• No results found

Deformation dependence of the isovector giant dipole resonance : the neodymium isotopic chain revisited

N/A
N/A
Protected

Academic year: 2021

Share "Deformation dependence of the isovector giant dipole resonance : the neodymium isotopic chain revisited"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Deformation

dependence

of

the

isovector

giant

dipole

resonance:

The neodymium

isotopic

chain

revisited

L.M. Donaldson

a

,

b

,

C.A. Bertulani

c

,

J. Carter

a

,

V.O. Nesterenko

d

,

P. von Neumann-Cosel

e

,

,

R. Neveling

b

,

V.Yu. Ponomarev

e

,

P.-G. Reinhard

f

,

I.T. Usman

a

,

P. Adsley

b

,

g

,

J.W. Brummer

g

,

E.Z. Buthelezi

b

,

G.R.J. Cooper

h

,

R.W. Fearick

i

,

S.V. Förtsch

b

,

H. Fujita

j

,

Y. Fujita

j

,

M. Jingo

a

,

W. Kleinig

d

,

C.O. Kureba

a

,

J. Kvasil

k

,

M. Latif

a

,

K.C.W. Li

g

,

J.P. Mira

b

,

F. Nemulodi

b

,

P. Papka

b

,

g

,

L. Pellegri

a

,

b

,

N. Pietralla

e

,

A. Richter

e

,

E. Sideras-Haddad

a

,

F.D. Smit

b

,

G.F. Steyn

b

,

J.A. Swartz

g

,

A. Tamii

j

aSchoolofPhysics,UniversityoftheWitwatersrand,Johannesburg2050,SouthAfrica biThembaLABS,P.O.Box 722,SomersetWest7129,SouthAfrica

cDepartmentofPhysicsandAstronomy,TexasA&MUniversity-Commerce,Commerce,TX 75429,USA

dBogoliubovLaboratoryofTheoreticalPhysics,JointInstituteforNuclearResearch,Dubna,Moscowregion,141980,Russia eInstitutfürKernphysik,TechnischeUniversitätDarmstadt,D-64289Darmstadt,Germany

fInstitutfürTheoretischePhysikII,UniversitätErlangen,D-91058Erlangen,Germany gDepartmentofPhysics,UniversityofStellenbosch,Matieland7602,SouthAfrica hSchoolofGeosciences,UniversityoftheWitwatersrand,Johannesburg2050,SouthAfrica iDepartmentofPhysics,UniversityofCapeTown,Rondebosch7700,SouthAfrica jResearchCenterforNuclearPhysics,OsakaUniversity,Ibaraki,Osaka567-0047,Japan kInstituteofParticleandNuclearPhysics,CharlesUniversity,CZ-18000,Prague 8,CzechRepublic

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received20December2016

Receivedinrevisedform6November2017 Accepted13November2017

Availableonline20November2017 Editor:V.Metag

Keywords:

144,146,148,150Nd,152Sm(p, p)

Ep=200 MeV θlab=0◦

RelativisticCoulombexcitationoftheIVGDR Comparisonwithphoto-absorptionresults Transitionfromsphericaltodeformed nuclei

ProtoninelasticscatteringexperimentsatenergyEp=200 MeV andaspectrometerscatteringangleof 0◦ wereperformedon144,146,148,150Ndand152SmexcitingtheIsoVectorGiantDipoleResonance(IVGDR). Comparisonwithresultsfromphoto-absorptionexperimentsrevealsashiftofresonancemaximatowards higherenergiesforvibrationalandtransitionalnuclei.Theextractedphoto-absorptioncrosssectionsin the mostdeformed nuclei, 150Nd and 152Sm,exhibit apronouncedasymmetry rather thanadistinct double-humpstructureexpectedasasignatureofK -splitting.Thisbehaviourmayberelatedtothe prox-imityofthesenucleitothecriticalpointofthephaseshapetransitionfromvibratorstorotorswithasoft quadrupoledeformationpotential.Self-consistentrandom-phaseapproximation(RPA)calculationsusing the SLy6Skyrmeforceprovidearelevant descriptionofthe IVGDR shapesdeduced fromthe present data.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Giant resonances represent a prime example of collective

modesinthenucleus.A smoothmass-numberdependenceofthe

resonance parameters is characteristic of all nuclear giant

reso-*

Correspondingauthor.

