, OK Petrochemicals 76 m³/d 16 Cape Cod Laundry Center, MA Laundry waste 45 m³/d

17 IBM, Ontario Electronics 1 m³/d

18 AVX Corporation, Nuevo Laredo Electronics 38 m³/d 19 Wildon Industries, Pennsylvania General industrial waste 26,5 m³/d 20 Quaker Oats Company Food industry, Gatorate 157 m³/d 21 Nestle Foods (FIDCO) Food industry 454 m³/d 22 Middlefield Cheese, Washington Dairy waste 908 m³/d

23 Accuride Corporation Oily waste 273 m³/d

24 Shell Chemicals, Alberta Boiler feed 3.000 m³/d

25 Celanese, Alberta Boiler feed water 1.300 m³/d

26 TransAlta Utilities, Alberta Boiler feed water 870 m³/d

27 TransAlta Energy, Alberta Boiler feed water 400 m³/d

28 Alberta Energy Company, Alberta Boiler feed water 190 m³/d

29 SAMSUNG Electronics, Korea Electronics 49.200 m³/d

Referenties

GERELATEERDE DOCUMENTEN

Latin America and the Caribbean Algeria Angola Botswana Burkina Faso Burundi Cameroon Central Africa Comoros Djibouti Egypt (urb) Egypt (rur) Ethiopia Gambia Ghana

For instance, it is assumed that the residuals are normally distributed, they have a mean of zero and a constant variance across levels of independent variables,

Ming Xia Grand New world Hotel Sales&amp;Marketing Manager Chinese No.9 Interviewed staff Renaissance Beijing Sales&amp;Marketing Employee Chinese No.10

Note: The dotted lines indicate links that have been present for 9 years until 2007, suggesting the possibility of being active for 10 years consecutively, i.e.. The single

Figure 7: DAX Companies – Average trading volume before, in between and after the event Figure 8: NASDAQ 100 Companies – Average volume before burst of internet bubble I Figure

Appendix 5c, Levene statistic, Diversity of contracts obtained by LSEs compared to SMEs. Test of Homogeneity

When the batch is approved by Process and Product Control Paint, it stays in the buffer, until it is needed by Filling Paint.. Some batches are mixed

Komt niet vaak voor, omdat ze veel kennis binnen het bedrijf hebben, maar dan arbodienst of arts. De arboarts, dan bespreken ze welk traject ze het best in kunnen gaan om