• No results found

Observations of intra-wave sand fl ux under acceleration-skewed oscillatory fl ow

N/A
N/A
Protected

Academic year: 2022

Share "Observations of intra-wave sand fl ux under acceleration-skewed oscillatory fl ow"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Gerben Ruessink1, Hervé Michallet2, David Hurther2 and Paulo Silva3

1 Utrecht University, Netherlands. g.ruessink@geo.uu.nl 2 University of Grenoble, France

3 Universidade de Aveiro, Portugal

Observations of intra-wave sand fl ux under acceleration-skewed oscillatory fl ow

Abstract

We analyze intra-wave velocities and sediment concentrations in the sheet fl ow and suspension layer under full-scale acceleration-skewed waves. We fi nd that the wave-bottom-boundary-layer is thinner under maximum positive fl ow than under maximum negative fl ow, causing the bed shear stress to be positively skewed. The resulting positive net sand fl ux increases with increasing acceleration-skewness and is always a close balance between a large positive and negative fl ux.

1. Introduction

Oscillatory fl ow in the inner surf zone has zero velocity skewness but non-zero acceleration skewness. Acceleration-skewed (‘sawtooth’) waves produce net transport in the direction of the largest acceleration (i.e., onshore), as demonstrated in various laboratory experiments. However, our current understanding of acceleration

effects on sediment transport is poor, mainly because of a lack of detailed intra-wave process measurements.

The aim of our work is to analyze the effect of acceleration skewness, velocity skewness, and net currents on sediment transport processes. Here we analyze a new dataset of intra-wave velocities, concentrations, and sand fl uxes under sheet fl ow conditions generated by full-scale, regular, acceleration- and velocity skewed

oscillatory fl ows with and without opposing currents.

2. Experimental set-up

The experiments were conducted in the Large

Oscillating Water Tunnel (LOWT) at Deltares|Delft Hydraulics, the Netherlands (Figure 1a). The

experiments involved 4 fl ows over a quartz sand with a median grain size of 200 µm and a geometric standard deviation of 1.2. The

regular horizontal free-stream fl ow u was of the following general form

( )

( )

2

sin ω sin

1 1

( ) ,

1 cos ω

w

t r

u t U f r u

r t

+ Φ

+

= +

+ Φ

where t is time, Uw is the velocity amplitude,

ω = 2π/T with T the wave period, Φ is a phase, r is a nonlinearity measure, f is a modifi cation factor to ensure that u(t) has a standard deviation of 0.5√2 Uw, and ū is the net current velocity. Values of r, Φ and ū for the 4 fl ows are given in Table 1. In all cases, Uw = 1.2 m/s and T = 7 s. See also bottom row of Figure 2.

Table 1 Experimental conditions

Code r Φ ū (m/s)

A1 0.3 0 0

A3 0.5 0 0

C1 0.5 -π/4 0

B2 0.3 0 -0.4

The present work is based on measurements of (i) time-varying concentrations with a Conductivity Concentration Meter (Figure 1b) and a triple-

frequency (1, 2 and 4 MHz) Acoustic Backscatter Sensor (Figure 1c), and (ii) time-varying horizontal and vertical velocities with a 2-MHz Acoustic

Doppler Velocimeter Profi ler (Figure 1d).

3. Data (Figure 2)

4. Findings

Under sawtooth waves (A1 and A3 in Figure 2):

• The wave-bottom-boundary layer (WBBL) is thinner under maximum positive than under maximum negative fl ow.

Accordingly, the bed shear stress is positively skewed, even though the free-stream velocity has zero velocity skewness.

• The skewness in the bed shear stress increases with an increase in acceleration skewness.

• The concentrations and fl uxes show two large, almost equal peaks. The net fl ux is a close balance between the positive and negative fl ux.

• Some sediment stirred under the negative fl ow phase remains in suspension into the positive fl ow phase.

• The depth-integrated fl ux is approximately in phase with the free stream velocity.

• The net fl ux increases with an increase in acceleration skewness.

The addition of velocity skewness (C1 versus A1 in Figure 2) results in:

A smaller difference in WBBL thickness under maximum positive and negative velocity.

An increase in the skewness of the bed shear stress.

A decrease in the magnitude of the offshore fl ux, causing an increase in the net fl ux.

