• No results found

How global climate policy could affect competitiveness

N/A
N/A
Protected

Academic year: 2021

Share "How global climate policy could affect competitiveness"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Energy

Economics

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n e e c o

How

global

climate

policy

could

affect

competitiveness

Hauke

Ward

a,b,c,∗

,

Jan

Christoph

Steckel

b,c

,

Michael

Jakob

b aInstituteofEnvironmentalSciences(CML),DepartmentofIndustrialEcology,LeidenUniversity,theNetherlands bMercatorResearchInstituteonGlobalCommonsandClimateChange,TorgauerStraße1215,10829,Berlin,Germany cPotsdamInstituteforClimateImpactResearch,LeibnizAssociation,Postfach601203,14412,Potsdam,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18January2019

Receivedinrevisedform4October2019 Accepted14October2019

Availableonline2November2019 JELclassification: C67 F16 F18 L50 L60 Q56 Keywords: Globalcarbonprice Input-outputanalysis Energy-intensive Trade-exposedindustries Competitiveness Labormarket Globalsupplychains

a

b

s

t

r

a

c

t

Aglobaluniformcarbonpricewouldbeeconomicallyefficientandatthesametimeavoid ‘carbon-leakage’.Still,itwillaffectthecompetitivenessofspecificindustries,economicactivityandemployment acrosscountries.Thispaperassessesshort-termeconomicshocksfollowingtheintroductionofaglobal carbonpricethatwouldbeinlinewiththeParisAgreement.BasedontheWorldInput-OutputDatabase (WIOD),wetracethecarboncontentoffinaloutputthroughglobalsupplychains.Thisallowsusto estimatehowpricesofthefinaloutputwouldreacttotheintroductionofaglobalcarbonprice.We findthatimpactsonindustrialcompetitivenessarehighlyheterogeneousacrossregionsandeconomic sectors.ThecompetitivepositionofBrazil,Japan,theUSAandadvancedeconomiesoftheEUislikely toimprove,whereasindustriesandlabormarketsinnewlyindustrializingAsianeconomiesaswellas EasternEuropearelikelytoexperiencesubstantialadverseimpacts.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-SA license(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

AchievingtheclimatetargetsoftheParisAgreement(UNFCCC, 2015)requires substantial reductions in global greenhousegas (GHG) emissions.Under thecurrent global climategovernance

architecture, members of the Paris Agreement pledged

volun-taryunilateralclimatetargetsandmitigationpoliciesasspecified in theirNationally Determined Contributions(NDCs). However, the implementationof ambitious unilateral climatepolicies by first moversoften facesresistance due to concerns about ‘car-bon leakage’, i.e. the fear that energy-intensive, trade-exposed (EITE)industriescouldrelocatetocountrieswithlaxerclimate poli-ciesorlessefficientproductiontechnologies.Countriesadopting ambitiousclimatepoliciesmightthenruntheriskofincurring sub-stantialcoststoreducetheiremissionswhileatleastsomeofthe emissionreductionsachievedaresimplytransferredelsewhere.

夽 PublicationofthissupplementwassupportedbyETHZürich,theUniversityof MünsterandEconomicsforEnergy.

∗ Correspondingauthorat:InstituteofEnvironmentalSciences(CML), Depart-mentofIndustrialEcology,LeidenUniversity,P.O.Box95182300RA,Leiden,the Netherlands.

E-mailaddress:h.ward@cml.leidenuniv.nl(H.Ward).