E-mailaddresses:lindsay.donaldson18@gmail.com(L.M. Donaldson),

vnc@ikp.tu-darmstadt.de(P. von Neumann-Cosel).

nances and, as such, a study of them yields information about

thenon-equilibriumdynamicsandthebulk propertiesofthe nu-cleus

[1]

.TheoldestandbestknowngiantresonanceistheIVGDR owingto thehighselectivity forisovectorE1excitation in

photo-absorption experiments. The properties of the IVGDR have been

studiedextensivelyusing(

γ

, xn)-typeexperiments,particularlyin the Saclay [2] and Livermore [3] laboratories. These sets of ex-periments are a major source ofinformation withrespect to the

γ

-strengthfunction

[4]

above theneutron threshold– an impor-tant quantity used in statistical reaction calculations relevant to

https://doi.org/10.1016/j.physletb.2017.11.025

0370-2693/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

134 L.M. Donaldson et al. / Physics Letters B 776 (2018) 133–138

applicationslike astrophysical large-scalereaction networks

[5,6]

, reactordesign

[7]

,andevennuclearwastetransmutation

[8]

.

Recently, a new experimental technique for the extraction

of electric dipole-strength distributions in nuclei via relativistic Coulomb excitation has been developed [9,10]. It utilises proton inelasticscatteringwithenergiesofafewhundredMeVat scatter-inganglescloseto0◦.Althoughmanyoftheseexperimentsfocus onestablishingthe strengthbelowandaroundneutronthreshold anditscontributiontothedipolepolarisability

[11–16]

,such data alsoprovideinformationonthephoto-absorptioncrosssectionsin theenergyregionoftheIVGDR.

The chain ofstable even–even neodymiumisotopes isknown

tocompriseatransitionfromsphericaltodeformedgroundstates forheavierisotopes andthusrepresents an excellenttest caseto studytheinfluenceofdeformationonthepropertiesoftheIVGDR. A (

γ

, xn) experiment at Saclay [17] revealed that the width in-creaseswithdeformationevolvingintoapronounceddouble-hump structureinthemostdeformednuclide150Nd,consideredtobea textbook example [18] of K -splitting owing to oscillations along thedifferentaxesofthequadrupole-deformedgroundstate.Here, wereportnewphoto-absorptioncrosssectionsfor144,146,148,150Nd

extracted from 200 MeV proton scatteringexperiments with re-sultsdifferingsignificantlyfromRef.[17].Inparticular,no double-humpstructureisobservedin themostdeformed150Ndnucleus.

This finding is confirmedin a further measurement of the

com-parably deformed 152Sm nucleus, again in contrast to a (

γ

, xn)

measurementatSaclay

[19]

.Thisunexpectedresultmayberelated tothespecialstructureofthesetwonucleiwhicharepredictedto lie near the critical point [20] of a shape phase transition from sphericaltoquadrupole-deformedgroundstates

[21]

.

2. Experimentandanalysis

Theprotoninelasticscatteringexperimentswereperformedat the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS)inSouthAfrica.TheK600magneticspectrometer,positioned at0◦ withtheacceptancedefinedbya circularcollimatorhaving an opening angle

θ

lab

= ±

1

.

91◦,was used to analyse a scattered

200 MeV dispersion-matched proton beam delivered from the

SeparatedSector Cyclotronof iThemba LABS. The self-supporting

144,146,148,150Ndand152Smtargetswereallisotopicallyenrichedto

values

>

96% (except148Ndenriched to90%)witharealdensities

rangingfrom1.8to 2

.

6 mg

/

cm2.The corresponding ground-state

deformationparameters

β

2 aregiveninthesecondcolumnof

Ta-ble 1.Thebeampreparationandthedetectorsetup aredescribed inRef. [10].Details regardingthe dataextraction andanalysis of thepresentmeasurementscanbefoundinRef.[22].

Inthechosenkinematicconditions,relativisticCoulomb excita-tionofthetargetnucleiisthedominantreactionmechanism.The resultingdouble-differentialcrosssections(witha systematic un-certainty of

±

7%) obtained following the procedures detailedin Ref.[22] are displayedin Fig. 1for20 keVenergybins.A typical

energyresolution



E

=

45 keV (FWHM)was achieved.The broad

structurevisibleinallspectrabetweenapproximatelyEx

=

12 and

18 MeVcorresponds totheexcitationoftheIVGDR.Statistical er-rors in this region are of the order of 2–4%. From Fig. 1 it is immediatelyevidentthatthewidthoftheIVGDRincreasessteadily fromthenearlyspherical144Ndnucleusthroughthetransition re-giontothemoredeformed150Ndand152Smnuclei.