The strong opposing current (B2 versus A1 in Figure 2):

Suppresses (enhances) the turbulence kinetic energy under the positive (negative) orbital fl ow.

Increases (decreases) the concentration under the negative (positive) fl ow.

• Produces a net negative fl ux, which results from the negative current-induced and the negative wave-induced fl ux.

Thus, with an opposing current, acceleration-skewed waves produce net transport against the direction of the largest acceleration.

Acknowledgments

Supported by the European Community’s Sixth Framework Program as part of the Integrated Infrastructure Initiative HYDRALAB III

OS21E-1207

Graphic design: Geomedia • Utrecht University • ©2008 (7372)

Oscillatory flow velocity, ũ(t, z) = u(t, z) – ū.

The gray line is the top of the wave-bottom-boundary-layer.

The black line is the instantaneous erosion depth δe. The height above the no-flow bed is denoted by z.

Turbulent kinetic energy, k = 1.33 k’ = 1.33 *(0.5*(〈u’ 2〉+〈w’ 2〉))

Sediment concentration, c

Sediment flux, q = u x c

Free-stream velocity

on: 0.26 kg/m/s off: -0.72

net: -0.46 on: 0.56 kg/m/s

off: -0.32 net: 0.24 on: 0.72 kg/m/s

off: -0.56 net: 0.16 on: 0.76 kg/m/s

off: -0.66 net: 0.10

Skτ = 0.26 Skτ = 0.49 Skτ = 0.59

0 0.01 0.02 0.03 0.04 0.05

A1 A3 C1 B2

-1.6 -0.8 0 0.8 1.6

z (m)z (m)

0 0.01 0.02 0.03 0.04 0.05

0 0.01 0.02 0.03

-10 -5 0 5 10 15

z (m)

0 0.01 0.02 0.03 0.04 0.05

0.01 0.1 1 10 100 1000

z (m)

0 0.01 0.02 0.03 0.04 0.05

-300 -150 0 150 300

-4 -2 0 2 4

q D (kg/m/s)

0 0.2 0.4 0.6 0.8 1 -2

-1 0 1 2

u (m/s)

Time (t/T)

0 0.2 0.4 0.6 0.8 1

Time (t/T)

0 0.2 0.4 0.6 0.8 1

Time (t/T)

0 0.2 0.4 0.6 0.8 1

Time (t/T)

c (kg/m3)

τ 0 (N/m2 )

q (kg/m2/s) k (m2/s2) ũ (m/s)

Depth-integrated sediment flux, where h is the total water depth.

h q dz ,

qD =

δe

Bed shear stress, estimated from the velocity defect integral method:

where ρ is the water density. 0

0.03m

∂t (u − u) dz , τ0 = ρ

Figure 1a The Large Oscillating Water Tunnel at Deltares|Delft Hydraulics and the instruments used:

Figure 1b Conductivity Concentration Meters

Figure 1c Triple-

frequency Acoustic Backscatter Sensor

Figure 1d Acoustic Doppler Velocimeter Profi ler

Referenties

GERELATEERDE DOCUMENTEN

Ten aanzien van bepaalde soorten van vorderingen wordt deze algemene regel doorbroken. Deze 'vorderingen hebben een zekere voorrang of preferentie ver- kregen. Dat

Deze "confessionele richting aan de defensiezaken heeft ook (en dat is niet verwonderlijk) het niveau van het defensie-beleid ten sterkste beïnvloed. Waar het

Beheer en onderhoud Naar verwachting kunnen alle geplande werkzaamheden regulier onderhoud 2016 binnen het beschikbare budget 2016 worden uitgevoerd.. De voorziening Pendrechtse

Van de sporters die geen doping hebben gebruikt hebben drie sporters een positieve testuitslaga. Vul het schema

WMD erkent het probleem van de schulden en scheldt momenteeljaarlijks op een hoc basis een deel van de schuldenlast kwijt (bv de rentelasten), Van belang is dat een

Winssen met zijn kerktoren en dijkmagazijn volledig aangetast. 3) Er wordt voorbij gegaan aan het feit dat hoe dan ook de ecologische waarden van de aangrenzende en bij de

[r]

Voor de uitvoering van de in dit werkplan opgenomen activiteiten worden de tarieven 2020 gehanteerd die door het Algemeen Bestuur van de DCMR op 15 juli 2019 zijn goedgekeurd (zie