• No results found

Bachelor  thesis   The  role  of  fibroblasts  and  the  extracellular  matrix  in  cardiac   remodeling  and  regeneration

N/A
N/A
Protected

Academic year: 2021

Share "Bachelor  thesis   The  role  of  fibroblasts  and  the  extracellular  matrix  in  cardiac   remodeling  and  regeneration"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Bachelor  thesis  

The  role  of  fibroblasts  and  the  extracellular  matrix  in  cardiac   remodeling  and  regeneration  

                                                                                             

Hans  van  Luit  -­‐  s2196549   Supervisor:  prof.  dr.  M.C.  Harmsen   June  19th  2015  

(2)

Abstract  

 

The  low  turnover  number  of  cardiomyocytes  (CM)  contributes  to  the  progressive  adverse  effects   after   heart   injury.   Much   research   focusses   on   the   proliferation   of   CM.   However,   cardiac   fibroblasts  may  play  a  major  role  in  the  process  of  cardiac  regeneration  since  they  make  up  for   half  of  the  total  cell  number  in  the  myocardium.  Therefore,  in  this  review,  the  regeneration  of   myocardium   is   discussed   in   a   broader   perspective   by   investigating   the   interactions   between   fibroblasts,  macrophages  and  CM.  Under  pathological  conditions,  the  extracellular  matrix  (ECM)   stiffens,   and   type   I-­‐receptor   transforming   growth   factor   (TGFβ1)   bioavailability   and   signalling   increases,   which   stimulate   fibroblasts   to   differentiate   into   myofibroblasts.   These   α-­‐smooth   muscle   actin   (SMA)   expressing   fibroblasts,   show   an   increased   production   of   ECM   proteins   in   response   to   TGFβ1   and   increased   stiffness.   Macrophages   play   a   role   in   these   processes   via   angiotensin   II   (ATII)   signalling   and   TGFβ1   production.   CM-­‐fibroblast   interactions   are   complex   and   involve   many   types   of   signal   transduction   including   TGFβ1,   FGF2   and   FGF16,   Notch   signalling,   indirect   signalling   via   the   ECM   and   signalling   via   gap   junctions   between   both   cell   types.  Recent  developments  regarding  cardiac  research  showed  increased  CM  proliferation  and   decreased   formation   of   chronic   scars   in   neonatal   rodents   after   cardiac   injury.   Additionally,   evidence  exists  for  increased  CM  proliferation  in  young  humans  compared  to  adult,  indicating  a   different   role   for   fibroblasts   during   early   stages   of   life   compared   to   adulthood.   Some   of   these   differences  can  be  explained  by  altered  CM-­‐fibroblast  interactions.  This  review  provides  recent   insights   in   the   relations   between   different   cell   types   involved   in   cardiac   remodeling   and   discusses  some  recent  developments  in  cardiac  regeneration  in  a  broader  perspective.  

                                           

Abbreviations  

MI:   myocardial   infarct,   CM:   cardiomyocytes,   ECM:   extracellular   matrix,   SMA:   α-­‐smooth   muscle   actin,   TGFβ1:   type   I-­‐receptor   fibrogenic   growth   factors,   ATII:   angiotensin   II,   ACE:   angiotensin-­‐

converting   enzyme,   CTGF:   connective   tissue   growth   factor,   MMPs:   matrix   metalloproteinases,   TRβI:  TGFβ  type  I  receptor,  TRβII:  TGFβ  type  II  receptor,  TAK1:  TGFβ-­‐activated  kinase  1,  LAP:  

latency-­‐associated   protein,   LTBP1:   TGF-­‐β1   binding   protein-­‐1,   LLC:   large   latency   complex,   LOX:  

lysyl   oxidase,   FGF:   fibroblast   growth   factor,   HBEGF:   heparin-­‐binding   EGF-­‐like   growth   factor,   Nrg:  Neuregulin.  

(3)

 

ABSTRACT  ...  2  

1  –  INTRODUCTION  ...  4  

2  –  CARDIAC  FIBROBLASTS  ...  5  

2.1  The  role  of  fibroblasts  and  myofibroblasts  ...  5  

2.2  The  differentiation  of  cardiac  fibroblasts  to  myofibroblasts  ...  5  

3  –  MACROPHAGE-­‐FIBROBLAST  INTERACTIONS  ...  6  

3.1  Angiotensin  signalling  ...  6  

3.2  TGFβ  signalling  ...  7  

4  –  FIBROBLASTS  AND  MECHANICAL  STRESS  ...  7  

4.1  Mechanical  stress  and  TGF-­‐β1  ...  7  

4.2  Mechanical  stress  induces  SMA  protein  expression  and  control  of  SMA  fibers  ...  7  

4.3  Mechanical  stress  and  the  AT1-­‐receptor  ...  8  

5  –  FIBROBLAST  –  CARDIOMYOCYTE  INTERACTIONS  ...  9  

5.1  Interactions  between  fibroblasts  and  cardiomyocytes  ...  9  

5.2  Interactions  via  soluble  mediators  ...  9  

5.3  Indirect  cardiomyocyte-­‐fibroblast  interactions  via  the  ECM  ...  10  

5.4  Interactions  via  cell-­‐cell  contact  ...  11  

6  -­‐  RECENT  DEVELOPMENTS  IN  RESEARCH  ON  CARDIAC  REGENERATION  ...  12  

6.1  The  proliferative  window  of  CM  ...  12  

6.2  Neuregulin  signalling  ...  12  

7  –  DISCUSSION  ...  13  

7.1  Summary  of  interactions  between  cell  types  ...  13  

7.2  Future  perspectives  ...  14  

8  -­‐  LIST  OF  REFERENCES  ...  14  

(4)

1  –  Introduction  

 

In  the  Netherlands,  130,000  people  suffer  from  heart  failure  (Hartstichting,  2012).  Heart  failure   is  a  common  long-­‐term  side  effect  after  a  myocardiac  infarct  (MI).  Cardiac  infarcts  are  caused  by   the   blockage   of   blood   supply   to   the   heart.   This   generally   results   in   necrosis   and   apoptosis   of   cardiac  tissue,  including  the  cells  responsible  for  the  contractile  property  of  the  heart:  CM  (CM).  

For   a   major   part,   these   cells   are   replaced   by   scar   tissue,   formed   by   differentiated   fibroblasts:  

myofibroblasts.   Due   to   the   loss   of   CM   and   the   increase   of   scar   tissue,   a   patient   suffering   from   heart  failure  is  unable  to  pump  sufficient  blood  to  meet  the  body's  requirements.  In  summary,   the  main  cause  of  heart  failure  is  the  lack  of  an  appropriate  regenerative  response  of  the  heart  to   cell  death.  Finding  a  way  to  initiate  such  a  response  could  open  a  way  to  cure  cardiac  diseases   like  heart  failure.  