In order to compare to the (

γ

, xn) data of Carlos et al. [17, 19], the (p, p) spectra hadto be converted to equivalent photo-absorption cross sections.By wayof example,Fig. 2 provides an overview of the conversion process for 150Nd. It can be divided into three distinct stages, namely, background subtractionin the region of the IVGDR, calculation of the virtual-photon spectrum

Fig. 1. Experimentaldouble-differentialcrosssectionsforthe144,146,148,150Nd(p, p)

and152Sm(p, p)reactionsatEp=200 MeV andθlab=0±1.91.

andthedivisionbythisspectrummultipliedthroughbythevirtual

γ

energytoobtainequivalentphoto-absorptioncrosssections.This procedurehasbeentestedforseveralcases(48Ca,120Sn,208Pb)and fair agreement ofthe resulting shape andabsolute valuesof the photo-absorption cross sectionswithexperimentsusingreal pho-tonswasobtained

[11–15]

.

Background fromnuclear processes studied in similar

experi-ments at 300 MeV has been found to be small in heavy nuclei

[11–14]. It was modelled in the present case by three compo-nents. The contributions of the IsoScalar Giant Monopole Reso-nance (ISGMR, green line) and IsoScalarGiant Quadrupole Reso-nance (ISGQR, pink line) to the spectrum of Fig. 2(a) were es-timated in the following way [13,15]: Computed angular

distri-butions of theISGMR and ISGQR crosssections were determined

by distortedwave Bornapproximation calculationswiththecode DWBA07

[23]

usingquasiparticle phononmodel (QPM)transition amplitudesandtheLove–Franeyeffectiveinteraction

[24]

asinput (analogoustoRef.[12]).A representativeexampleofsuch calcula-tionsforNdandSmisotopesisshownin

Fig. 3

.

Afteraveragingovertheexperimentalangularacceptance,these calculations providea relation betweentheoretical cross sections

and transition strengths under the assumption of a dominant

one-step reaction mechanism, which should be well fulfilled at

an incident protonenergy of200 MeV. Utilising this proportion-ality, experimental ISGMR and ISGQR strength distributions can then be convertedto (p, p) crosssectionsin thepresentspectra. For comparison, thepredictedIVGDR crosssection is alsoshown and clearly dominates the spectra. However, the B(E1) transition strengths(andthusthephoto-absorptioncrosssections)cannotbe

(3)

Fig. 2. (Colouronline).Overviewoftheconversionprocessfrom150Nd(p, p)tophoto-absorptioncrosssections:(a) double-differential(p, p)crosssectionandbackground

components.ThegreenandpinklinesdescribethecontributionfromtheISGMRandISGQR,respectively,andthebluelinethephenomenologicalcomponentexplainedin thetext;(b) virtualphotonspectrum;(c) equivalentphoto-absorptionspectrumresultingfromEq.(1);(d) equivalentphoto-absorptionspectrumrebinnedto200 keVfor comparisonwiththephoto-absorptiondataofRef.[17].

Fig. 3. (Colouronline).ExampleofDWBAcalculationsoftheIVGDR(red),ISGMR (blue) and ISGQR (green) excitation cross sectionsin (p, p)scattering at E0=

200 MeV offNdandSmisotopes.

extractedwiththismethodbecausetheCoulomb-nuclear interfer-encetermbreakstheproportionality.

Itohetal.[25]reportedisoscalargiantresonancestrength dis-tributionsfortheSmisotopechainwhichcouldbedirectlyapplied to 152Sm. The results of Ref. [25] were also used for the

corre-sponding Nd isotones, which show very similar deformation pa-rameters, with a correction for the global mass dependences of

the ISGMR and the ISGQR [1]. The ISGQR contribution was

in-dependently estimated from a recent study of the ISGQR in the Ndisotopechain

[26]

withmethodsanalogoustoRefs.[27–29]in goodcorrespondencewithresultsfromtheaboveprocedure.

