• No results found

Flora, vegetation and ecology in the Venezuelan Andes: a case study of Ramal de Guaramacal - Chapter 4: The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 2. Azonal vegetation

N/A
N/A
Protected

Academic year: 2021

Share "Flora, vegetation and ecology in the Venezuelan Andes: a case study of Ramal de Guaramacal - Chapter 4: The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 2. Azonal vegetation"

Copied!
32
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Flora, vegetation and ecology in the Venezuelan Andes: a case study of Ramal

de Guaramacal

Cuello Alvarado, N.L.

Publication date

2010

Link to publication

Citation for published version (APA):

Cuello Alvarado, N. L. (2010). Flora, vegetation and ecology in the Venezuelan Andes: a case

study of Ramal de Guaramacal. Universiteit van Amsterdam, Institute for Biodiversity and

Ecosystem Dynamics (IBED).

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Variety of Sphagnum species found in azonal páramo vegetation of Ramal de Guaramacal: (a)

Sphagnum recurvum covering the wet shore of Laguna El Pumar; (b, c) S. recurvum (detail); (d) S. recurvum covering the north-west side of Laguna EL Pumar, S. cuspidatum submerged in the water; (e) S. cuspidatum (detail); (f) S. meridense forming the ground cover in shrubparamo ; (g) S. recurvum and S. magellanicum (darker); (h) S. sparsum with Campylopus cuspidatus.

(3)

Chapter 4

The páramo vegetation of Ramal de Guaramacal, Trujillo State,

Venezuela. 2. Azonal vegetation

Nidia L. Cuello A. and Antoine M. Cleef PHYTOCOENOLOGIA, 39 (4), 389–409. 2009

(4)
(5)

4.1 INTRODUCTION

The azonal páramo vegetation in Guaramacal was studied between 2870 and 3050 m, mainly in two peat bog areas of the Sector Páramo El Pumar (Laguna El Pumar and Laguna Seca). Azonal patches are also present in the small valleys or depressions where water collects in Páramo de Guaramacal, near the „Las Antenas‟ area.

Peat bogs associated with glacial and seasonal lakes or fluvio-glacial valleys are common features in Andean and Costa Rican páramos. A great variety of azonal bog vegetation communities associated with glacial lakes and terrain depressions

have been described and named from the Colombian (Cleef 1981, Sánchez &

Rangel 1990, Cleef et al. 2005, 2008, Rangel et al. 2006 among others) and Costa Rican páramos (Brak et al. 2005). A low number of diverse aquatic and peat bog vegetation communities have been reported for Venezuelan páramos (Vareschi 1955, 1980; Monasterio 1980a, Bono 1996, Berg 1998, Berg & Suchi 2001) with only a few of them treated in a syntaxonomic context of the upper páramo vegetation of Sierra Nevada de Mérida (Berg, 1998). Vareschi (1955) described an association („Sphagnetum maghellanici‟) from Naiguatá between 2500-2700 m. As mentioned before Sphagnum bogs are present in the equatorial Andes and the Central American Talamancas; up to date, they are not classified at the level of order and class. Other bogs and mires which have been described for the northern Andes concern vascular cushion bogs (Plantagini rigidae-Distichietea muscoides Rivas Martínez & Tovar 1982) and cyperaceous reedswamps (Galio canescentis-Gratiolion bogotensis Cleef 1981), grass mires (Calamagrostion ligulatae Cleef 1981), both belonging to the order Marchantio plicatae-Epilobietalia denticulatae Cleef 1981. Other azonal aquatic vegetation includes flush communities (Xenophyllion crassae-Wernerion pygmaeae Cleef 1981), the vegetatation of glacial lake bottoms (Ditricho submersi-Isoëtion karstenii Cleef 1981) and ponds (Limoselletea australis Cleef 1981). Sphagnum bogs have not been classified in the absence of comprehensive synthetic presence tables thus far. They are found in valleys in the uppermost forests and the lower páramo, where conditions allow for

Sphagnum growth. Eutrophic to mesotrophic conditions allow for mires, which are

characterized by active mineroptrophic input from surrounding zonal vegetation on slopes. The highest bogs in páramos are the vascular cushion bogs consisting of

Plantago rigida. Distichia muscoides, Oreobolus cleefii and the flat cushions of Xyris subulata var. breviscapa (Bosman et al. 1993, Cleef 1981, Cleef et al. 2005,

2008, Moscol Olivera & Cleef 2009, Ramsay 1992, Coombes & Ramsay 2001, Rangel Ch. & Ariza-N. 2000, Salamanca et al. 2003). In the Colombian Eastern Cordillera páramos vascular cushion bogs replace altitudinally the Sphagnum bogs at 3800-3900 m, as probably also in the Sierra Nevada de Mérida.

For Chusquea-Sphagnum bogs reference can be made to Cleef (1981), Sánchez & Rangel Ch. (1990), Rangel Ch. & Franco(1985) and Cleef et al. (2006). They also have been observed in the páramos of Costa Rica (Chaverri & Cleef 1992, Brak et al. 2005).

The main goal of the present study is to identify, define and characterize the azonal vegetation of two páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar) aiming at the establishment of a syntaxonomic scheme The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(6)

based on the analysis of the physiognomy, floristic composition and ecological relations of the different vegetation communities.

This work was carried out within the framework of a larger project aimed at the study of the diversity of the flora and vegetation of the Guaramacal Nacional Park (Cuello, 1999; 2000, 2002; 2004). The classification of the vegetation of forests and zonal páramo of Guaramacal range are described separately (Cuello & Cleef, 2009a; b; Chapters 2 and 3).

4.2 STUDY AREA

The azonal páramo communities have been studied in two páramo areas at the top of Ramal de Guaramacal, between ca. 2900 and 3100 m in the area surrounding the „Las Antenas‟ site in the Páramo de Guaramacal, and along the road crossing the Ramal and the „Lagunas del Pumar‟ zone in Páramo El Pumar at 2.5 km to the Southwest from „Las Antenas‟ (Fig 4.1).

Figure 4.1. Geographic location of Páramo de Guaramacal in the Venezuelan Andes.

The area studied in Páramo de Guaramacal concerns a small pond located at 9o 14‟

1.02” N; 70o 11‟ 6.47” W with surrounding bamboo páramo vegetation present at

the bottom of a small valley where water collects at ~3080-3100 m (Photo 4.1). This pond seems to be a remnant of small lake that existed in the past, according to observations of 1960‟s aerial photographs from Páramo de Guaramacal.

(7)

Photo 4.1. Azonal vegetation associated to a pond at 3080 m in Páramo de Guaramacal (9o

14‟ 1.02” N; 70o 11‟ 6.47” W), Andes, Venezuela.

In the Páramo El Pumar, the associated vegetation of two contiguous glacial lakes

was studied. The Laguna El Pumar, ~2880 m located at 9o 12‟ 52.36” N; 70o 12‟

8.04” W, which is covered mostly by water and bordered by Sphagnum bogs (Photo 4.2). The second lake at around 2890 m is located 110 m to the South of

Laguna El Pumar. This is an evaporated lake called „Laguna Seca‟ at 9o 12‟ 47.7”

N; 70o 12‟ 7.27” W, which is totally covered by Sphagnum bog and surrounded by

bamboo vegetation or „chuscales‟.

Ramal de Guaramacal is an outlier of the Venezuelan Andes, located South of the town of Boconó in Trujillo state, about 120 km Northeast of the city of Mérida in the centre of the Sierra Nevada de Mérida. For a more complete description of the study area the reader is referred to Cuello (1999) and Chapter2.

4.3 METHODS

Field Sampling

Azonal vegetation was studied by means of observations, plant collections and

surveys of small plots of between 0.25 to 6 m2 according to minimum area and the

extent of the homogenous and representative patches under consideration (Westhoff & Van der Maarel 1973, Cleef 1981). In each plot, and per vegetation layer, the percentage of periphery cover for each plant species was estimated. A total of 71 relevés (approx. 100 m2) were surveyed. Eight line intercept transects of

5 m in length (as used in Cuello & Cleef, 2009b, Chapter 3) were surveyed in bamboo páramo vegetation and included in the vegetation analysis. Azonal vegetation associated with slopes trail borders and areas of disturbance were not The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(8)

included in the phytosociological analysis which was based solely on observations and collections of species composition. Field surveys were carried out only during the dry season. In the „Las Antenas‟ area of Páramo de Guaramacal, sampling was conducted by both authors in February 15, 2006, whilst in the remote area of Páramo El Pumar sampling was completed by the first author and coworkers during two different visits: one on March 1st 2006, the other on February 18-19,

2007.

