• No results found

Modulating factors of emotional contagion in rats. A behavioral study on the effects of familiarity and repeated testing on the socially triggered freezing response.

N/A
N/A
Protected

Academic year: 2021

Share "Modulating factors of emotional contagion in rats. A behavioral study on the effects of familiarity and repeated testing on the socially triggered freezing response."

Copied!
45
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

Modulating  factors  of  

emotional  contagion  in  

rats.  

 

 

A  behavioral  study  on  the  effects  of  familiarity  and  repeated  

testing  on  the  socially  triggered  freezing  response.

 

 

08  

Fall  

Mirjam  Heinemans  

10326111  

Master  Brain  and  Cognitive  Sciences    

University  of  Amsterdam  (UvA)  

 

 

Supervisor:  dr.  Maria  Carrillo  

Netherlands  Institute  for  Neuroscience  (NIN)  

Social  Brain  Lab  

(2)

  2  

Table  of  Contents  

1.  Abstract  ...  3  

2.  Introduction  ...  4  

The  concept  of  empathy  ...  4  

Perception-­‐Action  Model  of  empathy  ...  4  

Animal  models  of  empathy  ...  6  

The  effect  of  familiarity  and  repeated  exposure  on  emotional  contagion  ...  9  

3.  Materials  &  Methods  ...  14  

Subjects  ...  14  

Experimental  procedures  ...  14  

Statistical  analysis  ...  18  

4.  Results  ...  20  

Day  1-­‐4:  Effects  of  repeated  exposure  and  familiarity  ...  20  

Freezing  ...  20  

Correlation  in  freezing  of  demonstrators  and  observers  ...  26  

Emergence  of  yawning  from  day  1  to  day  4  ...  31  

Day  5-­‐6:  Effects  of  an  anti-­‐stress  drug  and  familiarity  ...  31  

Freezing  ...  31   Yawning  ...  32   5.  Discussion  ...  34   Familiarity  ...  34   Repeated  testing  ...  37   6.  References  ...  41   Acknowledgements.  ...  45    

 

 

(3)

1.  Abstract  

 

Multiple   experimental   studies   provide   evidence   for   the   existence   of   emotional   contagion  in  the  social  life  of  rodents.  Based  on  this  evidence  rodent  models  for  emotional   contagion  are  being  developed  in  both  mice  and  rats.  In  this  process  multiple  factors  that   modulate   emotional   contagion   responses   of   these   species   have   been   identified,   such   as   context,   genetic   make-­‐up   and   familiarity.   Studies   with   mice   reported   familiarity   between   animals  to  be  a  crucial  factor  for  emotional  contagion  expression.  In  the  present  study  the   main  aim  was  to  investigate  whether  is  also  true  for  rats.  This  was  done  by  using  a  socially   triggered  freezing  paradigm,  in  which  one  rat  (the  observer)  witnesses  a  conspecific  freeze   when   receiving   painful   foot   shocks   (the   demonstrator).   The   foot   shocks   trigger   the  

demonstrator  to  freeze,  which  in  turn  elicits  socially  induced  freezing  in  the  observer.  The  

level   of   familiarity   between   observers   and   demonstrators   differed,   ranging   from   being   unfamiliar   with   each   other   to   spending   13-­‐weeks   together   as   cage   mates.   The   results   showed   that   observer   animals   paired   with   an   unfamiliar   demonstrator   exhibited   a   socially   triggered  freezing  response  during  the  shock  period  similar  to  observers  paired  with  familiar  

demonstrators.  Thus,  rats  do  not  have  to  be  familiar  with  one  another  in  order  to  experience  

emotional   contagion.   Interestingly,   animals   in   the   unfamiliar   condition   froze   more   during   the  pre-­‐shock  period  compared  to  animals  in  the  familiar  conditions,  which  could  indicate   elevated  stress  levels  in  these  animals.  A  second  aim  of  the  present  study  was  to  discover   whether   yawning   in   rats   could   be   related   to   elevated   stress   levels.   In   a   previous   study   performed   in   this   lab,   the   effect   of   repeated   testing   was   examined.   In   this   experiment   an   emergence   of   yawning   was   observed.   In   the   present   study   it   was   assessed   whether   this   emergence  of  yawning  upon  repeated  witnessing  of  a  conspecific  in  distress  was  related  to   elevated   stress   levels.   This   was   done   by   testing   the   rats   on   six   consecutive   days,   while   administering  the  stress-­‐reducing  drug  Metyrapone  on  either  day  5  or  6  and  comparing  the   yawning   frequencies   on   these   days.   Comparison   of   the   behavior   with   and   without   Metyrapone   administration   showed   a   significant   effect   of   Metyrapone   on   the   number   of   yawns,   thereby   supporting   the   existence   of   a   relationship   between   stress   and   yawning   in   repeatedly  tested  rats.  In  short,  we  found  that  familiarity  between  animals  is  not  required   for   emotional   contagion   in   rats.   Furthermore,   repeated   testing   changes   the   socially   triggered   freezing   response   while   inducing   yawning   in   observers,   probably   as   a   sign   of   heightened  stress-­‐levels.  

(4)

  4  

2.  Introduction  

 

The  concept  of  empathy    

Empathy  –  the  ability  to  share  and  understand  the  emotional  state  of  others   –   is   generally   considered   to   be   the   product   of   a   multi-­‐level   process   that   can   be   decomposed  into  several  underlying  behavioral,  affective  and  cognitive  component   processes   (Decety,   2011;   Decety   &   Jackson,   2004;   J.   B.   Panksepp   &   Lahvis,   2011;   Preston   &   Waal,   2002).   The   most   basic   process   underlying   empathy   is   emotional   contagion.  Emotional  contagion  is  a  process  in  which  the  perception  of  an  emotional   state   in   another   individual   (the   demonstrator)   automatically   activates   the   same   emotional  state  in  the  observing  individuals  (observers),  without  distinguishing  the   origin  of  the  emotion  (Hatfield,  Rapson,  &  Le,  2009;  Singer  &  Lamm,  2009).  A  second,   higher-­‐level   process   underlying   empathy   is   emotional   empathy.   This   process   is   similar   to   emotional   contagion   in   the   sense   that   both   individuals   share   the   same   affective  state,  with  the  crucial  difference  that  an  individual  possesses  the  ability  to   distinguish  itself  from  the  other.  In  other  words,  the  individual  is  able  to  discriminate   whether  his  present  emotional  state  originates  from  his  own  experience  or  through   emotional  contagion  from  another  individual  (J.  B.  Panksepp  &  Lahvis,  2011;  Preston   &   Waal,   2002).   The   highest   level   of   empathy   is   cognitive   empathy,   which   requires   the  understanding  that  one’s  own  experience  can  be  different  from  another  one’s   experience  (Preston  &  Waal,  2002).  This  ability  to  distinguish  between  perspectives  –   better  known  as  the  phenomenon  ‘Theory  of  Mind’  –  enables  individuals  to  infer  the   emotional  state  of  another  without  necessarily  sharing  this  same  emotional  state  (J.   B.  Panksepp  &  Lahvis,  2011;  Preston  &  Waal,  2002).    