However,  Goldemberg  showed  in  1886  that  the  adult  mammalian  heart  was  terminally   differentiated,  and,  therefore,  lacks  any  regenerative  capacity  (Goldemberg,  1886).  This  dogma   held  for  over  a  hundred  years.  It  was  not  until  the  early  seventies,  when  first  evidence  of  cardiac   regeneration  in  lower  vertebrates  was  provided  (e.g.  Rumyantsev,  1961).    

Evidence  of  human  cardiomyocyte  proliferation  was  only  provided  recently.  One  of  the   most  influential  researches  in  this  area  was  that  of  Bergmann  and  colleagues.  In  this  research,   advantage   was   taken   of   the   integration   of   carbon-­‐14,   generated   by   nuclear   bomb   tests   during   the  Cold  War,  into  DNA.  The  presence  of  carbon-­‐14  in  CM  was  monitored  during  several  years   and  this  data  was  used  to  establish  the  age  of  CM  in  humans.  This  experiment  revealed  that  CM   slowly  renew,  with  a  rate  of  approximately  1%  per  year  at  the  age  of  25  (Bergmann  et  al.,  2009).  

The  slow  regeneration  rate  of  CM  forms  one  of  the  problems  regarding  cardiac  regeneration.  

Another   major   problem   in   cardiac   regeneration   is   the   formation   of   scar   tissue,   which   prevents  the  regeneration  and  impairs  the  function  of  CM  at  the  site  of  injury.  However,  Porrello   and   colleagues   showed   that   cardiac   regeneration   without   chronic   scarring   in   mammals   is   not   impossible.  However,  this  research  was  performed  with  mice  and  the  regenerative  capacities  of   CM  disappeared  seven  days  after  birth  (Porrello,  2011).  

Although  plenty  of  research  on  proliferation  of  CM  has  been  performed,  less  attention  is   paid   to   cardiac   fibroblasts   and   macrophages   and   their   relation   to   myocardial   regeneration,   in   particular   their   influence   on   CM.   In   this   review,   processes   related   to   the   relation   between   cardiac   fibroblasts   and   CM   under   normal   and   pathological   conditions   are   reviewed   an   illustrated.  First,  in  section  2,  the  role  of  cardiac  fibroblast  and  their  ability  to  differentiate  will   be   discussed,   followed   by   the   interactions   between   macrophages   and   fibroblast   in   section   3.  

Thereafter,  the  role  of  mechanical  stress  and  the  interactions  between  fibroblasts  and  CM  will  be   discussed   in   section   4   and   5,   respectively.   Subsequently,   in   section   6,   recent   developments   regarding  cardiac  regeneration  will  be  reviewed.  Finally,  in  the  discussion  section,  a  summary  of   these   interactions   will   be   given   and   some   connections   to   recent   developments   in   cardiac   regeneration  will  be  made.  

   

(5)

2  –  Cardiac  fibroblasts  

 

2.1  The  role  of  fibroblasts  and  myofibroblasts  

Fibroblasts  in  the  myocardium  (cardiac  muscle)  make  up  for  approximately  10%  of  the  heart's   volume.  However,  due  to  their  small  size,  they  account  for  half  of  the  heart's  total  cell  number   (Shiraishi,   1992;   Srivastava,   2006).   Fibroblasts   are   responsible   for   the   deposition   and   organisation   of   the   extracellular   matrix   (ECM)   and   thus,   maintaining   the   cardiac   ECM   homeostasis.   Besides   this   structural   role,   fibroblasts   play   an   important   role   at   influencing   the   electrical   activity   of   CM,   by   the   ability   of   fibroblasts   to   couple   with   CM   (Goldsmith,   2014).  

Crosstalk   between   cardiac   fibroblasts   and   CM   is   various   and   involves   the   secretion   of   growth   factors,   cytokines   and   paracrines   by   both   cells.   Additionally,   communication   between   cells   is   facilitated   by   components   of   the   matrix.   Each   of   these   interactions   could   be   modulated   by   mechanical  stress  (Abramochkin,  2014).    

In  pathological  conditions,  like  heart  failure,  cardiac  fibroblasts  are  able  to  differentiate   into   myofibroblasts,   which   express   α-­‐smooth   muscle   actin   (SMA)   contractile   units   (Gerling,   2003).   Myofibroblasts   play   an   important   role   in   a   process   called   scar   contraction.   This   takes   place   in   the   later   phase   of   wound   healing   (days   to   weeks   after   the   injury)   and   is   executed   by   cross-­‐linking   collagen   fibers,   which   increases   the   tensile   forces   and   cause   contraction   of   the   myofibroblasts.   This   process   of   'scar   thinning'   leads   to   changes   in   tissue   density   and   stiffness   (van   den   Borne,   2010).   Myofibroblasts   are,   in   response   to   type   I-­‐receptor   fibrogenic   growth   factors   (TGF-­‐β1)   also   able   to   excrete   matrix   molecules   to   a   greater   extinct   than   normal   fibroblasts,  especially  the  stiff,  cross-­‐linked  type  I  collagen  protein  (Swynghedauw,  1999).  Both   of  these  adaptions  are  necessary  to  maintain  the  structural  integrity  of  the  myocardium  after  CM   loss,  although  these  adaptations  lead  to  increased  stiffness  of  the  tissue.  The  importance  of  this   early   reaction   is   elucidated   by   an   experiment   in   which   the   cardiac   fibroblast   activation   was   inhibited   after   injury.   This   led   to   impaired   wound   healing   and   worsening   of   cardiac   functions   (Duan,  2012).  Additionally,  fibroblasts  and  myofibroblasts  interact  with  CM  and  are  thought  to   play  a  major  role  in  CM  proliferation  and  hypertrophy  (Ieda,  2009).  Hypertrophy  of  CM  is  as  a   common   adaptive   response   to   the   loss   of   CM   (as   seen   after   MI)   and   is   associated   with   a   decreased   capacity   to   differentiate.   Therefore,   hypertrophy   of   CM   after   injury   impairs   the   regenerative  mechanism  of  CM  proliferation  (Zebrowski,  2013).    

 

2.2  The  differentiation  of  cardiac  fibroblasts  to  myofibroblasts  

In   normal   physiological   conditions,   fibroblasts   maintain   ECM   homeostasis   and   myofibroblasts   are   hardly   detectable   in   the   myocard   (Weber,   2013).   In   pathological   conditions,   for   example,   after  a  MI,  fibroblasts  differentiate  into  myofibroblasts.  However,  it  is  arguable  that   CM  are  in   fact   less   differentiated   than   cardiac   fibroblasts.   This   view   is   strengthened   by   the   fact   that   CM   expresses   SMA,   which   is   during   embryogenesis   an   ealier   form   of   actin   expressed   by   CM.   The   main   difference   between   this   differentiated   variant   and   fibroblasts   is   the   ability   of   myofibroblasts   to   express   SMA.   However,   an   in-­‐between   differentiated   fibroblast   exists:   the   proto-­‐myofibroblast,  containing  actin/myosin-­‐based  stress  fibers,  but  lacking  SMA  (Hinz,  2010).      