Botanical vouchers of all recorded species were collected. Photographs were taken where possible. The collected botanical material was processed, identified and deposited at Herbario Universitario PORT of the Universidad Nacional

Experimental de los Llanos “Ezequiel Zamora

(UNELLEZ) in Guanare,

Venezuela. For vascular plants the nomenclature follows Dorr et al. (2000), complemented byLuteyn (1999) for other plant groups. Drs J. Hickey (Isoëtes

karstenii), G. Davidse (MO) and S. Laegaard (AAU) were helpful with the

identification of some selected grasses. Duplicates of vascular plants are deposited in MER, VEN and US. Duplicates of the bryophytes were sent to Dr. D. Griffin III (FLAS) with lichens sent to Dr. H.J.M. Sipman (B) for identification. Additional duplicates of bryophytes and lichens were also deposited in L and MERC. The record of bryophyte and lichen species has not been completed by the first author. Only the most prominent and conspicuous species were collected.

Processing and data analysis

The data from each survey were stored and processed in Microsoft Excel. For each species at each plot of azonal vegetation we used the percentage of cover estimated in the field.

The data matrix of percentage cover for 53 species and 79 surveys of azonal vegetation was processed with TWINSPAN (Hill 1979) using the PC-Ord 4 program (McCune & Mefford 1999). Data were then interpreted in terms of community delimitation, the syntaxonomical vegetation classification based on cover and floristic affinities following the Zürich-Montpellier approach (Braun-Blanquet 1979). The names of the syntaxa are according to the International Code of Phytosociological Nomenclature (Weber et al. 2000). The original cover values of the relevés taken in percentages are available from the first author by request. The diverse subunits, recognized in a progressive way by the TWINSPAN procedure, were hierarchized in associations and higher (alliances, order) and lower (subassociations) syntaxa and variants. The associations represent the basic unit of description of the vegetation and are defined on the basis of floristic composition (diagnostic, character species), particular appearance (growth form) and habitat conditions. Two or more associations that share diagnostic species are combined into an alliance. Two or more alliances combine to form an order. Associations with some marked differences, or only variations in their floristic composition, are subdivided into subassociations and eventually variants, respectively.

In order to elucidate floristic relationship with Sphagnum dominated páramo communities elsewhere in Colombia and Venezuela a Bray-Curtis similarity cluster analysis (Bray & Curtis 1957) has been used. The „Spagnetum Flora, vegetation and ecology in the Venezuelan Andes

(9)

maghellanici‟ Vareschi 1955 has been left out; only one species, Sphagnum

magellanicum, in common with Guaramacal bogs (Table 4.1).

Photo 2. Laguna El Pumar, 2880 m, Ramal de Guaramacal, Andes, Venezuela.

4.4 RESULTS

Flora diversity

A total of 53 morphospecies, belonging to 30 species of vascular plants, 20 species of cryptogams and 3 undetermined species of algae have been recorded from a total of 79 plots of the azonal vegetation in Páramo de Guaramacal and Páramo El Pumar, Ramal de Guaramacal, Venezuela. The vascular plants include: 13 species, belonging to 11 genera and 8 families of dicots; 15 species, 12 genera and 5 families of monocots and 2 species, 2 genera and 2 families of ferns. The identified cryptogams include 14 species, 5 genera and 5 families of mosses, 2 species, 2 genera and 2 families of liverworts and 4 species, 3 genera and 3 familes of lichens.

Azonal páramo plant communities

The interpretation of the TWINSPAN table, based on floristic composition, affinities and species cover, allowed the recognition of six vegetation communities at association level grouped into two alliances and one order (Table 4.1 and 4.2). The azonal vegetation communities recognized in Ramal de Guaramacal are summarized as follows:

(10)

Releve number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 262 7 28 29 30 31 32 33 343 5 36 37 383 94 0 414 2 434 4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 656 66 7 68 69

Releve (field number)

LS 11 L S1 3 L S1 4 SF 96 S L1 0 L S7 LS 10 L S 1 6* L S8 L S9 L S 12 L S 15 L S 25 L S 22 L S2 3 L S2 4 L S 26 * L S 27 L S 28 L S6 L S1 LS 19 LS 3 SF8 6 SF8 7 PL 1 S L6 L S3 0 L S3 1 PF 36 PF 40 PF 44 PF 45 S F9 0 SL 9* LP 6 LP7 L S1 7 LS 18 L S2 L S2 1 LS 29 LS 4 L S5 PF 43 SF8 5* SF 88 SF 91 SF 92 SF 94 P L 3 PL 7 PL 8 PF 42 PL 2 LP1 * LP2 LP 3 LP 4 LP5 G C C 3 L2 6b L2 6a L2 7a * L2 7b L3 6a L3 6b L3 3a L3 3b Area (m 2) 1 1 1 0. 5 1 1 1 1 1 11111 1 1111 1 1 1 1 2.25 2.25 4411 0. 8 0. 5 0. 3 0. 3 0 4 0. 6 0.35 1 1 1 1 1 1 1 0.3 2.3 0.8 0.6 1 0.8 4 4 1 0.3 4 0.35 0.5 0.6 0.5 0.35 6 Order

GERANIO STOLONIFERUM - CARICETALIA BONPLANDII

Alliance

SPHAGNO RECURVI - PAEPALANTHION PILOSI

Association

1.Paepalantho pilosi - Agrostietum basalis

2. Sphagno recurvi-Caricetum bonplandii

3. Sphagno sparsi - Caricetum bonplandii

4. Car ici - Chusqueetum Subassociation 1.1. ortachnetosum erectifoliae Variant 3.1.Diplostephium obtusum 3.2. Pernettya prostrata DS

1.Paepalantho pilosi - Agrostietum basalis

H2 Agrostis basalis 1 3 1 2 . 1 2 5 5 3 2 1 5 5 4 5 4 1 1 2 2 4 1 . . . 5 . . . . . . .. . . .. 3 . . . 2. . . . . . . . . . . . . . . . . . . . ... .. Campylopus albidovirens 2 2 1 3 . 3 1 5 5 5 . 1 5 4 3 5 5 2 1 . . . . . . .. . . . . . . .. . . ... .. .. . . . . . . . . . . . . . . . . . . . . ... .. CH2 Arenaria venezuelana 4 4 4. .. . . 2 . 5 . . 4 4 4 5 . . . . 3 . . . . ... . . . . . . . . 5 5 .. . . . . . . . . . . . . . . . . . . . . . ... 1 . . . CH2 Lachemila verticillata . . . . . . 1 . 1 . 5 . 3 3 2 . 4 5 5 . . . . . . .. . . . . . . .. . . ... .. .. . . . . . . . . . . . . . . . . . . . . ... .. Breutelia rhythidoides . . . 4 3 . . 4 . . .... . . 3 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS 1.1. ortachnetosum erectifoliae H3 Ortachne erectifolia 5 1 3 5 5 5 5 5 5 5 4 5 5 1 . . . . . . . . . . . .. . . . . . . .. . . ... .. .. . . . . . . . . . . . . . . . . . . . . ... .. Breutelia squarrosa 2 5 3 . . 4 1 . 2 1 2 4 5 . . . . 1 . . . . . . . .. . . . . . . .. . . ... .. .. . . . . . . . . . . . . . . . . 1 . . 1 ... .. Polytrichum commune . 1 1 . 3 1 1 2 2 1 . . . . . . . . . 4 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cladonia dydima . 4 3 2 .. 1 . .. 1 2 1 . .. . . . .. . . . . . ... . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. ... . .. . Cladonia andesita 1 1 4 . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2 Rhynchospora gollmeri . . 1. .. . . .. . . 2 . .. . . . .. . . . . . ... . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. 1 5 4 . . . . Cladia aggregata . .. . .. . . .. . 1 . . .. . . . .. . . . . . ... . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. ... . .. . DS