 

Perception-­‐Action  Model  of  empathy    

A   useful   model   proposed   by   Preston   and   De   Waal   (2002)   to   explain   the   neural   mechanisms   underlying   the   processes   of   empathy   is   the   Perception-­‐Action   Model   (PAM)   of   empathy.   The   PAM   of   empathy   states   that   activation   of   specific   brain  areas  upon  both  experiencing  an  emotion  and  observing  another  experiencing  

(5)

an   emotion   enables   individuals   to   understand   and   empathize   with   the   emotional   state  of  others.  This  model  is  based  on  the  presumed  existence  of  a  mirror  neuron   system  for  emotion  similar  to  the  mirror  neuron  system  for  action.    

Mirror  neurons  for  action  were  originally  discovered  in  the  pre-­‐motor  area  of   macaques  by  Di  Pellegrino  and  colleagues  (Di  Pellegrino,  Fadiga,  Fogassi,  Gallese,  &   Rizollati,  1992).  They  discovered  neurons  that  became  active  both  during  execution   and  observation  of  a  goal-­‐directed  movement.  The  experimenters  hypothesized  that   the  activation  of  the  neurons  during  observation  of  movements  plays  an  important   role  in  perception  of  other  individuals’  actions  (Di  Pellegrino  et  al.,  1992).    After  this   discovery,   many   brain-­‐imaging   studies   using   PET,   fMRI   and   EEG   have   been   performed  on  both  humans  and  primates  to  investigate  which  regions  are  involved   in   the   mirror   neuron   system   for   action   perception   (e.g.   Iacoboni,   2005;   Molenberghs,  Cunnington,  &  Mattingley,  2009;  Oberman  et  al.,  2005;  Parsons  et  al.,   1995).    

The  PAM  of  empathy  proposes  a  similar  mechanism  for  emotional  contagion   as   for   action   perception:   mirror   neurons   in   specific   brain   regions   are   thought   to   become   activated   both   upon   experiencing   an   emotion   and   witnessing   that   same   emotion   (Preston   &   Waal,   2002).   Activation   of   the   same   neural   circuits   while   experiencing   or   observing   an   emotion   would   enable   the   understanding   of   the   perceived  emotion  of  another  individual  and  at  the  same  time  it  would  enable  us  to   empathize   with   that   individual   (Bastiaansen,   Thioux,   &   Keysers,   2009;   Gallese,   Keysers,   &   Rizzolatti,   2004).   There   is   indeed   evidence   suggesting   that   mirror-­‐like   mechanisms   play   a   key-­‐role   in   the   perception   of   emotion   in   others.   For   instance,   several  imaging  studies  investigating  disgust  have  shown  increased  activation  in  the   anterior  insular  cortex  during  both  observation  and  experience  of  disgust  (Phillips  et   al.,   1997;   Small   et   al.,   2003;   Wicker   et   al.,   2003).   In   addition,   multiple   studies   on   empathy  for  pain  show  involvement  of  the  anterior  insula  and  the  anterior  cingulate   cortex  during  observation  and  experience  of  pain  (for  a  review,  see  Lamm,  Decety,  &   Singer,  2011).    

However,   although   imaging   studies   using   human   subjects   support   the   involvement   of   certain   brain   regions   in   both   observation   and   experience   of   emotions,  the  methods  in  these  studies  are  not  accurate  enough  to  provide  direct  

(6)

  6   evidence  for  the  existence  of  individual  mirror  neurons  for  emotion.  To  investigate   whether   the   observed   activation   in   these   areas   could   indeed   be   the   result   of   activation   of   single   mirror   neurons   for   emotion,   research   at   a   cellular   level   is   essential.        

 

Animal  models  of  empathy  

Augmenting   our   understanding   of   empathy   at   a   cellular   level   requires   invasive  techniques  such  as  single  cell  recordings  and  experimental  manipulation  of   the  involved  regions.  Due  to  ethical  and  practical  reasons,  it  is  extremely  difficult  to   conduct  these  experiments  on  human  subjects;  thus  animal  models  such  as  rodent   models   with   rats   or   mice   are   required.   This   raises   the   question   whether   rodents   would  be  suited  for  such  a  model  for  empathy.  In  order  to  develop  a  proper  animal   model  for  human  empathy,  first  of  all  the  animals  have  to  have  a  similar  capacity  to   experience   emotions   or   ‘affective   states’   themselves.   As   reviewed   by   J.   Panksepp   (2011),  there  is  indeed  strong  empirical  evidence  for  the  existence  of  at  least  seven   types  of  emotional  arousal  in  animals.  Furthermore,  the  brain  areas  involved  in  the   expression   of   these   emotions   show   a   strong   homology   in   all   tested   vertebrates,   including   humans   (J.   Panksepp,   2011).   A   second   prerequisite   for   a   proper   animal   model   for   empathy   is   that   animals   have   the   ability   to   experience   some   level   of   empathy.  Although  the  higher  levels  of  empathy  are  currently  considered  to  occur   exclusively   in   humans,   an   increasing   body   of   evidence   suggests   that   at   least   emotional  contagion,  a  level  of  empathy  that  does  not  require  self-­‐other  distinction,   indeed  occurs  in  animals  other  than  humans  (J.  B.  Panksepp  &  Lahvis,  2011).    Several   behavioral  studies  in  both  mice  and  rats,  looking  at  social  modulation,  social  priming   and  social  buffering  provide  evidence  that  these  animals  do  also  express  emotional   contagion  for  pain  and  fear  (Church,  1959;  Gonzalez-­‐Liencres,  Juckel,  Tas,  Friebe,  &   Brüne,   2014;   Guzmán   et   al.,   2009;   Jeon   et   al.,   2010;   Knapska,   Mikosz,   Werka,   &   Maren,   2010;   Langford   et   al.,   2006).   The   foundational   experiments   for   emotional   contagion   research   in   rats   were   conducted   almost   sixty   years   ago   by   different   researchers:  Church  and  Rice  (Church,  1959;  Rice  &  Gainer,  1962).  He  showed  that   food   deprived   rats   which   were   well-­‐trained   on   a   lever   press   task   for   food   would  