The   differentiation   of   cardiac   fibroblasts   is   dependent   on   ECM-­‐derived   TGFβ1   and   mechanical   stress   (Hinz,   2010).   These   interactions   between   the   ECM   and   fibroblasts   will   be   further   discussed   in   section   4.   It   is   shown   that   myofibroblasts   also   originate   from   other   cell   types  in  pathological  conditions,  for  example  by  from  endothelial  and  epithelial  cells:  endothelial   (EndMT)   or   epithelial   (EMT)   to   mesenchymal   transdifferentiation,   processes   which   are   also   seen   during   embryogenesis   (Davis,   2013).   Another   source   of   myofibroblasts   is   the   transdifferentiation  of  circulating  fibrocytes  (bone  marrow  derived  stem  cells).  Little  literature   of   lineage   sources   of   myofibroblasts   is   available,   so   the   relative   contibutions   of   myofibroblast   progenitors   is   unclear   (Chang,   2002).   However,   it   is   shown   that   in   the   kidneys   35%   of   the   myofibroblasts  are  derived  from  fibrocytes,  10%  from  EndMT  and  5%  from  EMT  (LeBlue,  2013).  

Additionally,   the   cellular   origins   of   myofibroblasts   may   be   dependent   on   the   degree   of   inflammation;   the   contribution   of   blood-­‐derived   progenitors   like   fibrocytes   may   be   more   significant  in  conditions  associated  with  more  intense  inflammatory  responses  (Kong,  2014).    

(6)

Fig.   1  -­‐  The  interactions  between  macrophages  and  myofibroblasts.  Macrophages  are  able  to  produce   angiotensin  I,  which  stimulates  the  AT1-­‐receptor  in  an  autocrine  manner.  Stimulation  of  this  receptor   leads   to   an   upregulation   of   TGF-­‐β1   production,   which   triggers   the   appearance   of   myofibroblasts.  

Myofibroblasts  also  express  AT1-­‐receptors,  which  enable  them  as  well  to  express  TGF-­‐β1  in  response  to   angiotensin   II.   The   upregulation   of   TGF-­‐β1   production   in   myofibroblasts   leads   to   the   formation   and   excretion  of  fibronectin,  collagen  types  I  and  III  and  MMPs  (Weber,  2013).    

3  –  Macrophage-­‐fibroblast  interactions  

 

3.1  Angiotensin  signalling  

To   elucidate   the   role   of   TGF-­‐β1  in   ECM   deposition,   the   role   between   macrophages   and   myofibroblasts  will  be  discussed  in  this  section.    

Necrosis   of   CM   leads   to   a   local   elevation   of   necrosis-­‐associated   proteins,   which   function   as   danger  signals  to  the  innate  immune  system.  The  first  days  after  the  necrosis,  inflammatory  cells   are  recruited,  guided  by  gradient  concentrations  of  tissue  chemokines  to  the  site  of  the  injury  in   order  to  scavenge  the  necrotic  cells  and  induce  a  healing  response.  Among  these  inflammatory   cells   are   macrophages   expressing   angiotensinogen,   renin   and   angiotensin-­‐converting   enzyme   (ACE),   which   enable   the   forming   of   angiotensin   II   (ATII)   (Sun,   2001).   This   production   of   ATII   fulfils   an   autocrine   function   by   binding   to   the   AT1   (angiotensin   II   type   I)-­‐receptor   of   macrophages,  hereby  inducing  expression  of  TGF-­‐β1.  This  growth  factor  is  associated  with  the   formation   of   myofibroblasts   at   the   site   of   injury.   Angiotensin   signalling   triggers   the   myofibroblasts   into   further   TGF-­‐β1   production   (Sun,   1998).   Some   of   the   interactions   between   macrophages  and  myofibroblasts  are  shown  in  figure  1.  Not  shown  in  this  figure  is  the  activation   of   TGFβ   receptors   on   myofibroblast   and   macrophages   cell   membranes,   which   causes   upregulation  of  collagen  production  via  connective  tissue  growth  factor  (CTGF)  and  fibronectin   (Kong,  2014;  Weber,  2013).  Myofibroblasts  are  able  to  activate  the  AT1-­‐receptor  in  an  autocrine   manner,   since   they   produce   ATII   and   thus,   cross-­‐activation   of   the   AT1-­‐receptor   between   macrophages  and  myofibroblasts  can  take  place.  This  creates  a  feed-­‐forward  loop.  Additionally,   CM  are  also  able  to  secrete  ATII  under  pathological  conditions:  Tsai  Chia-­‐Ti  showed  that  rapid   depolarization   of   atrial   CM   induced   angiotensin   II   secretion   (Tsai   Chia-­‐Ti,   2011).   By   these   mechanisms,  the  formation  of  a  'secretome'  is  induced:  the  total  deposition  of  organic  molecules   by   the   myofibroblasts,   including   myofibroblasts   and   macrophages.   As   can   be   seen   in   figure   1,   TGFβ1   signalling   leads   to   inhibition   of   matrix   metalloproteinases   (MMP)   production   in   myofibroblasts   (Ye,   2011),   hereby   increasing   the   turnover   of   matrix   molecules,   since   MMPs   degrade   matrix   molecules.   However,   this   turnover   eventually   stabilizes,   but   remains   in   scar   tissue.   This   stabilizing   is   due   to   the   remaining   MMPs   at   the   sites   of   the   scarring   (Cleutjens,   1995).  

                                   

(7)

3.2  TGFβ  signalling  

TGFβ   exists   in   three   different   isoforms   (TGFβ1,   TGFβ2   and   TGFβ3)   of   which   TGFβ1   is   found   almost  ubiquitously  in  the  human  body.  TGFβ1  is  generally  released  in  its  latent  form,  unable  to   interact  with  its  receptor:  the  TGFβ  type  II  receptor  (TRβII).  Activation  of  TGFβ  is  dependent  on   mechanical   stress,   a   mechanism   that   will   be   discussed   in   section   5.   Binding   of   TGFβ1   to   its   receptor   leads   to   recruitment   and   phosphorylation   of   another   receptor,   TGFβ   type   I   receptor   (TRβI).   Activation   of   TRβI   leads   to   downstream   intracellular   signalling   via   Smad   proteins.  