1.2. typicum Polytrichum juniperinum

. . .2. 1 . . .. . . 4 5 5 4 4 1 . 3 5 5 5 . . . ... . . . . . . . . 2 1 5 . . . 1 . . . . . . .. . . . . . . . . .. ... . . . . H3 Sisyrhinchium sp. . . . . . . . .. . .... . . ... 1 . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . H3 Calamagrostis bogotensis . . . . . . . .. . .... . . .. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS

3. Sphagno sparsi - Caricetum bonplandii Sphagnum sparsum

. . . . . . . .. . .... . . ... . . . . . . . . . . 1 . 1 . . . . . . . . . . . . 4 5 5 5 5 4 5 4 5 5 5 5 5 5 5 5 . . . . . 3 2 . . Sphagnum magellanicum 1 . 4 3 . . .. . . . 1 . . . . 5 5 1 3 . . . . . 5 1 . . . . . . .. . . ... .. ..5 4 4 3 4 5 4 4 5 3 . 2 . . . 5 . . . . ... .. NP1 Diplostephium obtusum . . . . . . . .. . .... . . ... . . . . 5 5 . 4 5 5 . . . . . . . . . . . . . . . . 5 4 5 5 . . 5 3 . . . . . . . . . . . . . . . . H3 Agrostis sp. B . . . . . . . .. . .... . . ... . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS 3.2.Pernettya prostrata CH3 Pernettya prostrata . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 3 5 4 5 . . . . . . . . . Campylopus cuspidatus . . . 4 . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 4 3 3 . . . . . . . . . CH3

Hypericum juniperinum x cardonae

. . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 . . . . . . . . . CH3 Hypericum cardonae . . . . . . . .. . .... . . ... . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 . . . . . . . . . . . . NP1 Hypericum juniperinum . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . . . . . . . . . Sphagnum sp.(orange) . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . NP1 Hesperomeles obtusifolia . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . CARICI - CHUSQUEION 1.2. typicum

Flora, vegetation and ecology in the Venezuelan Andes

(11)

Releve number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 262 7 28 29 30 31 32 33 343 5 36 37 383 94 0 414 2 434 4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 656 66 7 68 69

Releve (field number)

LS 11 L S1 3 L S1 4 SF 96 S L1 0 L S7 LS 10 L S 1 6* L S8 L S9 L S 12 L S 15 L S 25 L S 22 L S2 3 L S2 4 L S 26 * L S 27 L S 28 L S6 L S1 LS 19 LS 3 SF8 6 SF8 7 PL 1 S L6 L S3 0 L S3 1 PF 36 PF 40 PF 44 PF 45 S F9 0 SL 9* LP 6 LP7 L S1 7 LS 18 L S2 L S2 1 LS 29 LS 4 L S5 PF 43 SF8 5* SF 88 SF 91 SF 92 SF 94 P L 3 PL 7 PL 8 PF 42 PL 2 LP1 * LP2 LP 3 LP 4 LP5 G C C 3 L2 6b L2 6a L2 7a * L2 7b L3 6a L3 6b L3 3a L3 3b Area (m 2) 1 1 1 0. 5 1 1 1 1 1 11111 1 1111 1 1 1 1 2.25 2.25 4411 0. 8 0. 5 0. 3 0. 3 0 4 0. 6 0.35 1 1 1 1 1 1 1 0.3 2.3 0.8 0.6 1 0.8 4 4 1 0.3 4 0.35 0.5 0.6 0.5 0.35 6 Order

GERANIO STOLONIFERUM - CARICETALIA BONPLANDII

Alliance

SPHAGNO RECURVI - PAEPALANTHION PILOSI

Association

1.Paepalantho pilosi - Agrostietum basalis

2. Sphagno recurvi-Caricetum bonplandii

3. Sphagno sparsi - Caricetum bonplandii

4. Car ici - Chusqueetum Subassociation 1.1. ortachnetosum erectifoliae Variant 3.1.Diplostephium obtusum 3.2. Pernettya prostrata CARICI - CHUSQUEION 1.2. typicum DS

SPHAGNO RECURVI - PAEPALANTHION PILOSI Sphagnum recurvum

1 . 4 . 4 3 . 1 1 2 1 2 . . . . . 2 5 5 5 5 5 5 5 . 5 5 5 5 5 5 5 55 5 5 555 55 55 5 5 5 5 5 5 . 5 4 4 . 5 5 4 5 5 . . . . . . . . . CH2 Paepalanthus pilosus 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 2 5 2 4 5 1 .1 . . . 1 . . . . . . 5 4 . . ... .. . 2 . . . 3 . 4 . . . . . 1 2 . . . 1 . . . ... .. H3 Calamagrostis sp. A . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . DS

4. Carici bonplandii - Chusqueetum angustifoliae

PLG Chusquea angustifolia . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 4 5 5 5 5 Sphagnum sancto-josephense . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 1 5 4 4 . . H3 Xyris subulata . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 1 1 4 5 4 . . . . Campylopus richardii . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 5 4 RP1 Ruilopezia jabonensis . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 . . . . H4 Cortaderia hapalotricha . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . 1 . . . 1 4 H3 Gentianella nevadensis . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . 1 . . . . Peltigera neopolydactyla . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 . . . . H2 Oreobolus venezuelensis . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . H3 Hieracium avilae . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Jamesoniella rubricaulis . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CH2 Nertera granadensis . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . H2 Ophioglossum crotalophorioides . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Plagiochila sp. . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Rhacocarpus purpurascens . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 H3 Agrostis perennans . . . . . . . .. . .... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . DS

GERANIO STOLONIFERUM - CARICETALIA BONPLANDII

H3 Carex bonplandii . 1 . . . . 11 . 1 . . . 1 1 1 4 1 2 4 4 3 4 5 5 55 5 5 5 . 5 1 55 5 4 555 15 55 5 5 5 3 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 544 55 CH2 Geranium stoloniferum 4 5 5 5 4 5 . .. . .... . . .. 5 3 1 . 4 . . . . . . . . . . . . . . . . 3 . . 5 5 . . 5 5 5 5 . . 5 . . 4 3 5 . . 1 . . . . 1 . . . LP, PL, PF Laguna El Pumar, 2880 m. P á ramo El Pumar LS, SL, SF, L36 Laguna Seca, 2890 m. P á ramo El Pumar GCC, L26, L27, L33 P á ramo de Guaramacal, 3030 m. * Representative relevé DS Diagnostic Species " " (> 30 cm) Nanophanerophyte (30/50 - 100 cm) NP1

Phanerophytic lignified grass (30 - 100 cm)

PLG Rosullate phanerophyte (10 - 30 cm) RP1 RP2 CH2 " (3 - 10 cm) H2 " (3 - 10 cm) CH3 Chamephyte / frutescent (10 - 30/50 cm) H4 Hemicryptophyte / caespitose ( > 30 cm) H3 " " (10 - 30 cm)

The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(12)

______________________________________________________

GERANIO STOLONIFERUM – CARICETALIA BONPLANDII Cuello & Cleef 2009

I. Sphagno recurvi – Paepalanthion pilosi Cuello & Cleef 2009 1. Paepalantho pilosi – Agrostietum basalis Cuello & Cleef 2009

1.1 subassociatio ortachnetosum erectifoliae Cuello & Cleef 2009 1.2. subassociation typicum Cuello & Cleef 2009

2. Sphagno recurvi – Caricetum bonplandii Cuello & Cleef 2009 3. Sphagno sparsi – Caricetum bonplandii Cuello & Cleef 2009

3.1. Variant with Diplostephium obtusum 3.2. Variant with Pernettya prostrata

II.CARICI BONPLANDII –CHUSQUEION ANGUSTIFOLIA Cuello & Cleef 2009 4. Carici bonplandii – Chusqueetum angustifoliae Cuello & Cleef 2009 III. DISTRICHO SUBMERSI – ISOETION Cleef 1981

5. Community of Sphagnum cuspidatum 6. Isoëtetum karstenii Cleef 1981

GERANIO STOLONIFERUM – CARICETALIA BONPLANDII Cuello & Cleef 2009

Representative alliance: Sphagno recurvi–Paepalanthion pilosi

Azonal páramo vegetation of the Geranium stoloniferum - Carex bonplandii order / Vegetación de páramo azonal del orden de Geranium stoloniferum y Carex bonplandii

Physiognomy: The order Geranio stoloniferum - Caricetalia bonplandii concerns

the azonal páramo peat bog vegetation along the shore of lakes, and is represented by Sphagnum peat bogs predominantly covered by Carex bonplandii together with open bunchgrass patches dominated by Agrostis basalis and Ortachne erectifolia. The order also includes the bamboo páramo „chuscales‟ of Sphagnum-Chusquea

angustifolia growing close to the lake shores or at the bottom of small valleys.

