• No results found

Morphodynamics of a double sandbar system

N/A
N/A
Protected

Academic year: 2022

Share "Morphodynamics of a double sandbar system"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Faculty of Geosciences Physical Geography

Layout: C&M - Faculty of Geosciences - ©2013 (8405) Get your copy now

0 10 km

South

Stradbroke Island

Currigee

Broadbeach

Study Area

Currumbin

Surfers Paradise

Burleigh Heads

Tweed Heads Nerang River

8405

Study Area

Melbourne Queensland

New South Wales Victoria

Sydney Brisbane

a)

b)

c)

d)

0 500 m

0 250 500

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500

Alongshore distance (m)

Cross−shore distance (m) Horns Bays

Landward perturbations

Bar Bar Beach Beach

Persistent current Persistent current Waves (with size and direction) Waves (with size and direction) Deep water

Deep water Refraction patternRefraction pattern

Higher waves Higher waves Lower waves Lower waves Pronounced wave breaking

Pronounced wave breaking

+ - Downstate

Downstate In-phase

In-phase

Idt Idt

Idr Idr

Odt Odt

Odr Odr

Out Out

Out-of-phase Out-of-phase

Out-of-phase Out-of-phaseUpstateUpstate

+ - + - + - + - + - + - + - + -

84058405

b)

a) Cross Shore Alongshore

Do

y yi

z

Di

yo

h

wi

d

Db Dh

Ay

Az

Lx

wi yo yi

Ay

x y

8405

0 200 400

−1.5

−1

−0.5 0 0.5

100 200 300

0 2 4 6

0 5

0 500 1000 1500

0 500 1000 1500 2000 2500 3000

y (m)z (m)y (m)

x (m)

x (m)

z (m)Swirl (* 10−3 s−1 )

a) Bathymetry

Depth along y = 120m

Swirling strength

b)

c)

Rip channel Rip−head bar

Horn Bay θ = 5˚

8359

0 5

100 200 300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0

5

500 1000 0 1 2

Swirl (s−1 * 10−3 )

Std Swirl (s−1 * 10−3) x (m)

θ (deg)

x (m) z (m)

b)

Meandering alongshore

current

Cell-circulation

c) a)

8405

Timothy Price t.d.price@uu.nl

Morphodynamics of a double sandbar system

Timothy Price

1

, Gerben Ruessink

1

, Bruno Castelle

2

1 Utrecht University, 2 Université de Bordeaux 1

Conclusions

• Morphological coupling is an integral part of double sandbar systems.

• Type of coupling controlled by wave angle-dependent fl ow pattern and degree in alongshore variability of outer sandbar.

Background

• Nearshore sandbars continuously change shape in response to wave conditions.

• In double sandbar systems the alongshore variations in inner-bar shape may be similar to those of the outer bar: morphological coupling (Fig. 1).

• Coupling may lead to localised beach and dune erosion.

• Angle of wave incidence θ likely affects morphological coupling, but unclear how.

Figure 1 Examples of sandbar patterns from different beaches.

Field data

• Gold Coast, Queensland, Australia

• Argus: over 9 years of daily time-exposure images (Fig. 2) Sandbar morphology

• Outer bar → 66% in time alongshore variable

• Inner bar → 44% in time shore-attached terrace Morphological coupling

• 40% in time

• 5 coupling types (Fig. 3) Hydrodynamics

• θ and H affect current patterns (cell-circulation vs.

meandering alongshore current) and type of coupling.

• θ > 30° leads to sandbar straightening and de-coupling.

Observations

Modelling

Model

• 2DH morphodynamic model a

• Constant (averaged) wave forcing

• Crescentic outer bar

• Alongshore-uniform inner bar

• Realistic bathymetrical data, assimilated from video images (Fig. 4)

Special Price!

Note

a Castelle, B., Ruessink, B.G., Bonneton, P. Marieu, V., Bruneau, N., Price, T.D., 2010. Coupling mechanisms in double sandbar systems, Part 1: Patterns and physical explanation. ESPL, 35:476-486

Figure 4 We derived the (a) cross-shore and (b) alongshore bathymetric parameters from video images to use a realistic bathymetry for the

model.

Figure 5 Modelled fl ow patterns during coupling for θ = 5°, showing (a) the bathymetry, (b) the depth along the inner bar, and (c) the

swirling strength.

Figure 6 Modelled fl ow patterns over inner bar for different angles of wave incidence, with (a) the initial bathymetry, (b) the fl ow patterns and swirling strength over the inner bar, and (c) the std. dev. of the swirling strength.

Flow patterns inner bar

• Small θ (Fig. 5) → Circulation patterns with rip channels (coupling types Idr, Odr and Odt)

• Increasing θ (Fig. 6) → Meandering alongshore current (coupling types Idt & Out)

• Quantifi cation: Swirling strength

Figure 2 The dominant coupling type, as seen in an Argus time-exposure image from the Gold Coast.

Figure 3 Conceptual model of the 5 observed coupling types.

Aim: To quantitatively understand the morphological coupling in double sandbar systems.

Referenties

GERELATEERDE DOCUMENTEN

Wind speed-up is a function of offshore approach angle and is generally strongest (140%) when the wind is aligned with the blowout axis up to approximately 30° to the south of

• Obliquely incident waves over a crescentic outer bar drive a (meandering) alongshore current, preventing the outer bar horns from welding to the inner bar and counteracting

During 80% of the coupling events the barlines are coupled in-phase (a positive correlation), that is, an outer bar horn facing a shoreward perturbation of the inner

We fi nd that the wave-bottom-boundary-layer is thinner under maximum positive fl ow than under maximum negative fl ow, causing the bed shear stress to be positively skewed.. The

effect van het werk aan de zeezijde beneden èie maat blijven. Het is niet voor het eerst dat hierop de aandacht is gevestigd. Dat is bij her- hailing geschied,

definitieve vaststelling van de kandidatenlijsten voor de Tweede Kamerverkiezing te houden op za- terdag 28 januari in Tivoli te Utrecht. ter bespreking van een

belangrijke bijdragen uit de algemene. middelen v90r .de sociale verzekering zijn in de huidige situatie onjuist; bij het woningbouwbeleid staat de VVD- , fractie

Deze "confessionele richting aan de defensiezaken heeft ook (en dat is niet verwonderlijk) het niveau van het defensie-beleid ten sterkste beïnvloed. Waar het