Smad2/3  are  able  to  phosphorylate  Smad4,  which  consequently  translocates  to  the  nucleus  and   influences  (ECM-­‐  related)  gene  transcription.  Besides  Smad-­‐mediated  transcription,  TGFβ  is  also   able  to  mediate  transcription  through  other  pathways  such  as  TAK1  (TGFβ-­‐activated  kinase  1)   (Dobacwewski,   2011).   This   is   called   non-­‐canonical   signalling   and   involves   activation   of   the   TRβII  receptor.    

Much   research   is   focused   on   the   canonical   signalling   pathways;   however,   there   is   mounting  evidence  that  non-­‐canonical  signalling  plays  a  more  central  role:  research  showed  that   inhibition   of   the   non-­‐canonical   pathways   led   to   reduced   fibrosis   and   remodeling   in   mice   in   response   to   cardiac   overload   (Leask,   2010).   An   important   protein   involved   in   non-­‐cannonical   TGFβ1   signalling   is   TAK1   (Zhang,   2000).   It   has   been   shown   that   TAK1-­‐overexpression   in   mice   causes   cardiac   hypertrophy.   In   addition,   dominant   negative   TAK1   inhibits   TGFβ-­‐induced   hypertrophic  events  in  mouse  cardiomyocytes  and  fibroblasts  (Ono,  2003).    

   

4  –  Fibroblasts  and  mechanical  stress    

 

4.1  Mechanical  stress  and  TGF-­‐β1    

TGF-­‐β1  in  the  heart  is  secreted  in  an  inactive  form,  a  latent  complex.  It  is  unable  to  associate  with   its   receptors.   Activation   of   a   relatively   small   amount   TGF-­‐β1   is   sufficient   to   induce   a   maximal   cellular  response  and  is  dependent  on  stiffness  of  the  matrix  (Annes,  2003).  

The   modulation   of   TGF-­‐β1   bioactivity   is   a   poorly   understood   progress   in   which   mechanical   stress   plays   a   role,   possibly   in   the   following   manner:   fibroblasts   secrete   TGF-­‐β1   bound   to   latency-­‐associated   protein   (LAP).   This   complex   can   attach   to   the   TGF-­‐β1   binding   protein-­‐1  (LTBP-­‐1),  forming  the  Large  Latent  Complex  (LLC).  LTBP-­‐1  can  attach  to  molecules  in   the   ECM,   forming   a   reservoir   of   latent   TGF-­‐β1   (Annes,   2004).   The   LAP-­‐part   of   this   complex   provides   binding   parts   (‘RGD’   in   figure   2)   for   myofibroblast   integrins,   including   αvβ5.   This   integrin  is  connected  to  the  cytoskeleton.  When  stress  is  applied  to  αvβ5  by  stretching  the  ECM,   the  latent  TGF-­‐β1-­‐complex  shifts,  releasing  active  TGF-­‐β1  (Hinz,  2010;  Wipff  and  Hinz,  2008).    

However,  this  mechanism,  which  is  shown  in  figure  2,  has  not  been  fully  elucidated  yet.  

Noteworthy,  stiff  ECM  seems  to  be  required  for  this  process,  since  the  ECM  molecules  attached   to  the  LLC  are  only  unable  to  move  along  with  the  movement  of  the  LLC  under  these  conditions.  

This   raises   a   chicken-­‐egg-­‐like   question:   How   can   TGF-­‐β1   cause   an   increase   in   stiffness   of   the   ECM,   if  increased   stiffness   of   the   ECM   is   required   to   activate   TGF-­‐β1   from   its   latent   state?   An   answer   may   lie   in   the   process   of   increased   early   cross-­‐linking   of   collagen,   catalysed   by   Lysyl   Oxidase  (LOX)  enzymes  after  injury.  LOX  is  showed  to  be  upregulated  after  injury  (López,  2010).  

The  process  of  cross-­‐linking  stiffens  the  ECM  to  a  sufficient  degree  to  cause  elevated  activation   of   the   latent   TGF-­‐β1   (Penelope,   2007).   Another   possibility   is   a   stiffness   elevation   induced   by   integrin-­‐mediated   contraction   of   myofibroblasts   only.   The   contraction   of   multiple   myofibroblasts   may   cause   sufficient   stiffness   of   the   ECM   (stress   to   the   LLC)   to   release   TGF-­‐β1  

from   its   latent   state   (Wipff,   2007).   However,   this   purely   mechanical   process   is   only   shown   by   cultured  myofibroblasts  yet.  In  summary,  stiff  ECM  is  activates  latent  TGF-­‐β1.  

 

4.2  Mechanical  stress  induces  SMA  protein  expression  and  control  of  SMA  fibers  

The   onset   of   cardiac   fibroblast   differentiation   to   myofibroblasts   after   injury   takes   a   few   days.  

This  is  remarkable,  since  early  wound  healing  attracts  TGF-­‐β1-­‐generating  inflammatory  cells  like   macrophages   (Blakytny,   2003).   Why   is   it   that   TGF-­‐β1  is   not   able   to   induce   a   differentiation   response  in  cardiac  fibroblasts  directly  after  the  injury,  despite  the  widely  available  TGF-­‐β1?  An  

(8)

answer   may   lie   in   research   performed   by   Goffin   and   colleagues,   whereby   was   shown   that   myofibroblasts   differentiation   is   supressed   when   growing   on   soft   ECM   (Goffin,   2006).   This   suggests   a   TGFβ1-­‐indepent   link   between   mechanical   stress   and   myofibroblast   differentiation   (Hinz,  2010),  a  thought  strengthened  by  research  in  integrin  adhesions  by  Wang  and  colleagues,   who  showed  that  applied  force  to  those  adhesions  is  sufficient  to  cause  an  upregulation  of  SMA   promotor  activity  (Wang,  2002).  The  mechanism  behind  this  mechanical  induction  may  involve   the   AT1   receptor,   as   discussed   in   the   next   section.   However,   research   with   TGF-­‐β1   signaling   inhibitors  has  shown  that  the  onset  of  SMA  expression  is  not  possible  in  total  absence  of  TGF-­‐β1   (Hinz,   2001).   Therefore,   both   mechanical   stress   and   the   presence   of   TGF-­‐β1   are   necessary   for   myofibroblast  differentiation.  

An  additional  level  of  mechanical  control  of  myofibroblasts  is  the  relocalization  of  SMA-­‐

fibers  in  response  to  a  shift  of  environmental  stiffness.  Goffin  investigated  this  in  the  following   manner:   he   moved   myofibroblasts   cultured   on   stiff   plastic   to   a   soft   sillicone-­‐based   substrate.  

This  caused  dislocation  of  the  SMA  and  formation  of  proto-­‐myofibroblast  associated  stress  fibers   (Goffin,   2006).   Thus,   not   only   myofibroblast   differentiation   is   suppressed   by   soft   growth   medium,  it  causes  also  a  disturbance  in  the  formation  of  SMA  of  differentiated  myofibroblasts.  