Composition and syntaxonomy: The order is defined on the basis of 69 relevés

with 28 vascular species and 19 cryptogams. The most species diverse vascular families are Poaceae, Cyperaceae, Asteraceae and Clusiaceae. Sphagnaceae is the most speciose and dominant bryophyte family in the ground layer.

This order is composed of two alliances: Sphagno recurvi - Paepalanthion pilosi and Carici bonplandii - Chusqueion angustifoliae. Diagnostic species are Carex

bonplandii and Geranium stoloniferum. Sphagnum recurvum is another important

species and is present in both alliances. Flora, vegetation and ecology in the Venezuelan Andes

(13)

______________________________________________________

Ecology and distribution: Azonal páramo vegetation of the Geranium

stoloni-ferum - Carex bonplandii order is found in Páramo El Pumar (2870-2990 m) along

and close to the shores of both lakes Laguna El Pumar and Laguna Seca as well as in a small wet valley South of „Las Antenas‟ in Páramo de Guaramacal.

SPHAGNO RECURVI – PAEPALANTHION PILOSI Cuello & Cleef 2009 Typus: Paepalantho pilosi – Agrostietum basalis

Azonal páramo vegetation of the Agrostis basalis - Paepalanthus pilosus alliance / Vegetación de páramo azonal de la alianza de Agrostis basalis y Paepalanthus pilosus

Physiognomy and composition: Sphagnum bogs characterized by a ground layer

formed by dense cushions of Sphagnum spp. and Paepalanthus pilosus with the occasional presence of a layer of variable cover of small tussock grasses, 10-25 cm tall, which may be composed by Agrostis basalis, Carex bonplandii,

Rhynchospora golmerii, Xyris subulata var. acutifolia, and a layer of grasses 30-50

cm tall, formed of Agrostis perennans, Calamagrostis bogotensis, Cortaderia

hapalotricha, Ortachne erectifolia, and a species of Sisyrhinchium. A layer of little

shrubs may also be present, composed of: Diplostephium obtusum, Hesperomeles

obtusifolia, Hypericum cardonae, H. juniperinum, H. juniperinum x cardonae and Pernettya prostrata.

Syntaxonomy: Sixty relevés are recognized as belonging to this alliance,

comprising a total of 21 vascular species and 13 species of cryptogams accounting for the total species richness. Diagnostic of the alliance are: Agrostis basalis,

Sphagnum recurvum and Paepalanthus pilosus. This alliance contains three

associations: Paepalantho pilosi–Agrostietum basalis, Sphagno recurvi–Caricetum bonplandii and Sphagno sparsi–Caricetum bonplandii.

Ecology and distribution: Vegetation belonging to this alliance may be found all

over the evaporated lake “Laguna Seca” and on the humid shore of Laguna El Pumar in Páramo El Pumar (~2870-2890 m), as well as in wet areas around a pond to the South of „Las Antenas‟ in Páramo de Guaramacal at ~3080 m.

1. Paepalantho pilosi – Agrostietum basalis Cuello & Cleef 2009

Typus: Rel. No. 17 (Cuello LS26). Table 4.1, Fig. 4.2. Photo 4.3 (center to right)

Peat bog with cushions of Paepalanthus pilosus and Agrostis basalis groundrosette - bunchgrass vegetation / Vegetación de turbera con cojines de Paepalanthus pilosus y pajonal de Agrostis basalis

Physiognomy and composition: The association is made up of small patches of

bunchgrass vegetation on top of a former peat bog. There is a ground layer formed by dense cushions of Paepalanthus pilosus, Arenaria venezuelana and Lachemilla

verticillata. Over and among the cushions of Paepalanthus pilosus there is a

diversity of bryophytes (and lichens), with the moss Campylopus albidovirens forming a dense and cespitose mat that, together with the other ground layer species constitutes a substrate for the establishment of the bunchgrasses Agrostis The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(14)

______________________________________________________

basalis and Ortachne erectifolia. In the ground layer, the most common

cryptogamic species are: Breutelia rhythidoides, B. squarrosa, Polytrichum

commune, P. juniperinum, Sphagnum magellanicum, S. recurvum and the lichens Cladonia andesita, C. dydima and Cladia aggregata.

Syntaxonomy: The association is defined on the basis of 22 relevés with 10

vascular species and 11 species of cryptogams. The diagnostic species are:

Agrostis basalis, Arenaria venezuelana, Lachemilla verticillata, Paepalanthus pilosus and the mosses Campylopus albidovirens, Breutelia squarrosa, B. rhythidoides and Polytrichum commune.

A subassociation ortachnetosum erectifoliae and a subassociation typicum have been recognized for this association.

Ecology and distribution: The vegetation of the association Paepalantho

pilosi-Agrostietum basalis has to date been found established solely to the North and the South side of an area of central drainage (small channel with water) to the western border of the peat bog (dry lake) of the Páramo El Pumar ~2870 m. This area seems to be a site where wild fauna (probably the „Puma‟ Puma concolor and other mammals), that go to the site for water, are concentrated. The frequent animal footsteps seem to have caused a fragmentation and decomposition of the

Sphagnum layer, thereby favoring the establishment of other plant species.

1. Paepalantho pilosi – Agrostietum basalis

1.1 subassociation ortachnetosum erectifoliae Cuello & Cleef 2009 Typus: Rel. No. 8 (Cuello LS16). Table 4.1, Fig. 4.2, Photo 4.3

Peat bog with cushions and Ortachne erectifolia bunchgrass vegetation / Turbera con vegetación de cojines con pajonal de Ortachne erectifolia

Physiognomy and composition: The vegetation is made up of a grass layer

dominated by tussocks of Ortachne erectifolia (height 30-45 cm and 30-70% cover), small tussocks of Agrostis basalis [height 15-25 cm and 20-30% of cover] and other herbs (1-5% cover) such as Carex bonplandii and Rhynchospora

gollmeri. The ground layer is composed of dense cushions of Paepalanthus pilosus

(10-80% cover) and Lachemilla verticillata (3-30% cover) with a mat of

Campylopus albidovirens (2-20 (40) % cover) growing in between. Other species

with variable densities and cover are Arenaria venezuelana and Geranium

stoloniferum, the bryophytes Breutelia rhythidoides, B. squarrosa, Campylopus cuspidatus var. dicnemioides, Polytrichum commune, P. juniperinum, Sphagnum magellanicum and S. recurvum as well as the lichens Cladonia andesita and C. dydima.

Syntaxonomy: This subassociation is represented by 13 relevés, with 8 vascular

and 11 species of cryptogams. Paepalanthus pilosus (only by maximum cover),

Ortachne erectifolia, Breutelia squarrosa and Polytrichum commune are

diagnostic; as is the lichen Cladonia dydima. Flora, vegetation and ecology in the Venezuelan Andes

(15)

______________________________________________________

Ecology and distribution: The vegetation of the subassociation ortachnetosum

erectifoliae covers a small area (approx 30-50 m2) to the northwestern edge of the

Laguna Seca in Páramo El Pumar at ~2870 m. This patch is surrounded by peat of the association Sphagno recurvi-Caricetum bonplandii.