A phenomenological background shown as blue line Fig. 2(a) describes the behaviour of the double-differential cross section

at the high excitation energy part of the spectrum where the

Coulombexcitation contributionisnegligible.Thiscomponent

in-corporates all unknown multipolarity contributions as well as

quasi-freescatteringandisapproximatedbyfindingthemaximum ofthecrosssectionbetweenEx

=

20 MeV and23 MeVandusing

awidththat bestdescribesthespectrum inthisregion.A similar descriptionfortheshapeofthiscomponentwas foundinastudy of208Pb

[30]

whereanexperimentalextractionoftheangular

dis-tributionofthebackgroundwaspossible.

Thevirtual E1photonspectrum

[31]

foreachisotope was cal-culated using the eikonal approximation [32] and averaged over

the angular acceptance of the detector. The equivalent

photo-absorption spectrum (cf. Fig. 2(c)) was then obtained using the followingequation d2

σ

d



dEγ

=

1 dNE1 d



σ

πλ γ

(

).

(1)

Finally,

Fig. 2

(d) showstheequivalent photo-absorptionspectrum rebinnedto200 keVfordirectcomparisonwiththe(

γ

, xn)results. The presentsetup at

θ

lab

=

0◦ doesnotallow forthe

determina-tionofaccurate verticalscatteringangles,thus limitingthe angu-lar resolution[10].We therefore refrainfrom extractingabsolute photo-absorptioncrosssections.Theexcitationenergydependence oftheconversion,however,isnotaffected.

3. Comparisonwith(γ, xn)results

Through the simultaneous measurement ofthe partial photo-nuclear cross sections

σ

(

γ

,

n

)

+

σ

(

γ

,

pn

)

and

σ

(

γ

,

2n

)

using a

monochromatic photon beam, total photo-absorption cross

sec-tions have been determined in heavy nuclei. Data obtainedwith

this method for the IVGDR in the stableeven–even neodymium

andsamariumisotopicchainsare giveninRefs.[17] and

[19]

, re-spectively. Fig. 4 displays the rebinned spectra from the present

work normalised to the maximum of the photo-absorption cross

sections[17,19] tofacilitatea comparisonoftheevolutionof the shapeoftheIVGDRwithincreasingdeformation.

Carlosetal.[17,19](greenhistograms)observedaspreadingof the IVGDRasthe nucleibecomesofter followedby a splittingof the IVGDR into two distinct dipole modes for 150Nd and 152Sm,

which were interpreted as K

=

0 and K

=

1 components. The

equivalent photo-absorptioncrosssectionsfromthe presentwork (redhistograms)displayasimilartrend,i.e.,a generalbroadening oftheIVGDRwithincreasingdeformation.Forthemostdeformed

150Ndand152Sm, theresonance becomes skewedwithincreased

strength on the low-energy side, but no split into two distinct componentsisobserved.

(4)

136 L.M. Donaldson et al. / Physics Letters B 776 (2018) 133–138

Table 1

ComparisonofLorentzianparameterisations,Eq.(2),forthepresentphoto-absorptioncrosssectionswiththosefrom Ref. [17]forthe neodymium isotopesand fromRef. [19]for152Sm.Thequantity R denotesthe ratioof

photo-absorptioncrosssectionssummedintheexcitationenergyregions10–14 MeV and14–18 MeV,respectively.

Isotope β2[46] E1(MeV) 1(MeV) E2(MeV) 2(MeV) R Reference

144Nd 0.13 15.05±0.10 5.30±0.25 0.55 [17] 15.64±0.01 4.93±0.03 0.42 Present 146Nd 0.15 14.80±0.10 6.00±0.30 0.66 [17] 15.69±0.02 6.11±0.07 0.47 Present 148Nd 0.20 14.70±0.15 7.20±0.30 0.74 [17] 15.52±0.01 5.84±0.04 0.53 Present 150Nd 0.28 12.30±0.15 3.30±0.10 16.00±0.15 5.20±0.15 0.77 [17] 11.97±0.10 2.91±0.40 15.67±0.04 5.64±0.09 0.60 Present 152Sm 0.31 12.45±0.10 3.20±0.15 15.85±0.10 5.10±0.20 0.87 [19] 12.40±0.20 4.73±0.65 16.36±0.07 6.36±0.14 0.62 Present

Fig. 4. (Colouronline).Photo-absorption crosssectionsfromthepresentdata(red histograms)normalisedtothemaximumofthepre-existing(γ, xn)results(green histograms)[17,19].ThebluelinesshowtheresultsofSSRPAcalculationswiththe SLy6forcedescribedinthetext (solid:full,dashed-dotted: K=0 part, dashed:

K=1 part).