 

4.3  Mechanical  stress  and  the  AT1-­‐receptor  

Yasuda   and   colleagues   demonstrated   that   the   AT1   receptor   could   be   activated   by   mechanical   stress,  independently  of  ATII,  by  the  use  of  an  inverse  AT1  receptor  agonist  (Yasuda,  2008).  This   means   an   extra   mechanism   exists   by   which   increased   stiffness   of   the   myocard   could   lead   to   additional  activation  of  myofibroblasts.      

Fig.   2  -­‐  The  large  latent  complex  (LLC)  is  bound  to  the  ECM  via   TGF-­‐β1  binding  protein-­‐1  (LTBP-­‐1).  TGF-­‐β1  is  entrapped  in  this   complex  and  hereby,  not  able  to  bind  the  myofibroblast  TGF-­‐β1-­‐

receptor.   The   LLC   is   connected   to   myofibroblast   by   myofibroblast   integrins,   such   as   αvβ5.   Cell   contraction   of   myofibroblasts,   or   stretching   of   the   ECM   (not   shown   in   this   figure)   leads   to   disruption   of   the   LLC,   whereby   TGF-­‐β1  is   released  in  its  active  form  (Hinz,  2010).  

(9)

5  –  Fibroblast  –  cardiomyocyte  interactions  

 

5.1  Interactions  between  fibroblasts  and  cardiomyocytes  

Fibroblasts  and  myofibroblasts  are  thought  to  modulate  the  structure  and  function  of  CM  by  the   release   of   soluble   mediators,   indirectly   via   the   ECM   and   by   direct   cell-­‐cell   contact   (Kakkar,   2010).  These  interactions  will  be  briefly  discussed  in  the  following  sections.    

 

5.2  Interactions  via  soluble  mediators  

The  precise  nature  of  cardiomyocyte-­‐fibroblast  interaction  through  soluble  mediators  remains   unknown   (Cardlegde,   2015),   mainly   because   of   the   complex   interaction   between   soluble   mediators   between   both   cell   types,   since   both   cells   can   release   and   respond   to   a   variety   of   substances.   Nevertheless,   the   main   (most   studied)   soluble   mediators   in   this   process   will   be   discussed.  

 

TGFβ1  -­‐  Probably  the  most  important  soluble  mediator  secreted  by  fibroblasts  is  TGFβ1.   However,  since  the  functions  of  this  substance  are  already  discussed  in  previous  sections,  it  is   only  briefly  mentioned  in  this  section.  

 

FGF2  and  FGF16  -­‐  Two  soluble  mediator  signals,  dependent  on  TGF-­‐β1  signalling,  that  play  major   roles  in  the  communication  between  CM  and  cardiac  fibroblasts  are  Fibroblast  Growth  Factor  2   and  16  (FGF2  and  FGF16,  respectively).  Cardiac  fibroblasts  are  the  main  source  of  FGF2  in  the   heart  (Santiago,  2010).  FGF2  is  an  important  factor  in  the  process  of  cardiac  hypertrophy  (Siyun,   2009).    FGF16  is  thought  to  possess  the  opposed  function  (Matsumoto,  2013).  FGF2  and  FGF16   compete   for   the   same   binding   sites   on   their   primary   receptor,   the   Fibroblast   Growth   Factor   Receptor   (FGFR1c)   (Lu,   2008).   A   schematic   overview   of   cardiomyocyte-­‐fibroblast   communication  is  shown  in  figure  3.    Cardiac  fibroblasts  are  able  to  secrete  FGF2  in  response  to   TGFβ1,  which  induces  TGFβ1  secretion  in  CM.  Increased  TGFβ1-­‐levels  cause  hypertrophy  in  CM,   are  associated  with  the  differentiation  of  fibroblasts  into  myofibroblasts  and  increase  stiffness  of   the   ECM,   as   discussed   in   earlier   sections.   FGF2   causes   an   upregulation   of   the   production   of   FGF16  in  CM.  FGF16  has  an  inhibiting  function  on  the  TGFβ1  production  in  both  CM  and  cardiac   fibroblasts.   Under   pathological   conditions,   the   availability   of   TGFβ1   increases,   which   causes   hypertrophy   of   CM.   However   the   pathophysiological   role   of   FGF16   in   humans   has   not   been   analyzed   yet,   research   has   been   performed   on   the   role   of   FGF16   in   mice   with   angiotensin   II-­‐

induced   hypertrophy   (Matsumoto,   2013).   Macrophages   play   a   major   role   in   inducing   this   hypertrophy   by   producing   ATII,   as   described   in   section   3.1.   ATII   causes   induced   TGFβ1-­‐

production  in  fibroblasts,  while  FGF16  causes  the  opposite  effect.  Therefore,  FGF16  might  be  a   useful  approach  in  counteracting  adverse  remodeling  processes  in  the  heart.    

 

Notch  signalling  -­‐  A  factor  in  embryonic  cardiac  signalling  is  Notch-­‐signalling,  which  plays  a  role   in  cell  fate  regulation.  This  form  of  signalling  is  also  activated  in  the  injured  heart  but  absent  in   the  adult  heart  in  mice  (Gude,  2008).  Evidence  for  Notch-­‐signalling  between  fibroblasts  and  CM   is   present,   especially   between   the   Notch   ligand   Jagged-­‐1   on   the   surface   of   CM   and   its   Notch1   receptor  on  the  surface  of  cardiac  fibroblasts.  The  Notch1  receptor  is  activated  during  pressure   overload   in   mice   and   is   associated   with   inducing   CM   hypertrophy,   although   the   precise   mechanisms   of   this   interaction   are   not   understood   yet   (Fujiu,   2014).   Inhibition   of   Notch-­‐

signalling   in   mice   led   to   worsened   remodeling   and   hypertrophic   response   after   injury   (Croquelois,  2008).  This  conclusion  is  supported  by  a  study  conducted  by  Nemir  and  colleagues,   who   found   that   CTGF   expression   was   downregulated   by   Jagged-­‐1-­‐induced   Notch   signalling   in   mice   (Nemir,   2014).   Additionally,   Notch-­‐signalling   negatively   regulated   cardiac   fibroblast   to   myofibroblast  differentiation  (Fan,  2011).    

 

(10)

5.3  Indirect  cardiomyocyte-­‐fibroblast  interactions  via  the  ECM  

Ieda   and   colleagues   have   conducted   research   on   the   differences   in   proliferative   abilities   of   embryonic  fibroblasts  and  adult  fibroblasts  on  CM  in  mice.  They  found  a  proliferative  effect  of   embryonic   fibroblasts   on   CM,   but   a   hypertrophic   effect   of   adult   fibroblasts   on   cardiomyoctes.  