Figure 4.2. Physiognomy of the vegetation of the association of Paepalantho pilosi-Agrostietum basalis. Páramo El Pumar, 2870 m. Lev. LS16. Ab: Agrostis

basalis; Br: Breutelia rythidioides; Bs: Breutelia squarrosa; Ca: Campylo-pus albidovirens; Cd: Cladonia dydima; Cla: Cladonia andesita; Oe: Ortachne erectifolia; Pc: Polytrichum commune; Pp: Paepalanthus pilosus; Sm: Sphagnum magellanicum.

1. Paepalantho pilosi – Agrostietum basalis 1.2. subassociation typicum Cuello & Cleef 2009 Typus: Rel. No. 17 (Cuello LS26). Table 4.1

Open and low Agrostis basalis bunchgrass vegetation on peat bog with dominance of

Polytrichum juniperinum / Pajonal ralo y bajo de Agrostis basalis sobre turbera con

dominancia de Polytrichum juniperinum

Physiognomy and composition: Open and low vegetation with an herbaceous

layer (15-25 cm height) dominated by small tussocks of Agrostis basalis (1-20% cover) and discrete individuals of Carex bonplandii (1-10% cover). The ground layer is dominated by cushions of Arenaria venezuelana (12-40% cover),

Lachemilla verticillata (35-85% cover) and Polytrichum juniperinum (15-60%

cover). Sphagnum magellanicum and S. recurvum are also present in the ground layer.

(16)

______________________________________________________

Syntaxonomy: The subassociation typicum of the Paepalantho pilosi–Agrostietum

basalis is represented by 9 relevés, with 9 vascular species and 7 species of cryptogams. Polytrichum juniperinum is diagnostic. This subassociation typicum is separated from the previous subassociation by the absence of Ortachne erectifolia, a very low presence of Breutelia squarrosa and Polytrichum commune, and by a greater density and cover of Polytrichum juniperinum.

Ecology and distribution: The vegetation of the subassociation typicum covers a

patch at the southwestern end of the dry lake peat bog of Páramo El Pumar at ~2870 m. This side of the dry lake is lower and more humid than the northern side. Near the higher and drier southern border of the dry lake, the vegetation of this association is in contact with that of the Sphagno recurvi–Caricetum bonplandii association.

Photo 4.3. Vegetation association on the northwestern edge of the Laguna Seca in Páramo El Pumar at ~2870 m. Center-right: Paepalantho pilosi - Agrostietum basalis subassociation ortachnetosum erectifoliae. Left: Sphagno recurvi - Caricetum bonplandii.

2. Sphagno recurvi – Caricetum bonplandii Cuello & Cleef 2009 Typus: Rel. No. 35 (Cuello LS9). Table 4.1, Fig. 4.3

Sphagnum recurvum - Carex bonplandii peat bog / Turbera de Sphagnum recurvum y Carex bonplandii

Physiognomy: Peat bog dominated by a dense green carpet of Sphagnum

recurvum with 100% cover.

(17)

______________________________________________________

Composition and syntaxonomy: This association is represented by 24 relevés,

with 13 vascular species and 8 species of bryophyte. The diagnostic species are

Sphagnum recurvum and Carex bonplandii.

Two provisional variants of this association are distinguished. The vegetation of variant typicum has an open aspect. This common peat bog variant is represented by 15 relevés and accounts for a total of 12 vascular species with very low cover. Carex bonplandii (height 15-25 cm, cover 35-70%), growing on a green carpet of Sphagnum recurvum (60-100% cover) is especially prominent. The other vascular species present (in the association but) with very low cover include:

Agrostis sp. B, Arenaria venezuelana, Calamagrostis sp. Diplostephium obtusum, Gentianella nevadensis, Hypericum cardonae, Lachemilla verticillata, Nertera granadensis, Paepalanthus pilosus, Sisyrinchium sp., Xyris subulata var. acutifolia.

The variant typicum lacks proper diagnostic species. The variant of Diplostephium

obtusum includes only 7 vascular species. The vegetation of this variant occurs

near the eastern dry edges of the evaporated lake, Laguna Seca. The presence of

Diplostephium obtusum is diagnostic (5-40% cover) with variable densities of Carex bonplandii [10-50% (90%)], as is the presence of Agrostis sp. B.

Ecology and distribution: In its typical form, the vegetation of this association is

found on the humid shore of Laguna El Pumar, as well as in the central humid or semi-humid areas of the West shore of Laguna Seca in Páramo El Pumar (~2870-2890 m), and in wet areas around a pond of water in a little valley South of „Las Antenas‟ in Páramo de Guaramacal at ~3080 m.

3. Sphagno sparsi – Caricetum bonplandii Cuello & Cleef 2009

Typus: Rel. No. 56 (Cuello LP1). Table 4.1, Fig. 4.3, 4.4, Photo 4.3 (left to bottom)

Sphagnum sparsum – Carex bonplandii peat bog / Turbera de Sphagnum sparsum y Carex bonplandii

Physiognomy and composition: Peat bog that consists of an herb layer (15-25 cm

in height), covering between 10-80%, and dominated by Carex bonplandii. A ground layer with 100% cover, formed by a continuous carpet of several

Sphagnum species, among which, S. sparsum dominates, followed by S. recurvum

and S. magellanicum. Also common are compact cushions of Paepalanthus

pilosus, and a variable cover of Campylopus cuspidatum.

In this association, a shrub layer made up of Diplostephium obtusum may be present, or a layer of very low shrubs of Hypericum juniperinum, H. cardonae, H.

juniperinum x cardonae, and Pernettya prostrata.

Syntaxonomy: The association of Sphagno sparsi-Caricetum bonplandii is

represented by 16 relevés with 13 vascular species and 5 species of moss. The high presence and cover of Sphagnum sparsum and S. magellanicum is diagnostic.

(18)

______________________________________________________

Two variants are distinguished: one with Diplostephium obtusum, the other with

Pernettya prostrata.

Ecology and distribution: The peat bog of this association is located at the dry

northeastern shore at 1-6 m from the edge of Laguna Seca, and also on hummocks and the non-flooded edges of Laguna El Pumar in Páramo El Pumar at 2880-2890 m.

Figure 4.3. Physiognomy of the vegetation of a hummock-hollow páramo peat bog of the association of (1) Sphagno sparsi-Caricetum bonplandii var. Pernettya

prostrata and (2) Sphagno recurvi-Caricetum bonplandii at Laguna El Pumar,

Páramo El Pumar, 2880 m. Cb: Carex bonplandii; Gm: Geranium

stoloniferum; Hc: Hypericum cardonae; Hjxc: Hypericum juniperinum x cardonae; Pp: Paepalanthus pilosus; Ppr: Pernettya prostrata; Sm: Sphagnum magellanicum; Sr: Sphagnum recurvum. Ss: Sphagnum sparsum.

3.1. Variant with Diplostephium obtusum

Representative rel.: No. 46 (Cuello LSF85). Table 4.1, Fig. 4.4

Variante con Diplostephium obtusum

Physiognomy and composition: Peat bog of Sphagnum magellanicum and Carex

bonplandii with a shrub layer of Diplostephium obtusum (height 30-120 cm, cover

15-45%).

Syntaxonomy: The variant is represented by 9 relevés with a total of 7 vascular

species. The diagnostic species is Diplostephium obtusum, together with an absence of Pernettya prostrata and associated species.

Ecology and distribution: The vegetation of this variant is present on the higher

and drier edges of the NE-SE part of the peat bog of Laguna Seca in Páramo El Flora, vegetation and ecology in the Venezuelan Andes

(19)

______________________________________________________

Pumar. This community can also be found in small peaty valleys with drainage embedded in azonal bamboo páramo of the association Carici bonplandii– Chusqueetum angustifoliae.

Figure 4.4. Physiognomy of the bog of the association Sphagno sparsi-Caricetum bonplandii var. Diplostephium obtusum. Páramo El Pumar. Laguna Seca. 2890 m. Lev. SF85. Do: Diplostephium obtusum; Cb: Carex bonplandii;

Gm: Geranium stoloniferum Pp: Paepalanthus pilosus; Sm: Sphagnum

magellanicum; Sr: Sphagnum recurvum Ss: Sphagnum sparsum.