(7)

significantly   reduce   the   pressing   rate   when   they   were   concurrently   exposed   to   a   conspecific   getting   shocks   (Church,   1959).   His   study   showed   two   particularly   interesting   findings.   First   of   all,   it   showed   that   perception   of   social   stress   would   disrupt  the  behavior  of  the  food-­‐deprived  animals,  even  though  they  would  obtain   food   by   expressing   the   behavior.   Secondly,   Church   included   an   ‘emotional   conditioning   component’   in   the   experiment,   during   which   the   rat   and   its   social   partner  would  receive  shocks  simultaneously  in  presence  of  a  conditioned  stimulus   (CS).  When  these  animals  were  subjected  to  the  lever  press  task  again,  they  showed   a   suppression   of   lever   presses   that   persisted   for   ten   days.   This   effect   was   significantly  more  robust  than  the  suppression  of  lever  pressing  of  rats  in  the  control   groups,  which  had  received  shocks  at  different  time  points  than  their  social  partner,   or  were  not  conditioned  at  all.  These  results  indicate  that  shared  experience  of  pain   is   a   strong   modulator   of   behavior   and   has   a   bigger   effect   than   consecutive   experience  of  pain  and  perception  of  pain  in  others.  In  other  words,  rats  can  identify   whether  their  experience  of  pain  is  temporally  coordinated  with  a  similar  experience   in   a   conspecific   (Church,   1959).   In   a   separate   study,   Rice   and   Gainer   (1962)   investigated  whether  rats  could  exhibit  helping  behavior  to  terminate  the  distress  of   a  conspecific.  Again,  rats  were  trained  to  press  a  lever,  this  time  to  avoid  a  receiving   a  shock  that  was  predicted  by  a  visual  cue.  Afterwards  the  animals  were  tested  in   presence  of  a  conspecific  signaling  distress  cues  in  response  to  being  lifted  up  by  a   hoist  system.  These  cues  were  audible  (squealing)  and  visible  (wriggling)  for  the  rat   that  had  to  press  a  lever.  In  this  part  of  the  experiment  the  lever  pressing  resulted  in   lowering  the  animal  down  and  alleviating  its  distress.  This  experiment  showed  that   the   animals   would   press   up   to   10   times   more   to   lower   a   conspecific   down   and   alleviate  stress  when  compared  to  a  control  group  which  would  lower  a  Styrofoam   block,  thereby  showing  that  the  rats  would  actively  work  to  reduce  the  distress  of  a   conspecific   (in   other   words   to   help   the   conspecific),   which   is   also   a   phenomenon   relevant  to  empathy  (de  Waal,  2008).  More  recently,  Langford  and  colleagues  (2006)   continued   the   research   on   emotional   contagion   in   rodents   by   looking   at   social   modulation   for   pain.   In   this   study   they   showed   that   pain   expression   in   mice   is   modulated  by  witnessing  pain  in  other  mice.  The  researchers  placed  two  same-­‐sex   mice  in  two  cylinders  facing  each  other  and  subsequently  induced  pain  in  either  one  

(8)

  8   or  both  mice  by  administration  of  0.9%  acetic  acid  in  the  abdomen  and  subsequently   evaluated  the  intensity  of  ‘writhing  behavior’  when  only  one  animal  was  in  pain  or   when  they  were  co-­‐experiencing  pain.  They  found  that  mice  that  were  experiencing   pain   simultaneously   showed   a   significantly   higher   amount   of   writhing   behavior   in   comparison  to  mice  that  experienced  pain  individually  while  watching  an  animal  that   was  not  in  pain.  These  findings  support  the  presence  of  emotional  contagion  in  mice,   since  the  emotional  state  of  one  individual  directly  influenced  the  emotional  state  of   the  other  (Langford  et  al.,  2006).    

Social  influence  on  the  emotional  state  of  an  animal  has  also  been  observed   in   several   studies   on   social   learning.   These   studies   revealed   that   a   brief   exposure   with   a   demonstrator   animal   modulates   the   performance   of   an   animal   in   a   subsequent  learning  paradigm.  For  example,  Bredy  &  Barad  (2009)  had  unexpected   results   in   their   fear   conditioning   experiment   with   mice.   They   let   observer   mice   interact  with  either  a  fear-­‐naïve  demonstrator  animal  or  a  demonstrator  animal  that   had   just   undergone   a   fear   conditioning   session.   After   this   interaction   the   observer   animals  would  be  subjected  to  the  same  fear  conditioning  procedure.  Whether  the  

demonstrator  mouse  was  fearful  or  not  had  significant  influence  on  the  reaction  of  

the  observer  mouse  on  the  conditioning:  after  interaction  with  a  fearful  mouse,  the  

observer   would   show   a   reduced   acquisition   of   a   fear   response   (i.e.   freezing)   in  

comparison   with   observers   that   interacted   with   non-­‐fearful   animals,   as   well   as   a   diminished  ability  to  recall  the  CS-­‐UCS  association,  and  an  increased  extinction  of  the   memory.  These  results  came  as  a  surprise,  since  the  researchers  had  hypothesized   that  the  effect  would  be  the  other  way  around  (i.e.  interaction  with  fearful  animals   would   result   in   a   facilitation   of   fear   conditioning   memory)   (Bredy   &   Barad,   2009).     Another   study   by   Knapska   and   colleagues   (2010),   showed   an   opposing   effect   of   social   learning   in   rats:   their   results   revealed   that   interaction   between   a   fear   conditioned   rat   and   a   non-­‐fear   conditioned   rat   would   facilitate   subsequent   fear   conditioning  in  the  latter:  they  found  that  rats  that  had  been  in  contact  with  the  fear   conditioned   individuals   right   before   learning   a   shock   induced   avoidance   task   were   faster   in   learning   the   task.   Furthermore,   rats   that   interacted   with   conditioned   conspecifics   before   being   submitted   to   a   fear   conditioning   session   showed   significantly  increased  conditioned  freezing  the  next  day.  Interestingly,  this  type  of  

(9)

social   modulation   of   fear   appears   to   be   bidirectional;   non-­‐fearful   animals   can   also   transfer  their  emotional  state  to  observer  animals.  This  is  illustrated  by  a  different   experiment  looking  at  social  buffering  in  mice,  in  which  it  was  shown  that  fear  can   be   reduced   by   contact   with   non-­‐fearful   conspecifics   (Guzmán   et   al.,   2009).   In   this   study  the  experimenters  pre-­‐exposed  observers  mice  to  either  fearful  mice  (that  had   received   shocks   in   that   context   before),   or   non-­‐fearful   mice   (that   had   been   habituated   to   the   context   without   receiving   any   shocks),   upon   which   they   fear   conditioned  the  observer  animals  in  the  same  context.  They  found  that  the  mice  that   had   observed   a   non-­‐fearful   animal   froze   significantly   less   during   the   conditioning   phase  when  compared  to  all  other  groups.  