Additionally,   adult   fibroblasts   caused   a   proliferative   effect   on   embryonic   CM,   but   to   a   lesser   degree  than  embryonic  fibroblasts.  The  mechanism  of  proliferation  was  regulated  via  the  ECM   components  fibronectin  and  collagen,  and  via  heparin-­‐binding  EGF-­‐like  growth  factor  (HBEGF).  

HBEGF  is  a  mitogen  (a  cell-­‐division  triggering  substance)  secreted  by  cardiac  fibroblasts.  In  this   research  it  has  been  shown  that  fibronectin  and  collagen  promoted  HBEGF-­‐induced  CM  mitotic   activity   through   integrin   signalling.   α5β1   integrin   (fibronectin-­‐specific   receptor)   is   a   receptor   that   directly   associates   with   the   HBEGF-­‐receptor,   which   is   necessary   for   optimal   activation   of   growth   signalling.   Embryonic   CM   express   more   collagen-­‐   and   fibronectin-­‐specific   receptors,   while   adult   CM   express   more   laminin-­‐   receptors.   This   suggests   that   the   CM   expression   of   integrins  might  be  responsible  for  CM  proliferation  on  fibronectin  and  collagen  (Ieda,  2009).  

Another  indirect  interaction  between  the  ECM  and  CM  under  pathological  conditions  is   in  the  form  of  increased  deposition  of  collagen  fibers  by  myofibroblasts.  These  fibers  are  shown   to  entrap  CM,  hereby  reducing  their  ability  to  contract  periodically.  By  making  it  unable  for  CM   to  contract,  these  fibers  decrease  the  workload  of  CM,  which  causes  atrophy.  In  other  words,  the   matrix  is  too  stiff  to  allow  proper  contration  of  CM.  It  is  thought  that  this  is  one  of  the  reasons   why   scar   formation   contributes   to   the   progressive   nature   of   heart   failure   (Fidziańska,   2010;  

Weber,  2013).  

Summarized,  integrin  signalling  is  required  for   CM  to   form   ECM-­‐substance   recognizing   receptors,   of   which   collagen   and   fibronectin   are   associated   with   embryonic   cardiomyocyte   proliferation  and  laminin  is  associated  with  adult  cardiomyocyte  hypertrophy.  Another  form  of   indirect   ECM-­‐cardiomyocyte   interaction   is   the   entrapment   of   CM   in   excessive   collagen   fibres   during  pathological  conditions,  leading  to  atrophy  of  CM.  

 

Fig.   3  -­‐   A  schematic  overview  of  the  communication  between  CM  and  cardiac  fibroblasts   through   some   main   soluble   mediators.   Cardiac   fibroblasts   produce   FGF2   in   response   to   hypertrophied  conditions.  FGF2  activates  the  FGFR1c  receptor  on  CM  and,  via  an  autocrine   manner,   on   cardiac   fibroblasts.   This   stimulation   causes   an   upregulation   of   TGF-­‐β1   production   and   secretion,   responsible   for   cardiomyocyte   hypertrophy.   Besides   the   upregulation   of   TGF-­‐β1,   stimulation   of   the   FGFR1c  receptor  causes   an   increase   in  FGF16   expression  and  secretion  by  CM.  FGF16  competes  with  FGF2  for  the  same  receptor,  hereby   inhibiting  the  action  of  FGF2  and  fulfilling  a  role  in  a  negative-­‐feedback  loop  (Fujiu,  2014).  

(11)

Fig.   4  –  A  schematic  view  of  a  gap  junction   between  a  cardiac  fibroblast  and  a  cardiac   myocyte.  Connexin  43   and  45   are  involved   in   the   formation   of   the   gap   junction.  

Cardiac   fibroblasts   are   able   to   sense   the   stiffness   of   the   surrounding   matrix   via   β1-­‐

integrin   signalling.   The   exact   pathway   of   this   signalling   is   not   elucidated   yet.  

However,   is   is   thought   that   β1-­‐integrin   signalling  plays   a  role  in  the  regulation  of   Na2+-­‐ion   channels.   By   altering   the   intra-­‐

cellular   ion   concentration   of   cardiac   fibroblasts,  and  thereby,  via   gap  junctions,   the  ion  concentration  of  cardiac  myocytes,   the   automaticity   of   cardiac   myocytes   can   be   changed   in   response   to   mechanical   stress  (Kakkar,  2010).  

5.4  Interactions  via  cell-­‐cell  contact  

The   electrical   conductance   system   of   the   heart   relies   on   the   syncytium-­‐forming   gap   junctions   between   CM.   Recent   research   indicates   that   communication   between   cardiac   fibroblasts   and   myocytes  may  occur  in  a  similar  manner  (Kakkar,  2010).  Gap  junction  proteins  associated  with   connections  between  fibroblasts  and  myocytes  are  connexin-­‐43  and  -­‐45.  Fibroblasts  may  play  a   role  in  the  process  of  cardiomyocyte  depolarization  (Goshima,  2004).  This  process  is  shown  in   figure   4.   Cardiac   fibroblasts   form   gap   junction   with   cardiac   myocytes   via   connexin   43   and   45.  

Additionally,  cardiac  fibroblasts  are  able  to  sense  the  density  or  stiffness  of  their  surroundings   by  β1-­‐integrins.  These  receptors  influence  the  Na2+-­‐ion  channels  of  fibroblasts  by  a  mechanism   yet  to  be  uncovered.  The  altered  intracellular  ion  concentrations  of  cardiac  fibroblasts  influence   the   intracellular   concentrations   of   cardiac   myocytes   through   gap   junction   transport   (Rook,   1989).  By  this  mechanism,  the  automaticity  of  cardiac  myocytes  is  influenced  by  the  mechanical   properties   of   the   surroundings   of   the   cardiac   fibroblasts.   However,   the   implications   of   this   mechanism  to  CM  are  not  elucidated  yet  (Kakkar,  2010).    

 

In   vitro   studies   on   myocyte-­‐fibroblast   interactions   showed   another   way   by   which   myocyte-­‐

fibroblast   cell-­‐cell   interaction   can   alter   cardiomyocyte   function.   Namely,   by   causing   a   state   called  ‘hibernation’  in  CM  in  response  to  hypoperfusion  in  order  to  prevent  cell  death.  This  state   is   associated   with   sarcomere   depletion   and   loss   of   cytoplasmic   structure   of   CM.   It   has   been   suggested  that  this  hibernation  mimics  a  more  embryonic-­‐like  state  by  causing  dedifferentiation   of   CM   (Vanoverschelde,   1997).   GATA4   is   a   zinc-­‐finger   transcription   signal   that   plays   a   role   in   this  process.  During  embryogenesis,  GATA4  is  a  critical  regulator  of  the  cardiac  differentiation-­‐

specific   gene   program.   Zaglia   and   colleagues   showed   that   rat   cardiac   fibroblast   still   express   GATA4  after  birth,  in  contrast  to  other  important  embryonic  transcription  signals  like  Isl1  and   Nkx2.5.   In   this   research   it   was   also   shown   that   GATA4-­‐induced   dedifferentiation   of   CM   is   associated  with  cell-­‐cycle  re-­‐entry  (Zaglia,  2009).  However,  since  the  lack  of  evidence  in  in  vivo   models  yet,  more  research  has  to  be  performed  on  this  subject.    