3.2. Variant with Pernettya prostrata

Representative rel. Cuello LP1. Table 4.1, Fig. 4.3

Variante con Pernettya prostrata

Physiognomy and composition: Vegetation on hummocks near the edges of peat

bog dominated by a layer of Carex bonplandii (height 15-25 cm, cover 30-80%) with a layer of a few low shrubs (height 5-40 cm, cover 1-40%) consisting of

Pernettya prostrata, Hypericum cardonae and H. juniperinum x cardonae. Scarse

young individuals of Hypericum juniperinum and Hesperomeles obtusifolia may also be present among the shrubs.

A bryophytic ground layer is dominated by Sphagnum sparsum (30-100% cover),

S. recurvum (10-40% cover) and Campylopus cuspidatum.

Syntaxonomy: The variant is represented by 7 relevés with 9 vascular species and

5 moss species. Diagnostic species are: Pernettya prostrata, Hypericum cardonae and Campylopus cuspidatum. Sphagnum magellanicum has a low presence and cover when contrasted with the variant with Diplostephium obtusum.

Ecology and distribution: Vegetation on hummocks in the non-flooded areas

around of Laguna El Pumar at 2880 m, Páramo El Pumar.

(20)

______________________________________________________

CARICI BONPLANDII – CHUSQUEION ANGUSTIFOLIAE Cuello & Cleef 2009 Typus: Carici bonplandii – Chusqueetum angustifoliae

Azonal Carex bonplandii - Chusquea angustifolia bunchgrass-bamboo páramo alliance / Páramo azonal de pajonal-bambusal (chuscales) de la alianza de Carex bonplandii y

Chusquea angustifolia

Physiognomy and composition: This alliance groups azonal bamboo páramo

(„chuscales‟) growing in humid level areas of low inclination dominated by

Chusquea angustifolia.

Syntaxonomy: This alliance is defined on the basis of 9 relevés with 14 vascular

species and 5 moss species. Carex bonplandii, Chusquea angustifolia, Sphagnum

sancto-josephense and Xyris subulata are the diagnostic species. The alliance

contains one association so far, Carici bonplandii–Chusqueetum angustifoliae.

Ecology and distribution: The vegetation of the alliance Carici bonplandii–

Chusqueion angustifoliae is found growing close to lakes shores in Páramo El

Pumar (2870-2890 m) and on small wet valleys in both Páramo El Pumar and Páramo de Guaramacal (~2900-3100 m).

4. Carici bonplandii – Chusqueetum angustifoliae Cuello & Cleef 2009 Typus: Rel. No. 64 (Cuello L27a). Table 4.1, Fig. 4.5, Photo 4.3 (top)

Carex bonplandii - Chusquea angustifolia bunchgrass-bamboo páramo / Páramo de

pajonal-bambusal de Chusquea angustifolia con Carex bonplandii

Physiognomy: Dense bamboo páramo, or “chuscal”, with a bamboo layer of

Chusquea angustifolia (height 1-1.5 m, cover 30-70%), a herbaceous layer, 20-30

cm in height dominated by Carex bonplandii, and a ground layer dominated by cushions of Sphagnum sancto-josephense and S. sparsum together with other bryophytes and some lichens.

Composition and syntaxonomy: The association of Carici bonplandii -

Chus-queetum angustifoliae is represented by 9 relevés with 14 vascular species and 9 bryophytes.

Chusquea angustifolia (dominant), Carex bonplandii and Sphagnum sancto-josephense are diagnostic of the assemblage. Agrostis perennans, Daucus monta-nus and Xyris subulata var. acutifolia are present in the herb layer. Paepalanthus pilosus, Arenaria venezuelana, the bryophytes Breutelia squarrosa, Campylopus subjugorum, C. pilifer, C. nivalis, Sphagnum sancto-josephense, S. sparsum, the

liverworts Jamesoniella rubricaulis, Lepidozia cf. macrocolea (3034), and

Plagio-chila sp., and the lichens Cladia aggregata and Peltigera neopolydactyla have also

been observed in the ground layer. On the canes of Chusquea angustifolia the epiphytic moss Campylopus trichophorus can be found. In this association a pro-visional subassociation of Xyris subulata is distinguished by the presence of Xyris subulata var. acutifolia (rel.nr. 61-65) together with a few other common species

of the zonal páramo association of Rhynchospora gollmeri - Ruilopezia jabonensis Flora, vegetation and ecology in the Venezuelan Andes

(21)

______________________________________________________

which is in contact in some locations. More relevés are needed for the formal description of this Xyris subulata subassociation.

Ecology and distribution: The bamboo vegetation of the association of Carici

bonplandii - Chusqueetum angustifoliae is found in level or concave areas of low slope (1 to 8 degrees) with a southwestern-west exposure at altitudes between ~2880 - 3100 m. They are positioned adjacent to lake margins or covering small wet valleys. This bamboo vegetation grows on relatively deep soils (50-120 cm), with gray colors (dry) and very dark (humid), sandy-loamy to loamy textures. The pH of the upper layer ranges from 3.6 to 4.2.

Figure 4.5. Physiognomy of the association of Carici bonplandii-Chusqueetum angus-tifoliae (L27, 3030 m). Cb: Carex bonplandii; Ch: Cortaderia hapalotricha;

Cha: Chusquea angustifolia; Rg: Rhynchospora gollmeri; Rj: Ruilopezia

jabonensis; Ss: Sphagnum sparsum; Ssj: Sphagnum sancto-josephense; Xs: Xyris subulata var. acutifolia.

DISTRICHO SUBMERSI –ISOETION Cleef 1981 Table 4.2 rel. nrs 1-10

Alliance of submerged bryophytic-isoetid communities in páramo lakes described from the Cordillera Oriental of Colombia (Cleef 1981).

5. Community of Sphagnum cuspidatum

Representative rel.: No. 4 (Cuello PL4). Table 4.2, rel. 1-5, Photo 4.4

Submerged aquatic community with Sphagnum cuspidatum present at great density close the peaty shores of Laguna El Pumar. Water depth ranges between 30 and 120 cm. The community is also found in a small peaty depression with flushes of water in bamboo páramo near the „Las Antenas‟.

6. Isoëtetum karstenii Cleef 1981 Table 4.2, rel. 6-8

(22)

______________________________________________________

Submerged aquatic community of Isoëtes karstenii, associated with Eleocharis

acicularis (sterile) and filamentous algae thriving at a depth of between 0.6-1 m in

Laguna El Pumar (2890 m). In deeper areas of the lake (1-1.5 m) black filamentous algae (cf. Microspora sp.) are also present within this community. More relevés are needed in order to more clearly define a possible further subdivision of the Isoëtetum karstenii.

Table 4.2. Phytosociological table of aquatic communities of Ramal de Guaramacal, Andes, Venezuela.

Photo 4.4. Submerged aquatic community of Sphagnum cuspidatum in Laguna El Pumar.

Rel. Num. 1 2 3 4 5 6 7 8 9 10

Releves (Field Number) GCC2 PL5 LS20 PL4* LP12 LP13 LP8 LP9 LP10 LP11

Community/Association 5. Sphagnum cuspidatm

6. Isoëtetum karstenii

5. Community of Sphagnum cuspidatum

HD Sphagnum cuspidatum 5 5 5 5 5 1 . . . .

HD Eleocharis acicularis . . . 5 3 5 5 4 5 .

HD black filamentous Algae . . . . 5 . . . 4 5

HD purple filamentous Algae 1 . . . .

6. Isoëtetum karstenii

HD gelatinous Algae . . . 5 5 5 5 .

HD Isoëtes karstenii . . . 4 3 5 . .

LP, PL Laguna El Pumar, 2880 m. Páramo El Pumar

LS Laguna Seca, 2890 m. Páramo El Pumar

GCC Páramo de Guaramacal, 3030 m.