The obvious discrepancies (in both the K

=

0 and K

=

1 re-gions)betweenthephoto-absorptionresultsandthepresentdata are reflected in a change ofparameters when attempting to de-scribethe observedresonances byLorentzians.The present

spec-tra were fitted with a modified Lorentzian of the form used in

Refs.[17,19]

σ

(

E

)

E 2

2 R

(

E2

E R2

)

2

+

E2

2R

,

(2)

where ER corresponds to the resonance centroid energy and

R

totheresonancehalf-width.Forthemoredeformednuclei,a sum of two modified Lorentzianswas used.The best fitto the

exper-imental data was selected such that the value for the reduced

χ

2 wasoptimised. Inthecaseofthe148Ndisotope,itwas found

that the reduced

χ

2 value was not improvedthrough the useof

atwoLorentzianfitasassumedinareanalysis[33]ofthedataof Ref.[17].Theresultsaresummarisedin

Table 1

.Inordertofurther illustratethesystematicdifferencesbetweenthetwoexperiments,

we also provide the ratio R of summed photo-absorption cross

sections inthe excitation energy regions 10–14 and 14–18 MeV, respectively.

Forspherical andtransitionalnuclei, a shift ofthecentroid to higherenergiesisobservedforthepresentdata.Thenew param-eterisations for thedeformednucleidonot yielda ratioof

0

.

5 for K

=

0 and K

=

1 oscillatorstrengths,respectively,asexpected

for prolate deformed ground states [3]. One should remember,

however, that 150Nd and 152Sm lie just above the shape phase transitionfromvibratorstoaxialrotors

[20,34]

.Althoughtheyare alreadywelldeformed,theirdeformationpotentialissoftinthe

β

degreeoffreedom

[21]

.Thecorrespondingshapefluctuationsthus enhancethewidthoftheresonancepeakswhich,inturn,may hin-deracleardiscriminationoftheK

=

0 and1 branches.

The presentresults do not provide absolute photo-absorption crosssectionsandthus cannotdistinguishwhetherthe main dis-crepancieslie inthe K

=

0 orK

=

1 region,buttheagreementat highexcitationenergiesin

Fig. 4

and

Table 1

suggesttheformer.In anycase,theyclearlyindicateadifferentratioof K

=

0 andK

=

1 componentscomparedtoRefs.[17,19].Thisfindingisindependent ofthebackgroundin thespectraduetonuclearprocessesshown to be smallin the energyregion of the IVGDR, cf.Fig. 2(a). The largestcomponentstemsfromtheISGMR,whoseangular distribu-tion peaks at 0◦.Even at themaximum of the ISGMR peak, the crosssectioncontributiondoesnotexceed10%.

New photo-absorption data are available from (

γ

, n) experi-ments [35,36] in the excitation-energy region between the neu-tronthresholdandEx

13 MeV.A studyoftheSmisotopechain

finds systematically smaller cross sectionsthan Ref. [19], corrob-orating the present results. A similar investigation of 143–148Nd findsagainsignificantlylower crosssectionsthanRef.[17] forthe lighterisotopesbutfairagreementfor146,148Nd.Photo-absorption

cross sections of 154Sm [37] have been deduced in a study of

theE1strengthwithforwardangleprotonscatteringanalogousto the experiments described inRefs. [11–14]. The results doshow a double-humpstructure butwitha clearreductioninthe K

=

0

(5)

region anda slight enhancement in the K

=

1 region compared tothe Saclay data [19], againleading toa reduced K

=

0

/

K

=

1 ratioasinthepresentcase.Thesefindingsarequalitatively consis-tentwithaglobalreanalysisofdatatakenwiththeSaclaymethod

[38],which indicates thatthe (

γ

, n) crosssections are systemati-callytoolargeandthe(

γ

, 2n)crosssectionstoosmall.

One may speculate whether the observed differences are re-lated to the reaction mechanism (real vs. virtual photoexcita-tion).However,photo-absorptioncrosssectionsdeducedfrom sim-ilar (p, p) experiments using the virtual photon method show very good correspondence with (

γ

, xn) data in other cases, cf. Refs.[11,14].