The   abovementioned   paradigms   measure   the   amount   of   social   modulation   by  looking  at  the  amount  of  freezing  after  interaction  with  either  a  fearful  or  non-­‐ fearful   conspecific.   Expression   of   freezing   in   both   mice   and   rats   (i.e.   complete   absence  of  movement  of  the  body,  except  through  breathing)  is  a  direct  behavioral   response  to  fearful  and  stressful  stimuli  and  therefore  an  accurate  read-­‐out  in  those   experiments  (LeDoux,  2000).  In  the  previous  social  modulation  studies,  freezing  was   measured   when   the   observer   animals   themselves   underwent   fear   conditioning.   However,   it   has   been   shown   that   freezing   can   also   be   triggered   purely   through   emotional  contagion  upon  observing  another  individual  in  pain  or  distress  (Atsak  et   al.,   2011;   Church,   1959;   Jeon   et   al.,   2010).   In   these   paradigms   freezing   was   successfully   induced   by   letting   an   observer   rat   witness   the   freezing   response   of   a  

demonstrator   animal   undergoing   mild   foot   shocks.   This   reaction   of   the   observing  

animal  to  the  situation  of  the  demonstrator  animal  has  recently  been  referred  to  as   socially   triggered   freezing,   since   it   is   purely   elicited   by   the   observation   of   a   conspecific  in  distress  (Carrillo  et  al.,  2015).    

 

The  effect  of  familiarity  and  repeated  exposure  on  emotional  contagion  

The  expression  of  socially  triggered  freezing  of  an  observer  animal  witnessing   a  conspecific  getting  foot  shocks  is  modulated  by  multiple  factors,  such  as  genetic   background   (Chen,   Panksepp,   &   Lahvis,   2009),   (social)   context   (Jeon   et   al.,   2010),   previous  experience  with  foot  shocks  (Atsak  et  al.,  2011)  and  repeated  exposure  to  

(10)

  10  

demonstrator   animals   experiencing   painful   shocks   (Carrillo   et   al.,   2015).   In   the  

present   study   we   focused   on   two   of   such   modulatory   factors:   the   degree   of   familiarity  between  the  two  individuals  (Gonzalez-­‐Liencres  et  al.,  2014)  and  repeated   observation  of  a  conspecific  receiving  foot  shocks  (Carrillo  et  al.,  2015).  

Familiarity   between   the   demonstrator   animal   and   the   observer   animal   has   been  shown  to  be  a  modulatory  factor  for  expression  of  emotional  contagion  in  mice   (Gonzalez-­‐Liencres  et  al.,  2014;  Jeon  et  al.,  2010;  Langford  et  al.,  2006;  Martin  et  al.,   2015).  In  the  study  performed  by  Jeon  et  al  (2010),  the  amount  of  weeks  an  observer   mouse   was   housed   with   the   mouse   undergoing   the   aversive   stimulus   had   a   significant  increasing  effect  on  the  socially  triggered  freezing  response  (Jeon  et  al.,   2010).  A  second  study  by  Gonzalez-­‐Liencres  et  al.  (2014)  showed  concurrent  results.   In  this  study  observers  witnessed  a  cage  mate  or  a  non-­‐cage  mate  during  a  pre-­‐shock   period  and  a  shock  period,  during  which  the  demonstrator  received  multiple  shocks.  

Observers  that  watched  a  cage  mate  getting  shocked  froze  significantly  more  during  

the  shock  period  when  compared  to  the  observers  that  witnessed  non-­‐cage  mates   undergoing  shocks.  The  latter  group  did  not  show  any  significant  increase  of  freezing   from   pre-­‐shock   period   to   shock   period,   while   the   observers   in   the   ‘cage   mate’   condition   did   show   a   significant   increase   in   freezing   while   watching   the  

demonstrator   getting   shocks   when   compared   to   the   pre-­‐shock   period   (Gonzalez-­‐

Liencres   et   al.,   2014).     These   findings   are   consistent   with   findings   in   the   abovementioned  pain  expression  modulation  experiment  performed  by  Langford  et   al   (2006).   In   this   experiment   the   familiarity   between   the   animal   pairs   had   a   significant   increasing   effect   on   the   level   of   pain-­‐related   writhing   behavior.   The   animals   experienced   pain   by   abdominally   injected   acetic   acid   in   one   of   three   conditions:  this  would  either  happen  in  dyads  where  one  or  both  mice  were  injected   with  acid,  or  in  mice  that  were  isolated.  When  mice  experienced  pain  simultaneously   with  a  familiar  mouse,  they  increased  writhing  compared  to  being  tested  in  isolation.   There  was  no  difference  between  writhing  behavior  in  isolation  and  in  presence  of  a   familiar  mouse  that  did  not  experience  pain  simultaneously.  In  contrast,  mice  that   experienced   pain   together   with   an   unfamiliar   conspecific   would   not   increase   writhing   compared   to   isolated   mice,   while   writhing   behavior   in   presence   of   an   unfamiliar   mouse   without   pain   decreased   compared   to   writhing   of   isolated   mice.  

(11)

This  indicates  that  the  presence  of  an  unfamiliar  conspecific  has  an  analgesic  effect,   while  a  familiar  conspecific  can  increase  the  level  of  experienced  pain  (Langford  et   al.,  2006).  These  findings  all  show  a  clear  effect  of  familiarity  on  emotional  contagion   in  mice.  In  rats,  however,  results  on  the  influence  of  familiarity  on  social  modulation   and  emotional  contagion  are  not  conclusive.  In  one  experiment  on  social  buffering   through   olfactory   cues,   the   experimenters   found   a   significantly   higher   amount   of   social  buffering  (i.e.  less  freezing  in  the  observer  animals)  if  the  olfactory  information   belonged  to  a  familiar  conspecific  as  opposed  to  an  unfamiliar  conspecific  (Kiyokawa,   Honda,  Takeuchi,  &  Mori,  2014).  Nevertheless,  both  conditions  resulted  in  decreased   freezing   when   compared   to   a   control   condition   in   which   no   olfactory   cues   were   presented.   In   contrast,   in   the   study   performed   by   Knapska   et   al.   (2010)   social   learning  from  either  a  familiar  or  unfamiliar  conspecific  resulted  in  a  similar  level  of   learned  fear,  indicating  that  in  this  study  familiarity  did  not  have  a  major  influence   on   social   learning.   The   abovementioned   observations   are   from   studies   looking   at   social   priming   and   buffering;   to   date   there   is   nothing   known   about   the   role   of   familiarity  on  socially  triggered  freezing  in  rats.  Therefore,  with  this  present  study,   the   first   question   we   aim   to   answer   is   whether   the   degree   of   familiarity   between   rats   modulates   their   display   of   socially   triggered   freezing,   by   using   the   same   paradigm   as   Atsak   et   al.   (2011).   The   animals   in   our   present   experiment   are   either   unfamiliar  with  each  other  (i.e.  the  animals  first  interact  with  each  other  during  test   day),  or  they  spent  1,  3,  5  or  13-­‐weeks  as  cage  mates  before  testing.  These  different   degrees   of   familiarity   were   chosen   based   upon   the   results   of   socially   triggered   freezing  response  in  mice  (Jeon  et  al.,  2010).      