 

 

(12)

6  -­‐  Recent  developments  in  research  on  cardiac  regeneration  

 

In  order  to  fit  in  the  role  of  cardiac  fibroblasts  in  cardiac  regeneration,  it  is  important  to  get  an   overview  of  recent  developments  in  cardiac  regeneration  eventhough  cardiac  fibroblasts  are  not   the  main  subject  of  these  researchers.    

 

6.1  The  proliferative  window  of  CM  

Porrello  and  colleagues  performed  much  research  to  cardiomyocyte  regeneration  and  showed  in   2011  that  hearts  of  1-­‐day-­‐old  mice  (P1)  were  able  to  regenerate  to  their  normal  anatomy  and   function  after  a  ventricular  resection.  Yet,  mice  lost  this  ability  gradually  in  their  first  week  after   birth  (Porrello,  2011).  This  experiment  was  repeated  succesfully  in  rats  (Zogbi,  2014).  However,   Darehzereski   and   colleagues   showed   that   cardiomyocyt   proliferation   does   not   necessarily   increase   during   these   conditions   compared   to   normal   neonatal   rodents,   but   that   the   adequate   growth   of   myocardial   tissue   after   injury   was   sufficient   to   induce   a   recovery   from   an   MI-­‐

simulating  injury  (Darehzereski,  2015).  These  researches  show,  besides  the  fact  that  sufficient   proliferation   of   CM   occurs   after   injury;   no   chronic   scar   tissue   is   formed.   This   implicates   a   different   role   for   fibroblasts   during   neonatal   compared   to   adult   development   in   rodents.  

Additionally,  although  not  as  extreme,  cardiomyoyte  regeneration  in  humans  is  also  significantly   elevated   in   young   humans   compared   to   adults   (Mollova,   2013;   Bergmann,   2009),   implicating   that   this   different   role   of   fibroblasts   in   cardiomyocyte   proliferation,   in   some   way,   could   be   extended   to   humans.   These   findings   are   consistent   with   research   performed   by   Ieda   and   colleagues,   who   showed   that   embryonic   rat   fibroblasts   stimulate   embryonic   and,   to   a   lesser   extent,  adult  rat  CM  to  proliferate,  and  that  adult  fibroblasts  stimulate  hypertrophy  in  adult  CM.  

Differences  in  gene  expression  of  HBEGF  and  β1-­‐integrin  receptors  played  a  role  in  this  shift  of   CM  function  (Ieda,  2009).  

 

6.2  Neuregulin  signalling  

Additionally,   recent   research   on   Neuregulin   (Nrg)–signalling   in   the   heart   by   Polizzotti   and   colleagues  provided  promising  results.  Nrgs  are  a  family  of  growth  factors  of  which  Nrg-­‐1  and  its   tyrosine  kinase  receptors  ErbB2  and  ErbB4  are  the  most  common  in  the  myocardium.  Nrg-­‐1  is   secreted  by,  and  located  on  the  surface  of  endothelial  cells  and  fibroblasts.  The  tyrosine  kinase   receptors  are  located  on  the  surface  of  CM  (Parodi  and  Kühn,  2014).  Administration  of  Nrg-­‐1  to   mice  after  cardiac  injury  caused  cell  cycle  re-­‐entry  of  CM,  even  when  the  ‘proliferative  window’  

of   seven   days   was   expired.   This   proliferative   effect   of   Nrgs   is   succesfully   repeated   in   humans,   however,  cell  cycle  re-­‐entry  of  CM  was  not  significantly  elevated  in  patients  older  than  6  months.  

Yet,   this   limited   time   frame   of   cell   cycle   re-­‐entry   could   be   explained   by   the   fact   that   these   patients   suffered   from   cardiac   diseases,   in   contrast   to   the   investigated   mice.   The   presence   of   such   diseases   may   drive   CM   out   of   the   cell   cycle   into   a   ‘quiescent   state’   (Polizzotti,   2015).  

Summarized,  local  administration  of  Nrg  might  be  a  useful  therapeutic  approach  to  induce  CM   proliferation.  

 

(13)

Fig.   5   –   The   interactions   between   myofibroblasts,   macrophages,   CM   and   the   ECM   during   pathological   conditions.  

Necrosis-­‐associated   proteins  attract   macrophages  to  the   site   of   injury.  Macrophages   produce  ATII,  which   activates   myofibroblasts   and   macrofages   to   produce   TGF-­‐β1.   Myofibroblasts   differentiate   from   fibroblasts   in   pathological   conditions  and  are  also  able  to  produce  ATII.  TGF-­‐β1  signalling  causes  myofibroblasts  to  upregulate  the  production  of   matrix   components   and   to   inhibite   MMPs.   This   leads   to   increased   matrix   formation   and   increased   stiffness   of   the   ECM.  Increased  stiffness  of  the  ECM  leads  to  activation  of  latent  TGF-­‐β1,  which  helps  to  maintain  the  activation  and   differentiation   of   myofibroblasts.   Components   of   the   ECM   are   able   to   act   on   integrin-­‐receptors   on   CM,   causing   hypertrophy  and  on  myofibroblasts,  causing  altered  ion  concentrations.  This  shift  in  myofibroblast  intracellular  ion   concentration   spreads   to   CM,   facilitated   by   gap   junctions   between   the   two   cell-­‐types.   Additionally,   the   increased   amount  of  collagen  entraps  CM,  causing  atrophy.  The  increased  stiffness  of  the  ECM  leads  to  angiotensin-­‐independent   activation  of  AT1-­‐receptors,  which  also  leads  to  activation  of  myofibroblasts  (created  with  Lucidchard).  

7  –  Discussion  

 

7.1  Summary  of  interactions  between  cell  types    

The   interactions   between   myofibroblasts,   CM,   macrophages   and   the   ECM   under   pathological   conditions  are  summarized  in  figure  5.  This  figure  shows  the  basic  principles  of  the  discussed   interactions  between  different  cell  types  in  pathological  conditions.  Most  interactions  eventually   lead  to  impaired  cardiomyocyte  function  or  decreased  ability  to  proliferate.    