4. Comparisonwithmodelcalculations

In order to investigate the role of K

=

0 and K

=

1

com-ponents further, a comparison with RPA calculationsparticularly suitedformodellingtheIVGDRispresented.The calculationsare

performedwithin the SkyrmeSeparable Random Phase

Approxi-mation(SSRPA)approach

[39]

.Themethodisfullyself-consistent sinceboththemeanfieldandresidualinteractionarederivedfrom thesame Skyrmefunctional. Theresidual interaction includes all the functional contributions as well as the Coulomb direct and exchangeterms.Theself-consistentfactorisationoftheresidual in-teraction cruciallyreduces thecomputational effort fordeformed nucleiandmaintainshighaccuracyofthecalculations

[39–41]

.

Wenotethatvariousmethodscanbeappliedtothedescription ofIVGDRandother collective excitationsindeformednuclei, see e.g.approacheswithfinite-rangeGognyforces

[42,43]

anda rela-tivisticmeanfield

[44]

.Some ofthesemoreelaborate approaches basedon thegenerator coordinatemethodtake into account nu-cleartriaxiality

[43]

orinvestigatethebreakingofaxialsymmetry byusingprojectiontechniques

[44]

.However,eithernotheoretical predictionsfor the presentproblemare available

[43,44]

or they showratherlargedeviationsfromexperiments

[42]

.

Here,theSkyrmeparameterisationSLy6

[45]

isusedwhichwas

shown to provide a good description of the IVGDR in

medium-heavy,deformednuclei

[41]

.Thecodeexploitsthe2Dgridin cylin-dricalcoordinates.Theaxialquadrupoledeformationcharacterised bytheparameter

β

2isdeterminedbyminimisationofthetotal

en-ergy,and

β

2valuesobtainedaretypicallyclosetodata

[41]

when

takingintoaccountthatdata,deducedfromB(E2)values,embrace groundstate deformationplussomequantumfluctuationsnot in-cludedinmeanfieldcalculations. Wethusadopttheexperimental values(cf.

Table 1

)forthequadrupoledeformationin146,148,150Nd and 152Sm, respectively. For the nearly spherical 144Nd, a

negli-gible deformation,

β

2

=

0

.

001, is used, since the value given in

Ref.[46]representsadynamicalratherthanaground-state defor-mation. Nd and Sm isotopes in the transitional region, however, show very soft deformation energy surfaces,which gives a large uncertaintytothetheoreticalground-statedeformations.Wehave checkedtriaxialitywithfull3Dmean-fieldcalculationsanddonot findanyforthenucleiconsideredhere, inagreementwitha sys-tematicstudyofnuclearshapesusingtheSkyrmefunctionalSkM*

[47].

PairingistreatedwithdeltaforcesattheBCSlevel

[48]

.A large two-quasiparticle basis up to

100 MeV is taken into account. TheThomas–Reiche–Kuhnsumrule

[49]

forisovectorE1strength isexhausted by 98–100%.Tofacilitatea comparisonbetweenthe experimental results and the model calculations, the SSRPA

pre-dictionswere smoothedwithawidth

=

2 MeV,whichprovides

agood description ofthe broadstructure ofexperimental IVGDR strengthdistributionsinmanyheavydeformednuclei

[41]

.

The resulting photo-absorption cross sections are shown in

Fig. 4asbluelines.Theyare normalisedto thedataatthe

high-energy flank of the IVGDR, where the results of Carlos et al.

[17,19]andthepresentworkagree reasonablywell.Forthemost

deformed nuclei, 150Nd and 152Sm, the separation into K

=

0

(dashed-dotted) and K

=

1 (dashed) components is additionally

shown.Forthesphericalandtransitional nuclei,144,146,148Nd,the

calculationsare inbetter agreement withthe presentresults,i.e. favouringsmallercrosssectionsonthelow-energyflank.For150Nd

and152Sm,theSSRPAresultsdisplayadouble-humpstructure,but againwithalower K

=

0 componentthan observedintheSaclay results and total cross sections closer to the present data.Since thereisacertaindegreeoffreedominthenormalisationonecould bringthetheoreticalresultsinbetteragreementwiththeresultsof Carloset al.atlowerexcitation energies,butatthepriceof over-shootingallavailabledataathigher Ex.

5. Conclusions

A measurement of the (p, p) reaction at Ep

=

200 MeV and

θ

lab

=

0◦favouringrelativisticCoulombexcitationintheenergy

re-gionoftheIVGDRhasbeenpresentedfortheeven–even144–150Nd

isotopic chain as well as for 152Sm. While the high

energy-resolutiondata show considerablefinestructure (even inthe de-formed isotopes),whichcarriesinformation ontherole of differ-ent decaymechanismsof thegiant resonances [27–30] andlevel densities [16,30,50], the present work focuses on a study of the evolutionoftheIVGDRasafunctionofdeformation.