The  second  factor  we  look  into  is  repeated  exposure  of  the  observer  animal   to   a   conspecific   undergoing   shocks.   This   factor   is   particularly   important   from   a   methodological   point   of   view,   since   many   experiments   require   repeated   testing   in   order   to   obtain   optimal   results.   It   is   therefore   important   to   know   how   repeated   testing   modulates   expression   of   emotional   contagion,   since   accurate   behavioral   read-­‐outs   are   needed   to   measure   the   amount   of   emotional   contagion   during   multiple-­‐consecutive   tests.   In   a   previous   experiment   from   our   group,   originally   focusing  exclusively  on  the  effect  of  repeated  exposure  on  socially  triggered  freezing,   it   was   shown   that   repeated   exposure   to   a   conspecific   undergoing   foot   shocks  

(12)

  12   resulted  in  a  statistically  significant  reduction  in  freezing  already  from  the  third  test   onwards  (Carrillo  et  al.,  2015).  This  experiment  reports  the  emerging  of  another  –   unexpected   –   behavior   upon   repeated   testing:   yawning.   Yawning   is   a   relatively   infrequent   behavior   that   under   normal   circumstances   is   related   to   the   circadian   rhythm  and  expressed  when  animals  just  woke  up  or  are  about  to  fall  asleep  (Anias,   Holmgren,   Holmgren,   &   Eguibar,   1984;   Provine,   Hamernik,   &   Curchack,   2010).   However,  yawning  also  appears  to  be  expressed  under  other  situations  and  its  role   under   all   these   circumstances   is   still   poorly   understood.   One   situation   relevant   to   this   study   is   the   increase   of   yawning   under   highly   stressful   circumstances.   Several   studies   indicate   some   relation   between   yawning   and   elevated   stress   levels   in   animals,  but  the  exact  role  of  yawning  in  this  situation  is  unclear  at  present  (Gallup  &   Gallup,  2008;  Kubota,  Amemiya,  Yanagita,  Nishijima,  &  Kita,  2014;  Major  et  al.,  2009;   Tufik  et  al.,  1995).  For  instance,  Kubota  and  colleagues  (2014)  found  that  emotional   stress   evoked   by   classical   fear   conditioning   resulted   in   a   significant   induction   of   yawning  frequency  in  rats.  Furthermore,  in  an  experiment  with  rhesus  monkeys,  an   increase   in   yawning   was   reported   upon   administration   of   a   stress-­‐inducing   anxiogenic  (Major  et  al.,  2009).  Therefore,  the  observations  of  Carrillo  et  al  (2015)  of   both   the   emergence   of   yawning   in   the   observers,   as   well   as   possibly   the   gradual   reduction   in   freezing   of   observers   across   test   days   could   be   due   to   chronic   high   stress   levels   in   the   observers   (caused   by   repeated   testing).   How   increased   stress   levels  could  affect  an  emotional  contagion  response  is  illustrated  by  an  experiment   of  Martin  and  his  colleagues  (2015),  involving  both  humans  and  mice.  The  results  of   this   study   showed   that   high   levels   of   stress   reduced   the   expression   of   emotional   contagion.   Interestingly,   the   effect   could   be   reversed   by   blocking   glucocorticoid   synthesis   with   a   drug   called   Metyrapone   (2-­‐metyl-­‐1,2-­‐di-­‐3-­‐pyridyl-­‐1-­‐propane).   Glucocorticoids  are  produced  by  the  adrenal  glands  as  a  result  of  activation  of  the   hypothalamic-­‐pituitary-­‐adrenal-­‐axis   (HPA-­‐axis).   The   hypothalamus   releases   corticotropine-­‐releasing   hormone   (CRH)   in   reaction   to   a   stressor,   which   subsequently  releases  adrenocorticotropic  hormone  (ACTH)  from  the  pituitary  gland.   ACTH  promotes  glucocorticoid  production  in  the  adrenal  glands,  which  induce  stress   responses  in  the  animal.  The  HPA-­‐axis  is  considered  to  be  the  major  neuroendocrine   system  for  stress  regulation  (Tsigos  &  Chrousos,  2002).  The  findings  of  Martin  and  

(13)

his  colleagues  therefore  strongly  suggest  that  expression  of  emotional  contagion  is   modulated  by  the  activity  of  the  HPA-­‐axis  and  the  production  of  glucocorticoids.  

To   conclude,   two   questions   are   addressed   in   this   present   study:   1)   what   is   the   effect   of   familiarity   on   socially   triggered   freezing,   and   2)   are   the   observed   reduction  in  socially  triggered  freezing  and  emergence  of  yawning  as  observed  in  the   first  experiment  by  Carrillo  et  al.  (2015)  indeed  related  to  increased  glucocorticoid   production?   The   relation   between   yawning   and   glucocorticoid   production   was   tested  by  scoring  socially  triggered  freezing  and  yawning  during  six  consecutive  tests   and   administering   a   stress-­‐reducing   drug   (Metyrapone)   to   the   observers   on   either   day  5  or  day  6  (when  yawning  frequency  appeared  to  have  reached  its  maximum  in   the  first  experiment  by  Carrillo  et  al.  (2015))  to  see  whether  the  drug  reduces  the   yawning   frequency   and   restores   the   freezing   response   (results   of   both   yawning   experiments  are  published  by  Carrillo  et  al.,  2015).  

(14)

  14  

3.  Materials  &  Methods  

 

Subjects  

Upon   arrival,   70   male   Long-­‐Evan   rats   (arrival   weight   200-­‐250   g)   were   maintained  on  a  reversed  light  cycle  (lights  off  at  07  AM,  lights  on  at  7  PM)  and   kept   in   a   temperature-­‐controlled   room   (22-­‐24   °C,   55%   relative   humidity,   SPF,   type  III  or  type  IV  cages  with  sawdust).  The  rats  were  socially  housed  as  2-­‐6  rats   per   cage,   with   ad   libitum   access   to   food   and   water.   All   experiments   were   conducted  in  strict  accordance  with  the  European  Community’s  Council  Directive   (86/609/EEC)   and   all   experimental   procedures   were   approved   by   The   Institutional   Animal   Care   and   Use   Committee   of   the   Netherlands   Institute   for   Neuroscience  (IACUC-­‐NIN-­‐1493).  