Necrotis-­‐associated   proteins   attract   macrophages   to   the   site   of   injury.   Macrophages   produce  ATII  and  are  able  to  activate  their  membrane-­‐bound  AT1  receptor,  in  an  autocrine  way.  

Activation  of  this  receptor  leads  to  increased  TGF-­‐β1  expression.    

           

(14)

Myofibroblasts  differentiate  from  fibroblasts  during  pathological  conditions  and  also  express  the   AT1-­‐receptor  and  are  able  to  produce  ATII.  Therefore,  besides  autocrine  ATII  signalling,  cross-­‐

activation  of  the  AT1  receptor  take  place  between  these  cell  types.  TGF-­‐β1  signalling  in  CM  leads   to   an   increased   production   of   ECM   components   like   several   collagen   types,   fibronectin   and   laminin.  Additionally,  the  production  of  MMPs  is  inhibited.  These  changes  lead  to  an  increased   formation   of   ECM-­‐proteins,   which   leads   to   an   increased   stiffness   of   the   ECM,   whereby   latent   TGFβ1  is  activated.  An  increased  stiffness  of  the  ECM  also  leads  to  ATII-­‐independent  activation  of   the   AT1-­‐receptor   on   the   cell   surface   of   myofibroblasts,   hereby   stimulation   the   production   of   TGFβ1  in  an  additional  manner.  Components  of  the  stiffened  ECM  also  activate  integrin  receptors   on   the   surface   of   myofibroblasts   and   CM.   In   CM,   laminin   activates   integrin   receptors,   which   causes  hypertrophy  of  CM.  Integrin  receptors  on  the  surface  of  cardiomyocyte  are  able  to  alter   the  ion  flow  by  regulating  ion  channels  in  response  to  mechanical  stress.  This  leads  to  altered   intracellular  ion  concentrations  in  myofibroblasts,  which  spreads  to  CM  by  gap  junctions,  hereby   altering  the  membrane  potential.  Finally,  collagen  fibers  can  entrap  CM,  which  causes  atrophy.    

  Not  shown  in  figure  6,  are  some  other  important  signalling  factors  including  FGF2-­‐FGF16   signalling,  which  plays  a  role  in  the  regulation  of  TGFβ1  expression  of  cardiac  fibroblasts  and  CM   and  Notch  signalling,  which  plays  a  role  in  CM  hypertrophy  in  pathological  conditions.  

 

7.2  Future  perspectives  

This  general  picture  shows  interactions  involved  in  pathological  cardiac  remodeling,  and  could   help   to   elucidate   processes   that   inverse   the   unfavorable   outcomes   associated   with   this   remodeling.  Together  with  recent  developments  on  cardiac  regeneration  described  in  section  5,   some  interesting  approaches  to  induce  regeneration  can  be  deducted  from  this  review  and  will   be  briefly  summed  up  below.  

 

FGF  16  -­‐  As  described  in  section  5.2,  FGF16  inhibits  TGFβ1  production  in  fibroblasts  and  CM,   which  leads  to  a  reduced  production  of  ECM-­‐components.  Therefore,  finding  a  way  to  increase   FGF16  production  in  cardiac  tissue  after  injury  might  diminish  the  formation  of  scar  tissue.  

Additionally,  research  has  shown  that  FGF16  might  play  a  role  in  CM  proliferation  in  mice   (Lavine,  2005).  However  more  research  has  to  be  performed  on  the  role  of  FGF16  in  humans,   this  proliferative  effect  could  provide  an  additional  beneficial  factor  for  FGF16.  

 

Integrin  signalling  -­‐  Integrin  signalling  plays,  through  HBEGF,  a  role  in  CM  proliferation  and   hypertrophy.  Fibronectin-­‐specific  integrin  signalling  in  embryonic  rats  induces  CM  proliferation,   while  the  diminished  fibronectin-­‐specific  integrin  (α5β1)  signalling  in  adult  rats  is  associated   with  CM  hypertrophy  (Ieda,  2009).  More  research  on  the  differences  between  adult  and   embryonic  integrin  signalling  in  humans  could  provide  additional  insight  in  CM  proliferation.  

 

Neuregulin  -­‐  Administration  of  Nrg  stimulates  CM  to  re-­‐entry  the  cell  cycle.  However,  since   pathological  conditions  in  patients  made  CM  impassible  to  Nrg-­‐therapy  by  inducing  a  quiescent   state,  more  research  has  to  be  performed  on  the  exact  mechanisms  (Polizzotti,  2015).    

 

‘Hibernation’  of  CM  -­‐  Finally,  the  hibernation  state  or  ‘dedifferentiation’  in  reaction  to  

hypoperfusion  of  the  heart  as  shown  by  Vanoverschelde  and  colleagues  could  also  be  interesting   since  differentiation  is  associated  with  loss  of  proliferative  abilities  (Vanoverschelde,  1997).  If   this  type  of  dedifferentiation  could  induce  increased  proliferation  of  CM,  this  research  may   provide  a  starting  point  for  the  development  of  a  new  therapy.  However,  therefore,  more   research  to  the  abilities  and  gene  expressions  of  hibernated  CM  has  to  be  performed.  

 

Notch-­‐signalling  –  Fan  and  colleagues  found  that  Notch-­‐signalling  inhibits  the  differentiation   from  cardiac  fibroblasts  to  myofibroblasts  (Fan,  2011).  Additionally,  Notch  signalling  is   negatively  correlated  to  the  formation  of  CTGF  and  is  involved  in  regulating  the  hypertrophic   response  of  CM  after  injury  (Nemir,  2014).  Therefore,  Notch-­‐signalling  is  worth  investigating.  

Referenties

GERELATEERDE DOCUMENTEN

will critically examine the more relevant recent findings related to stem cell-EV biology for cardiac repair and regeneration, while also discussing the paracrine contribution

We have demonstrated that TLR3 agonist poly(I:C) induced aggregation of fibronectin in demyelinated, but not myelinated OFSCs, and that remyelination was perturbed in

Thus, our findings demonstrate that aFn induces features of pro-inflammatory, classically activated and alternatively regenerative in macrophage in vitro (chapter 3

Ook werd onderzocht of geaggregeerd fibronectine, plasma fibronectine en CSPGs pro-inflammatoire (geïnduceerd door IFNϒ +LPS) of regeneratieve (IL-4) activering van

Here, I will especially thank the support from China Scholarship Council, my co-promotor Wia Baron, and my promotor Dick Hoekstra.. I also owe many sincere thanks

On the role of macrophages, microglia and the extracellular matrix in remyelination. University

Indeed, as shown in figure 1 (white bars), when BMDMs were cultured on uncoated dishes, exposure to IFNγ+LPS induced the expression of the pro-inflammatory marker iNOS

Microglia change activation along with regions and stages of multiple sclerosis, while macrophages like cells are derived from different sources in active multiple