A general broadeningof the IVGDR is observed with increas-ing deformation andthe mostdeformed150Ndand152Sm nuclei exhibitapronounced asymmetryratherthanadouble-hump struc-tureowingtoK -splitting,incontrasttopreviousphoto-absorption datafromSaclay [17,19].Thisisinterpreted asa signature ofthe peculiar nature of these two nuclei which lie close to the crit-ical point of a shape phase transitionfrom vibrators to rotators characterisedbyasoftpotential inthe

β

degreeoffreedom

[21]

. Self-consistentRPAmodelcalculationswiththeSkyrmeSLy6force, particularlysuitedtodescribetheIVGDR,provideafairdescription of the data consistent with a reduction of cross sectionson the low-energysideoftheresonancewithrespecttotheSaclay data. In view of their general relevance, an independent test of these unexpectedresultswouldbehighlyvaluable.Itshouldbepossible to realisesuch experiments inthe nearfuture atthe low-energy taggersystemNEPTUNattheS-DALINAC

[51]

andatELI-NP[52]. Acknowledgements

We thank J.L. Conradie and the accelerator team at iThemba LABS forproviding excellent beams. We are indebted to M. Itoh for providing us with the numerical results of Ref. [25]. This

work was supported by the South African NRF and by the

Ger-man DFG undercontract No. SFB 1245. C.A.B. acknowledges

sup-port bythe U.S.DOEgrant DE-FG02-08ER41533andtheU.S.NSF GrantNo. 1415656andJ.K. bytheCzechScienceFoundation(Grant No. P203-13-07117S).

References

[1]M.N. Harakeh,A.vanderWoude,GiantResonances:Fundamental High-Fre-quencyModesofNuclearExcitation,OxfordUniversityPress,Oxford,2001.

[2]R.Bergère,in:LectureNotesinPhysics,vol. 61,Springer,Berlin,Heidelberg, New York,1977,p. 1.

[3]B.L.Berman,S.C.Fultz,Rev.Mod.Phys.47(1975)713.

[4]G.A.Bartholomew,etal.,Adv.Nucl.Phys.7(1973)229.

[5]M.Arnould,S.Goriely,K.Takahashi,Phys.Rep.450(2007)97.

[6]F.Käppeler,R.Gallino,S.Bisterzo,WakoAoki,Rev.Mod.Phys.83(2011)157.

[7]M.B.Chadwick,etal.,Nucl.DataSheets112(2011)2887.

[8]C.D.Bowman,Annu.Rev.Nucl.Part.Sci.48(1998)505.

(6)

138 L.M. Donaldson et al. / Physics Letters B 776 (2018) 133–138

[10]R.Neveling,etal.,Nucl.Instrum.MethodsA654(2011)29.

[11]A.Tamii,etal.,Phys.Rev.Lett.107(2011)062502.

[12]I.Poltoratska,etal.,Phys.Rev.C85(2012)041304(R).

[13]A.M.Krumbholz,etal.,Phys.Lett.B744(2015)7.

[14]T.Hashimoto,etal.,Phys.Rev.C92(2015)031305(R).

[15]J.Birkhan,etal.,Phys.Rev.Lett.118(2017)252501.

[16]D.Martin,etal.,Phys.Rev.Lett.119(2017)182503.

[17]P.Carlos,H.Beil,R.Bergère,A.Leprêtre,A.Veyssière,Nucl.Phys.A172(1971) 437.

[18]A.Bohr,B.R. Mottelson,NuclearStructure, vol.II, Benjamin,Reading, 1975, p. 490 ff.

[19]P.Carlos,H.Beil,R.Bergère,A.Leprêtre,A.DeMiniac,A.Veyssière,Nucl.Phys. A225(1974)171.

[20]R.F.Casten,N.V.Zamfir,Phys.Rev.Lett.87(2001)052503.

[21]F.Iachello,Phys.Rev.Lett.87(2001)052502.

[22]L.M.Donaldson,PhDthesis,UniversityoftheWitwatersrand,2016;andtobe published.

[23] J.Raynal,programDWBA07,NEADataServiceNEA1209/08. [24]W.G.Love,M.A.Franey,Phys.Rev.C24(1981)1073;

M.A.Franey,W.G.Love,Phys.Rev.C31(1985)488.