 

Experimental  procedures  

Test  set-­‐up  –  The  testing  apparatus  consisted  of  a  transparent  Plexiglas  cage  

with  metal  grids  on  the  floor  (L:  48cm  x  W:  25cm  x  H:  34cm;  Med  Associates,  Inc.).   The  cage  was  separated  into  two  equal  compartments  by  a  transparent  Plexiglas  grid   that  allowed  the  animals  to  see,  smell,  hear  and  touch  each  other  through  the  bars.   A  schematic  illustration  of  the  set-­‐up  is  shown  in  figure  1.  One  of  the  compartments   was  connected  to  a  stimulus  scrambler  (ENV-­‐414S,  Med  Associates,  Inc.)  in  order  to   deliver   foot   shocks.   Behavior   during   pre-­‐exposure   was   video   recorded   from   ca.   50   cm   above   the   floor   grid   (JVC   HD   Everio,   JVC   Kenwood   corporation).   For   the   emotional   contagion   test   the   behavior   was   videotaped   from   the   side   in   order   to   optimize  detection  of  yawning  (Ethovision  XT  9.0,  Noldus  Information  Technology).  A   schematic  timeline  of  the  testing  procedures  is  shown  in  figure  2.    

 

  Figure  1.  Schematic  illustration  of  the  experimental   test  set-­‐up.    

The  observer  and  demonstrator  animals  were  placed  in   adjacent  chambers,  divided  by  a  perforated  Plexiglas   separation.  Both  animals  stand  on  stainless  steel  rods,   through  which  the  demonstrator  received  a  series  of  foot   shocks  during  the  tests.    

 

Adopted  with  permission  from  Carrillo  et  al.  (2015)    

(15)

   

 

Pairing   –   The   animals   arrived   in   groups   of   5/6   animals   per   cage   and   they  

were   housed   in   their   arrival   groups   until   they   were   paired.   To   establish   different   degrees   of   familiarity,   observer   animals   were   randomly   paired   with   unfamiliar  

demonstrator  animals  from  a  different  arrival  group  for  1,  3,  5  or  13-­‐weeks  prior  to  

testing.   Animals   in   the   unfamiliar   condition   were   paired   with   an   animal   with   the   same   role   (i.e.   observers   where   paired   with   observers   and   demonstrators   were   paired   with   demonstrators)   one   week   prior   to   testing.   A   total   of   35   pairs   were   distributed  over  the  conditions  as  follows;  the  3-­‐week  condition  comprised  7  pairs,   the  13-­‐week  condition  10  pairs,  and  the  unfamiliar,  1-­‐week  and  5-­‐week  conditions   comprised  6  pairs  each.    

 

Handling   –   After   one   week   of   acclimation   the   animals   were   handled   twice  

per  week  for  3  minutes,  in  order  to  let  them  get  habituated  to  the  experimenters.  In   the  week  preceding  the  first  test  day,  they  were  handled  for  three  minutes  on  three   separate  days.    

 

Habituation   –   Animals   were   habituated   to   the   testing   environment   for  

twenty   minutes   on   three   consecutive   days   preceding   the   pre-­‐exposure   day.   Transportation  and  placement  of  the  animal  pairs  in  the  testing  apparatus  was  done  

Figure  2.  Schematic  timeline  of  the  experiment  

 In  this  figure  the  timeline  of  the  entire  experiment  is  represented.  Upon  arrival  (day  1)  the   animals  acclimated  for  seven  days,  after  which  they  were  paired  for  1,  3,  5  or  13-­‐weeks.   During  this  time  all  animals  were  handled  twice  a  week  for  3  minutes.  In  the  week  prior  to   habituation  they  were  handled  3  times  for  3  minutes.  ‘Day  0:  End  familiarization’  represents   the  last  day  of  the  familiarization  period,  after  which  the  habituations  started  (3  days,  green   stripes).  On  the  following  day,  the  observers  were  pre-­‐exposed  to  the  shock  (day  4,  black   stripe).  From  day  5  to  10  the  animals  underwent  the  emotional  contagion  tests  once  a  day.    

(16)

  16   in  the  exact  same  way  as  during  actual  testing,  as  shown  in  Fig.  1  (no  shocks  were   delivered).  Between  every  habituation  session  the  cage  was  cleaned  with  soap  and   70%   alcohol   to   establish   a   specific   odor-­‐context   and   the   testing   room   was   illuminated  with  red  dim  light.    

 

Shock  pre-­‐exposure  –  A  previous  study  by  our  lab  showed  that  rats  express  a  

significantly   higher   socially   triggered   freezing   reaction   when   they   are   familiarized   with   foot   shocks   when   compared   to   when   they   never   experienced   a   foot   shock   before   (Atsak   et   al.,   2011).   Therefore,   to   optimize   the   socially   triggered   freezing   response,  observer  animals  were  pre-­‐exposed  to  the  foot  shocks  on  the  day  prior  to   the  test.  To  ensure  that  context-­‐fear  would  not  interfere  in  any  way  with  the  socially   triggered  freezing  reaction  during  test  days,  a  distinct  visual,  auditory  and  olfactory   context  was  used  during  pre-­‐exposure.  The  animals  were  transported  to  the  testing   chamber  in  a  clean  and  neutral  cage  and  placed  in  the  pre-­‐exposure  environment  for   a   total   of   31-­‐39   minutes.   Upon   a   10-­‐minute   pre-­‐shock   period,   4   foot-­‐shocks   (1   second   each,   0.8mA)   with   a   random   inter-­‐shock   interval   ranging   from   240-­‐360   seconds  were  administered.  After  the  fourth  shock  there  was  a  5-­‐minute  post-­‐shock   period,   after   which   animals   were   placed   back   in   a   clean   cage   and   transported   to   their   room.   After   pre-­‐exposure   the   animals   were   kept   individually   for   at   least   60   minutes  before  they  were  put  back  in  their  home  cage,  as  to  avoid  any  transfer  of   fear  cues  from  the  observer  to  the  demonstrator.    