HD Hydrophyte

* Type relevé

(23)

______________________________________________________

4.5 DISCUSSION

Phytosociological classification and methodological limitations

The classification of azonal páramo vegetation of Guaramacal resulted in one new order, two new alliances, one earlier described alliance and six associations. Four of them are described as new syntaxa, one as a provisional community whilst one association (Isoëtetum karstenii Cleef 1981) was previously known from Colombia. A summary (presence) table of azonal páramo vegetation communities of Ramal de Guaramacal is shown in Table 4.3. The vegetation has been described on the basis of a relatively limited number of relevés from only two peat bogs and a small pond from two main páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar). Other azonal vegetation communities may be present in the páramos of Ramal de Guaramacal as other peat bogs are known to exist in the area but have not yet been reached and remain as yet unexplored. The limited accessibility of the area throughout most of the year, together with high precipitation levels and the frequency of mist, made the exploration of peat bogs areas of Ramal de Guaramacal extremely difficult, hence limiting the study of the vegetation to only the drier climatic conditions at only the most accessible sites. During these drier spells, some annual species were found in a senescent condition making taxonomic identification difficult. Some plants could even be ignored in the survey as they could already only persist as seeds in the seed bank.

However, the low floristic diversity observed in azonal communities of Ramal de Guaramacal can be mainly attributed to the stress caused by extreme humidity with a subsequent dominancy of only a few well-adapted species. Also the relative isolation from the main system of the Cordillera de Mérida is probably a factor. In the Laguna Seca the substrate of the lake bottom remains humid, even in the dry season, sometimes with a small pond.

An important issue is the (almost) absence of proper diagnostic species in the Sphagno recurvi-Caricetum bonplandii of the Agrostio-Paepalanthion. This phenomenon corresponds to the „central syntaxon concept‟ of Dierschke (1981, 1994). The almost absence of diagnostic species is differential against both other associations.

Azonal bunchgrass patches

Azonal bunchgrass páramo is represented by two small patches of vegetation belonging to associations of the new alliance Paepalantho pilosi - Sphagnion recurvi; both of which grow on top of a former peat bog. These bunchgrass communities are very restricted in both surface area covered and spatial location in Guaramacal, thus comparison (in ecology and floristic composition) with other communities elsewhere is limited. As far as we are aware, no similar communities have been reported from páramos. The presence of these communities, just on the border of the evaporated lake in Páramo El Pumar and on both sides of a remnant pond, suggests a relationship with wildlife in the origin of these communities. Páramo El Pumar got its name by the apparent abundance of the „Puma‟ Puma

concolor, as indicated by the observed large quantities of vestiges, such as paw

prints and the remains of digested prey. The evaporated lake „Laguna Seca‟ is The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(24)

______________________________________________________

surrounded by patches of dwarf high Andean forest which offer shelter to these animals which appear to walk across the peat bog to drink or to hunt prey.

The bunchgrass Ortachne erectifolia was previously described by the second author in 1981 as a being a species with a wide ecological range occurring between about 3500 and 4300 m. A bunchgrass community of Ortachne erectifolia (Lorenzochloetum erectifoliae Cleef 1981) is known from the dry zonal

bunchgrass páramos at 3550-3650 m in the Colombian Cordillera Oriental (CLEEF

1981). That community, however, differs greatly in both ecology and floristic composition and limits comparisons with the subassociation ortachnetosum erectifoliae of the azonal Paepalantho pilosi–Agrostietum basalis from Guaramacal. The bunchgrass Ortachne erectifolia is also a common species in the zonal widespread grass páramo community of Espeletia schultzii–Aciachne

acicularis in the Sierra Nevada de Mérida (Fariñas 1980, Berg 1998, Berg & Suchi,

2001). This characteristic, medium-sized bunchgrass species with stiff blades is also present in páramos of Costa Rica, Ecuador and Peru (Luteyn 1999, Briceño &

Morillo 2006). The original Ortachnetum erectifolii is considered secondary

vegetation having developed after severe disturbance, probably by fire (Cleef 1981).

The other lax and low bunchgrass vegetation growing on former peat bog, characterized by the presence of Agrostis basalis and Polytrichum juniperinum, the subassociation typicum, is known only from this site to date. Agrostis basalis is an endemic species described from the Sierra Nevada de Mérida páramos (Laguna Negra) (Luces 1953) and has also been reported from Distrito Federal, Mérida, Miranda and Táchira states, where it is found growing between 2100 and 4150 m (Briceño & Morillo 2006; Hokche et al. 2008).

Sphagnum bogs

A regional study on the Sphagnum bogs of the northern Andes is still lacking as most studies report only on local peat bog types. Some of the azonal vegetation communities reported for the páramos of the Colombian Cordillera Oriental (Cleef 1981; Franco et al. 1986; Sanchez & Rangel 1990; Rangel 2000a) are also found in the lowermost superpáramos of Sierra Nevada de Mérida, such as: the Aciachnetum pulvinatae, the Wernerion community (Wernerietalia), communities with Carex bonplandii and communities with Gentiana sedifolia (Berg 1998; Berg & Suchi 2001). However, Sphagnum bog communities have not yet been formally reported despite being present in the páramos of the Sierra Nevada de Mérida. With regards to the Chusquea angustifolia páramos of Ramal de Guaramacal, affinities to other páramo communities and comparisons are limited. There are few species common to some of the vegetation types described for the Colombian Cordilleras (e.g. Cleef 1981; Cleef et al. 2005; 2008; Restrepo & Duque 1992, Franco et al. 1986; Sánchez & Rangel 1990). Curiously, Gentiana sedifolia, present in páramo and puna bogs in the tropical Andes, is lacking in Guaramacal páramo bogs. Isolation, low altitude and a deficit of phytosociological studies account for the presence of the assemblage of species observed in Ramal de Guaramacal which remain undescribed for other páramo areas to date.

(25)

_______________________________________________________

Table 4.3. Presence table of azonal páramo vegetation communities of Ramal de Guaramacal, Andes, Venezuela. Associations: 1. Paepalantho pilosi - Agrostietum basalis; 2. Sphagno recurvi - Caricetum bonplandii; 3. Sphagno sparsi - Caricetum bonplandii; 4. Carici bonplandii - Chusqueetum angustifoliae; 5. Community of Sphagnum cuspidatum; 6. Isoetetum karstenii. Presence classes: I (0–20%), II (21–40%), III (41–60%), IV (61–80%) and V (81–100%).

Number of relevés 22 22 16 9 5 3

Association 1 2 3 4 5 6

Agrostis basalis V I . . . .

Campylopus albidovirens IV . . . . .

Arenaria venezuelana III I . I . .

Lachemila verticillata III . . . . .

Breutelia rhythidoides I . . . . .

Ortachne erectifolia IV . . . . .

Breutelia squarrosa III . . II . .

Polytrichum commune III I . . . .

Cladonia dydima II . . . . .

Cladonia andesita I . . . . .

Rhynchospora gollmeri I . . II . .

Cladia aggregata I . . . . .

Polytrichum juniperinum III II . . . .

Sisyrinchium sp. I I . . . . Calamagrostis bogotensis I . . . . . Sphagnum sparsum . I V II . . Sphagnum magellanicum II I IV . . . Diplostephium obtusum . II II . . . Agrostis sp. B . I . . . .

Pernettya prostrata . . III . . .

Campylopus cuspidatus I . II . . . Hypericum juniperinum x cardonae . . I . . . Hypericum cardonae . I I . . . Hypericum juniperinum . . I . . . Sphagnum sp.(orange) . . I . . . Hesperomeles obtusifolia . . I . . .

Sphagnum recurvum III V V I

Paepalanthus pilosus V II II I . . Number of relevés 22 22 16 9 5 3 Association 1 2 3 4 5 6 Calamagrostis sp. A . . . I . . Chusquea angustifolia . . . V . . Sphagnum sancto-josephense . . . IV . .

Xyris subulata . . I III . .

Campylopus richardii . . . II . . Ruilopezia jabonensis . . . II . . Cortaderia hapalotricha . . I II . . Gentianella nevadensis . . I II . . Peltigera neopolydactyla . . . II . . Oreobolus venezuelensis . . . I . . Hieracium avilae . . . I . . Jamesoniella rubricaulis . . . I . . Nertera granadensis . . . I . . Ophioglossum crotalophorioides . . . I . . Plagiochila sp. . . . I . . Rhacocarpus purpurascens . . . I . . Agrostis perennans . . I . . .

Carex bonplandii III V V V . .

Geranium stoloniferum III I III II . .