[25]M.Itoh,etal.,Phys.Rev.C68(2003)064602.

[26]C.O. Kureba, et al., Phys. Lett. B (2017), submitted for publication, arXiv: 1705.10108.

[27]A.Shevchenko,etal.,Phys.Rev.Lett.93(2004)122501.

[28]A.Shevchenko,etal.,Phys.Rev.C79(2009)044305.

[29]I.Usman,etal.,Phys.Lett.B698(2011)191.

[30]I.Poltoratska,etal.,Phys.Rev.C89(2014)054322.

[31]C.A.Bertulani,G.Baur,Phys.Rep.163(1988)299.

[32]C.A.Bertulani,A.M.Nathan,Nucl.Phys.A554(1993)158.

[33]R.Capote,etal.,Nucl.DataSheets110(2009)3107.

[34]R.F.Casten,Nat.Phys.2(2006)811.

[35]H.-T.Nyhus,etal.,Phys.Rev.C91(2015)015808.

[36]D.M.Filipescu,etal.,Phys.Rev.C90(2014)064616.

[37]A.Krugmann,D.Martin,P.vonNeumann-Cosel,N.Pietralla,A.Tamii,EPJWeb Conf.66(2014)02060;andtobepublished.

[38]V.V.Varlamov,B.S.Ishkhanov,V.N.Orlin,K.A.Stopani,Eur.Phys.J.A50(2014) 114.

[39]V.O.Nesterenko,etal.,Phys.Rev.C74(2006)064306.

[40]V.O.Nesterenko,etal.,Int.J.Mod.Phys.E17(2008)89.

[41]W.Kleinig,V.O.Nesterenko,J.Kvasil,P.-G.Reinhard,P.Vesely,Phys.Rev.C78 (2008)044313.

[42]M.Martini,S.Péru,S.Hilaire,S.Goriely,F.Lechaftois,Phys.Rev.C94(2016) 014304.

[43]J.-P.Delaroche,etal.,Phys.Rev.C81(2010)014303.

[44]J.M.Yao,K.Hagino,Z.P.Li,J.Meng,P.Ring,Phys.Rev.C89(2014)054306.

[45]E.Chabanat, P.Bonche,P.Haensel,J.Meyer, R.Schaeffer,Nucl. Phys.A635 (1998)231.

[46]S.Raman,C.W.NestorJr.,P.Tikkanen,At.DataNucl.DataTables78(2001)1.

[47]G.Scamps,D.Lacroix,Phys.Rev.C89(2014)034314.

[48]M.Bender,K.Rutz,P.-G.Reinhard,J.A.Maruhn,Eur.Phys.J.A8(2000)59.

[49]P.Ring,P.Schuck,TheNuclearMany-BodyProblem,Springer,Berlin,1980.

[50]I.Usman,etal.,Phys.Rev.C84(2011)054322.

[51]D.Savran,etal.,Nucl.Instrum.MethodsA613(2010)232.

Referenties

GERELATEERDE DOCUMENTEN

doet geen strategische woordvoering dominante coalitie is niet alleen formeel dominante coalitie wisselt door mannen gedomineerde organisatie door particulier eigendom wordt

Figuur 33 Westerschetde opgezogen nabij Ellewoutsdijk (Is top van figuur 25); figuur 34 Verrebroekdok, Zanden van Kruisschans, bovenste zandige deel; figuur 35 Kallo Bouwput

profile of the resonance is observed by measuring the distillation rate of the Li from the potassium-rich Li-K mixture in the optical trap as a function of magnetic field.. As

The event selection procedure was the same as for the 1991 data, that is, events were required to have between 2 and 6 charged particles with momentum greater than 0.2 GeV, with

The technical possibilities of the application, the many stakeholders, the implementation management and the social marketing of heat pumps are all very important factors when

Recent heeft de Minister van Landbouw van Noord Rijn Westfalen (Duitsland) aangekondigd wetgeving te zullen ontwikkelen, die het doden van haantjes verbiedt 3. De discussie over

Mede door de niet onaanzienlijke beleidsom- buigingen op het terrein van de sociale zekerheid zijn onderzoekers zich op de gevolgen hiervan voor de huishouding gaan

These policy points have as their objective to unite states via the adoption of truly Pan-African politics; increasing African agency at the international level; forming