 

Empathy  test  –  Preceding  each  test,  the  testing  apparatus  was  cleaned  with  a  

dishwashing  soap  with  neutral  smell  followed  by  70%  alcohol  solution.  Animals  were   transported  to  the  testing  environment  in  their  home-­‐cage  and  placed  in  the  testing   apparatus   for   a   total   of   24   minutes,   starting   with   a   12-­‐minute   pre-­‐shock   period.   After   the   pre-­‐shock   period,   the   demonstrator   rat   received   5   foot-­‐shocks   (each:   1   second,  1.5mA),  separated  by  an  interval  of  either  2  or  3  minutes.  After  the  5th  shock  

there  was  a  post-­‐shock  interval  of  2  or  3  minutes,  adding  up  to  a  total  of  12-­‐minutes   shock  period.  Pairs  were  tested  on  6  consecutive  days;  the  testing  order  of  the  pairs   was  randomized  every  day  and  all  tests  were  conducted  between  8:30  and  11:30  –  in   the  dark  phase  of  the  circadian  cycle.    On  test  day  5  and  6  (these  days  correspond  

(17)

with  day  9  and  10  in  Fig.  2)  the  animals  were  randomly  assigned  to  two  groups.  The   first   group   underwent   a   pre-­‐treatment   with   the   glucocorticoid   synthesis   inhibitor   Metyrapone  (2-­‐metyl-­‐1,2-­‐di-­‐3-­‐pyridyl-­‐1-­‐propanone;  Sigma-­‐Aldrich  Co.,  Oakville,  ON,   Canada)  on  day  5  and  were  tested  under  normal  testing  conditions  on  day  6,  while   the   second   group   was   tested   under   normal   conditions   on   day   5   and   received   the   Metyrapone  pre-­‐treatment  on  day  6.  All  observers  received  a  25mg/kg  subcutaneous   injection  (prepared  by  dilution  in  9%  NaCl  solution)  30  minutes  prior  to  testing.      

Behavioral   scoring   –   During   the   empathy   tests,   freezing   behavior   and  

yawning  frequency  exhibited  by  the  observer  rat  were  manually  scored  during  pre-­‐ shock   period,   inter-­‐shock   intervals   and   post-­‐shock   period   by   two   experienced   researchers.   The   inter-­‐rater   reliability   was   assessed   with   a   Pearson’s   r-­‐correlation   test  that  showed  a  correlation  of  >90%.    

Freezing  was  defined  as  absence  of  any  movement  except  for  breathing  for  a   period  of  at  least  one  second.  Yawning  was  defined  as  a  wide  opening  of  the  mouth,   usually  accompanied  by  stretching  of  the  entire  body  (see  figure  3  for  an  example).      

Figure  3.  Consecutive  frames  of  an  empathy  test  clip  showing  an  observer  yawning   during  a  shock  period.  

(18)

  18  

Statistical  analysis    

All   behavioral   data   was   analyzed   using   the   statistics   program   SPSS   22.   The  

demonstrator   and   observer   freezing   data   was   analyzed   with   two   independent  

repeated   measures   ANOVA’s.   The   factors   in   the   demonstrator’s   ANOVA   were   condition  (5  levels:  unfamiliar  versus  1,  3,  5  or  13-­‐weeks  of  familiarity;  between   groups   factor),   test   day   (4   levels:   days   1-­‐4;   within-­‐subject   factor)   and   shock   period   (2   levels:   pre-­‐shock   vs.   shock;   within-­‐subject   factor).   The   observer  data   was   analyzed   in   two   separate   parts;   day   1   to   4   was   considered   to   be   regular   repeated   test   days,   whereas   day   5   and   6   were   considered   as   two   counterbalanced   test   days   (Metyrapone   versus   control).   A   repeated   measures   ANOVA   was   used   to   assess   the   effect   of   the   following   factors   on   the   socially   triggered   freezing   response   of   the   observers:   (1)   condition   (5   levels,   between),   (2)  test  day  (4  levels,  within),  and  (3)  shock  period  (2  levels,  within).  In  addition,   the   increase   in   freezing   per   test   (i.e   pre-­‐shock   period   freezing   versus   shock   period  freezing)  was  analyzed  for  demonstrators  and  observers  separately  with  a   repeated   ANOVA   per   test-­‐day   and   per   condition,   in   order   to   assess   whether   there  was  any  difference  in  alteration  of  freezing  patterns  over  the  test  days  in   different   familiarity   conditions.   Furthermore,   freezing   of   the   pre-­‐shock   periods   was   compared   per   condition   over   test   days,   as   well   as   freezing   during   shock   periods   (for   both   demonstrators   and   observers   separately)   to   further   assess   whether  any  observed  changes  in  patterns  are  due  to  changes  in  freezing  during   pre-­‐shock   periods,   shock   periods   or   both   periods.   Finally,   the   correlation   of   freezing  time  between  observers  and  their  demonstrators  per  shock  period  was   analyzed,   to   assess   to   what   extent   familiarity   had   an   effect   on   concurrence   of   freezing.    

For  the  observer  animals,  the  effect  of  Metyrapone  on  freezing  was  analyzed   using  a  separate  repeated  measures  ANOVA  with  the  following  factors:  test  day  (2   levels:  test  with  metyrapone  and  control  test;  within  factor),  shock  period  (2  levels:   pre-­‐shock  and  shock;  within  factor)  and  condition  (5  levels:  between  factor).  In  case   of  a  statistical  significance  of  any  factor  in  one  of  the  ANOVA’s,  post  hoc  tests  were   performed   on   this   factor   to   assess   which   differences   were   driving   the   significant   result.   Similarly,   the   freezing   behavior   of   the   observer   animals   during   the  

(19)

metyrapone  and  control  test  was  compared  with  a  repeated  measures  ANOVA  (test   day,  2  levels,  within;  shock  period,  2  levels,  within;  condition,  5  levels,  between),  in   order   to   assess   any   possible   influence   of   metyrapone   on   the   socially   triggered   freezing  response  of  the  observer  rats.  

Yawning  was  normalized  to  baseline  by  subtracting  yawning  frequency  during   pre-­‐shock   period   from   yawning   frequency   during   total   shock   period.   Normalized   yawning  frequencies  from  days  1  to  4  were  analyzed  with  the  Friedman  rank  sum   test   (repeated   measures).   Post   hoc   analyses   were   conducted   using   a   Wilcoxon   signed  ranks  test  to  compare  day  1  with  day  2,  3  and  4.    To  examine  the  effect  of   Metyrapone  on  yawning,  a  repeated  measures  Friedman  test  was  performed  on  the   Metyrapone   versus   control   condition.   A   planned   post   hoc   Wilcoxon   test   was   conducted  to  determine  the  direction  of  any  effect.    

p-­‐values  <0.05  were  considered  statistically  significant  in  all  analyses.    

(20)

  20  

4.  Results    

 

Day  1-­‐4:  Effects  of  repeated  exposure  and  familiarity    

Freezing  

The   average   freezing   percentages   of   all   animals   (demonstrators  and  observers)  

on  all  test  days  are  depicted  in  figure  4.  The  pre-­‐shock  period  of  12  minutes  can   be   compared   to   the   five   different   between-­‐shock   periods   (2   or   3   minutes)   to   have  a  detailed  look  of  the  freezing  pattern  over  the  total  test  period.  The  total   freezing  of  the  12  minutes  pre-­‐shock  period  versus  the  total  freezing  of  the  12   minutes  shock  period  on  test  day  1-­‐4  is  shown  in  figures  5  (demonstrators)  and  6   (observers).  All  the  freezing  results  presented  and  discussed  in  this  paper  derive   from  analysis  of  the  data  as  shown  figures  5  and  6.  As  shown  in  these  figures,  in   all  conditions  the  freezing  increased  from  pre-­‐shock  to  shock  period  during  the   first  test  day  for  both  demonstrators  (Fig  5  a-­‐e)  and  observers  (Fig  6  a-­‐e).  After   test   day   1,   the   freezing   of   the   demonstrators   remained   high   during   both   pre-­‐ shock  and  shock  period,  but  the  freezing  of  the  observers  during  shock  periods   declined  over  the  subsequent  days.    