Sphagnum cuspidatum . . . . V 1

Eleocharis acicularis . . . . II 5

black filamentous Algae . . . . I .

purple filamentous Algae . . . . I .

gelatinous Algae . . . . . 5

Isoëtes karstenii . . . . . 5 The páramo vegetation of Ramal de Guaramacal: 2. Azonal vegetation

(26)

_______________________________________________________

Sphagnum bogs in the páramos of Ramal de Guaramacal are represented by two

new associations belonging to the new alliance of Carici bonplandii - Sphagnion recurvi. Sphagnum revurvum, S. sparsum, S. magellanicum, and S.

sancto-josephense are the most characteristic species of the Sphagnum bogs of

Guaramacal. Sphagnum cuspidatum is also common mostly in submerged conditions, whilst S. meridense is present with large cover in humid shrub páramo and adjacent dwarf forest edges. Sphagnum recurvum is the most dominant species in the peat bogs of Guaramacal. The moss cover of both associations of Sphagno recurvi - Caricetum bonplandii and Sphagno sparsi - Caricetum bonplandii grow together in the same peat bogs of Páramo El Pumar. The variants of each association correspond to different succesional stages related decreasing humidity (see below).

A Bray-Curtis cluster similarity analysis comparing species composition of azonal Guaramacal Carex bonplandii associations with those of the Carex bonplandii communities described from Colombian cordilleras and the Sierra Nevada de Mérida, Venezuela, is shown in Fig. 4.8. The presence of Carex bonplandii and

Sphagnum spp. has been reported in peat bog vegetation in Tatamá Park in the

Colombian Western Cordillera (Cleef et al. 2005). An association of Caricetum bonplandii has been described from Laguna Chingaza (Franco et al. 1986, Rangel 2000c) and a Sphagnum sancto-josephense - Carex bonplandii community from Páramo de Monserrate (Vargas & Zuluaga 1985), both sites being near Bogotá in the Colombian Oriental Cordillera. Despite the common presence of Carex

bonplandii, Sphagnum magellanicum and S. sancto-josephense in Sphagnum

peatbog communities in Colombia, there are no other common species which allow establishment of relationships to the Sphagnum bog communities of Guaramacal. It is evident that the Guaramacal Sphagnum recurvum communities are most related to each other (Fig. 4.8). Similarities to other Sphagnum communities collected hap-hazardly in literature deal with different habitats (with different ecology): Sphagnum bog in morrainic valleys, more minerotrophic conditions with Sphagnum cover, Sphagnum fringes along glacial lake shores, and

Sphagnum cover on different geological substrates.

A coherent and representative body of relevés is lacking for a safe approach to classify the Sphagnum bogs of the northern Andes, as outlined above. The second author has some 60 unpublished relevés of Sphagnum bogs, mainly of the páramos of the Eastern Cordillera of Colombia (Cleef 1981). However, it was not the aim of the present study to develop a rather complete syntaxonomic scheme of páramo

Sphagnum bogs. This is a task for the future. This is also the reason that we did not

like to produce presence tables in our study, because the material published so far is too scanty, making the effort not meaningful.

Aquatic communities

Two submerged aquatic communities were recognized in páramos of Ramal de Guaramacal: (1) the association Isoëtetum karstenii and (2) the community of

Sphagnum cuspidatum (Table 4.2). The The presence of Isoëtes karstenii of

Laguna El Pumar shows a relationship of this low altitude páramo vegetation with other proper upper páramo aquatic communities observed in páramo lakes of the Flora, vegetation and ecology in the Venezuelan Andes

(27)

_______________________________________________________

Sierra Nevada de Mérida and described from such lakes in the Colombian Cordillera Oriental. The aquatic association Isoëtetum karstenii was documented from cold lakes, mostly with mineral bottoms, in the grassparamo (3500-3700 m) up to the superpáramo at 4425 m of the Sierra Nevada del Cocuy, and up to 4100 m in the Sumapaz páramo of the Colombian Cordillera Oriental (Cleef 1981). The association has also been found at 4300 m on the volcano S. Isabel in the Colombian Cordillera Central (Salamanca et al. 2003) and further south to Nariño, southern Colombia. The association Isoëtetum karstenii belongs to the alliance of Ditricho submersi-Isoëtion (Cleef 1981). In the Sierra Nevada de Mérida in Venezuela, Isoëtes karstenii has been collected between 3430 and 4250 m (Cleef 1981, unpubl.; Small & Hickey 2001). One relevé (Cleef 552A) of Isoëtetum karstenii typicum has been made by the second author at 4250 m in the lower superpáramo of La Culata (see Table 4.4). Isoëtes karstenii grows submerged in permanent lakes and ponds (occasionally streams) between ca. 3300-4600 m. The occurance of Isoëtes karstenii in Guaramacal is the lowest recorded and could be a relict from Glacial times. Its habitat generally corresponds to the upper páramo proper and the superpáramo. During Glacial times, it is most likely that these lakes on the top of the Ramal de Guaramacal range were part of the superpáramo. Shifts upslope under Holocene conditions was impossible because the present lake is on top of the ridge of Guaramacal. With increasing temperature and humidity (now a bamboo páramo in nature) the Isoëtes karstenii plants survived, growing on an organic lake bottom, and became associated with other plant species of peaty lake bottoms, such as: Eleocharis acicularis, Sphagnum cuspidatum and diverse algae.

Table 4.4. Table of presence of Isoetetum karstenii in páramo areas of Colombia and Venezuela. Presence classes: I (0–20%), II (21–40%), III (41–60%), IV (61– 80%) and V (81–100%). *cover values in percentage. Sites: (1). Páramos Cocuy, Sumapaz, Colombian Cordillera Oriental (Cleef 1981); (2). Lev. A.M. Cleef & S. Salamanca # 622A and #584. Laguna de Silencio, Base de S. Isabel. Alt. 4170-4315 m. (Parque Los Nevados), Colombian Cordillera Central (Salamanca et al. 2003); (3). Lev. Cleef 552A (with A. Chaverri & O. Rangel). Venezuela, Páramo La Culata, superpáramo bajo. Lagunita glaciar a 4.250 m.; (4). Laguna El Pumar, 2880 m. Ramal de Guaramacal, Andes, Venezuela.

Isoëtetum karstenii Cord. Oriental Colombia Cord. Central Colombia Páramo La Culata, Mérida, Venezuela Guaramacal Venezuela (this study) Number of releves 8 2 1 3 Altitude (m) 3500-3700 4170-4350 4250 2880 Site number 1 2 3* 4 Isoëtes karstenii V 5 (80) 5 Blindia magellanica I . . . Ditrichum submersum II 3 . . Eleocharis acicularis . . . 5 Isotachis serrulata s.l. II . . . Sphagnum cuspidatum . . . 1 Algae V . (1) 5

Referenties

GERELATEERDE DOCUMENTEN

De vraag waaraan Breedveld voorbij is ge gaan, betreft de mate waarin gespreid werken den tijdpioniers zijn voor nieuwe arbeids- er vrije tijdspatronen.. Uit

Aan de totstandkoming van deze uitgave is de uiter­ ste zorg besteed.Voor informatie die nochtans onvol­ ledig of onjuist is opgenomen, aanvaarden auteur(s), redactie en

Zullen door werkloosheid bedreigde leden van de middenklasse toetreden tot een vakbond.. Klasse,

The data of a telephone survey in Belgium (n = 1.487) were used to explore the associations bet­ ween job insecurity, trade union attitudes (three components of union commitment,

Hoe spannend zou het jaar 2000 wel niet zijn geweest als de verwachtingen van de futurolo­ gen uit de jaren vijftig en zestig waren uitgeko­ men.. Wie zou toen geloofd

Om een eerste indicatie te krijgen van de mate, waarin de verschuivingen in de beroepenstructuur van de werkgelegenheid tot een upgrading van het

In wat volgt proberen we meer systematisch inzicht te verschaffen in de mogelijke oplos­ singen voor de opgesomde implicaties. De in de rechterkolom aangeduide

sen de arbeidsinhoud en de structuur van de arbeidsdeling, vooral het domein van de socio- techniek. In Nederland is de WEBA-methode goeddeels gebaseerd op de