Overall  freezing    

A  5  condition  (between  factor)  x  2  shock  period  (within  factor)  x  4  test  days   (within   factor)   ANOVA   for   the   demonstrators   revealed   a   significant   main   effect   of   test   day   (F(3,90)=248.29,   p<0.001),   a   main   effect   of   shock   period   (F(1,30)=75.81,  

p<0.001),   but   no   significant   effect   of   condition   (F(4,30)=1.54,   p=0.23).   There   was  

however   a   significant   interaction   between   test   day   and   condition   (F(12,90)=2.79,  

p<0.003),  shock  period  and  condition  (F(4,30)=3.467,  p<0.02)  and  test  day  and  shock  

period  (F(3,90)=100.07,  p<0.001).  A  post  hoc  test  on  test  days  was  performed  for  the  

demonstrators’  freezing  (all  conditions  combined  and  the  overall  freezing:  pre-­‐shock  

and  shock  period  taken  together),  which  revealed  a  statistically  significant  difference   when   day   1   was   compared   to   days   2,   3   and   4   (p<0.001   in   all   cases),   as   well   as   a   difference   between   test   day   2   and   4   (p=0.035).   The   remaining   days   did   not   differ   significantly  (test  day  2  vs.  3:  p=0.48,  day  3  vs.  4:  p=0.19).    

(21)

The   same   ANOVA   was   performed   for   the   observers’   freezing   data.   Again,   there   was   a   main   effect   of   test   day   (F(3,90)=15.23,   p<0.001)   and   shock   period   (F(1,30)=9.47,   p<0.005).   For   the   observers   also   a   main   effect   of   condition   was   observed   (F(1,30)=3.07,   p=0.031).   Furthermore,   a   significant   interaction   effect   between  shock  period  and  condition  (F(4,30)=4.22,  p=0.008)  and  between  test  day   and   shock   period   (F(3,90)=19.30,   p<0.001)   was   found.   There   was   no   significant   interaction   between   test   day   and   condition   for   the   observers   (F(12,90)=1.59,  

p<0.11).  Post  hoc  analyses  of  test  day  (observers,  all  conditions  combined,  pre-­‐shock  

and  shock  combined)  showed  that  both  test  days  1  and  2  differed  significantly  from   3  and  4  (but  not  from  each  other),  and  3  and  4  were  also  significantly  different  from   one  another  (day  1  vs.  2:  p=0.71,  day  1  vs.  3:  p=0.014,  day  1  vs.  4:  p<0.001;  day  2  vs.   3:   p<0.005,   day   2   vs.   4:   p<0.001;   day   3   vs.   4:   p=0.006).   A   post   hoc   test   on   total   freezing  per  conditions  (pre-­‐shock  and  shock  combined,  all  test  days  taken  together)   showed   that   the   week   13   condition   differed   from   all   other   conditions   except   the   unfamiliar   condition   (unfamiliar   vs.   1-­‐week:   p=0.16,   unfamiliar   vs.   3-­‐week:   p=0.18,   unfamiliar  vs.  5-­‐week:  p=0.054,  unfamiliar  vs.  13-­‐week:  p=0.49,  1-­‐week  vs.  3-­‐week:  

p=0.90,  1-­‐week  vs.  5-­‐week:  p=0.59,  1-­‐week  vs.  13-­‐week:  p=0.027,  3-­‐week  vs.  5-­‐week:   p=0.49,  3-­‐week  vs.  13-­‐week:  p=0.029,  5-­‐week  vs.  13-­‐week:  p=0.006).    

Differences  between  conditions  

To  further  investigate  whether  this  effect  of  condition  was  due  to  differences   in  pre-­‐shock  or  shock  period  freezing,  a  repeated  measures  ANOVA  was  performed   on  the  observer  data  for  pre-­‐shock  period  and  shock  period  separately  (test  day  as  4   level  within  factor  and  condition  as  5  level  between  factor).  The  freezing  of  observers   during  the  pre-­‐shock  period  showed  a  main  effect  of  test  day  (F(3,90)=8.65,  p<0.001)   and   condition   (F(4,30)=6.61,   p<0.001).   A   planned   post-­‐hoc   on   conditions   showed   that   the   freezing   of   observers   during   pre-­‐shock   period   (freezing   from   all   days   combined)  was  significantly  higher  in  the  unfamiliar  and  13-­‐week  condition  than  in   all   other   conditions   (unfamiliar   vs.   1-­‐week:   p=0.03;   unfamiliar   vs.   3-­‐week:   p=0.04;   unfamiliar   vs.   5-­‐week:   p=0.01;   unfamiliar   vs.   13-­‐week:   p=0.28;   1-­‐week   vs.   3-­‐week:  

p=0.81;   1-­‐week   vs.   5-­‐week:   p=0.69;   1-­‐week   vs.   13-­‐week:   p<0.001;   3-­‐week   vs.   5-­‐

Referenties

GERELATEERDE DOCUMENTEN

At this moment the acceptance and release decision of the order processing is based on the capacity of the drawing process alone. In order to improve the acceptance and

Isidorushoeve wil deze ballen in zijn nieuw te bouwen stal toepassen en heeft voor de oriënterende metingen ook in zijn bestaande stal de balansballen

relieken in de eerste helft van de IXde eeuw naar Vlaanderen werden overgebracht en door Boudewijn I naar Brugge naar de castrale kapel werden overgeplaatst. Verschillende

En Hans' gedachten keerden, met zijn schreden, terug naar het huis waar nu geen vrouw hem wachtte, waar zijn kinderen moederloos waren toevertrouwd aan de handen en

Het concept oordeel van de commissie is dat bij de behandeling van relapsing remitting multiple sclerose, teriflunomide een therapeutisch gelijke waarde heeft ten opzichte van

This study adds to the existing scholarly work by investigating the subjec- tive viewpoints among women of reproductive age regarding egg freezing in a systematic manner

• Wireless sensor networks • Computer security • Transfer learning • Computer vision • Quality of experience • Smart grid Swarm Intelligence Static Complex Networks

In tegenstelling tot de verwachtingen lijkt De Groeifabriek niet effectief te zijn in het versterken van een groeimindset met betrekking tot gevoel en gedrag, het versterken van