Economistshavefora longtime advocateda uniformglobal priceonGHGemissions(Cramtonetal.,2017;Edenhoferetal., 2015;High-LevelCommissiononCarbonPrices.,2017;Weitzman, 2014).Thiswouldbe themostcost-efficientpolicyinstrument, guaranteeingthatabatementtakesplaceforactivitiesforwhich emissionscanbereducedintheleast-costmanner.Moreover,a globalcarbon pricewould preventcarbonleakage, asno coun-trywouldbenefitfromanartificialcomparativeadvantagearising fromthelackofclimatepolicy.Yet,itposesahighercostburden onmorecarbon-intensiveproducers(FullertonandMuehlegger, 2019).Hence,auniformglobalcarbonpricecouldhaveimportant consequencesforindustrialcompetitiveness,nationalgrossvalue addedandemployment.Whiletheacademicliteraturehas exten-sivelyexaminedtheeffectofunilateralclimatemeasuresoncarbon leakageandcompetitiveness1,thereis,toourknowledge,onlyvery

limitedunderstandingoftheimplicationsofglobalclimatepolicy.

1SeeBöhringeretal.,2012;BrangerandQuirion,2014;CarboneandRivers,2017; DechezleprêtreandSato,2017;Jakobetal.,2014;Forinetal.,2018;KimandKim, 2012;Sayginetal.,2011;Voigtetal.,2014.

https://doi.org/10.1016/j.eneco.2019.104549

(2)

Thispaperaimstofillthisgapbyprovidinginsightsintothe short-termcompetitivenessimpactsinducedbya globalcarbon price.OuranalysisisbasedontheWorldInput-OutputDatabase (WIOD) (Timmer et al., 2015), a multi-regional Input-Output (MRIO)database.Weusethisdatatoderivethe‘NormalizedNet CarbonContent’(NNCC)ofallglobalsupplychains,i.e.the emis-sionsgeneratedperUSDofoutputfromagivensectorinagiven countryovertheentiresupplychain.Thisinformationcanbeused todeterminethepriceincreasethat wouldresultfromaglobal carbonpriceineachsectorandcountry.Thusitcanhelpto iden-tifysectorsandcountriesfacingthemostsevererisksofadverse impactsoncompetitiveness,valueaddedandemployment.

Vulnerableindustriesarethosethatdisplaybothasignificant relative price increase and a highcontribution to the national valueaddedwithinthecorrespondingeconomy.Thesesectorscan beexpectedtolosemarketshare,profitabilityandemployment. Our resultsindicate that a uniformglobal carbon price would, atleastintheshortterm,improvethecompetitivenessof coun-trieswithlow-carbonenergysystems(e.g.BrazilorFrance) and efficientproductiontechnologies(particularlyindustrialized coun-tries). By contrast, developing or transitioning economies with carbon-intensiveenergysystems, suchasChina,India and Rus-sia,canbeexpectedtoexperiencesubstantialpriceincreasesin someenergy-intensiveindustries.Overall,agloballyuniform car-bonpricingpolicywouldprobablymakeWesternindustriesmore competitive,althoughnegativeinitialimpactscanbeexpectedfor EasternEuropeanand fast-growingAsian countries2 .Themost

severe impacts would probably affect low-skilled workers and henceprobablythepoorestsegmentsofsocieties.

Thispaperproceedsasfollows.Section2introducesthedataand methodology.Section3presentstheresults.Section4discusses policyimplicationsandconcludes.

2. Dataandmethods

Ouranalysesarebuiltonaninnovativewaytoestimatethe Nor-malizedNetCarbonContent(NNCC)ofglobalsupplychains.We buildouranalysesonmulti-regionalinputoutputmodelingbased ontheWorldInputOutputDatabase(WIOD).Inthissectionwe willfirstdescribethedataweuse.Afterwards,wewilldescribe howwecalculatetheNNCC.BasedontheNNCC,weestimatethe implicationsofimplementingaglobalcarbonpriceoncountries’ economicperformanceandlabormarket.Finally,wewillcritically discussthemethodologicalapproachtakeninthispaper.The fol-lowingsub-sectionsdescribetheunderlyingdata,themethodology toestimatethecarboncontentoftradeandhowitcanbeusedto assessthecompetitivenessimpactsofaglobalcarbonprice.We thendiscussthelimitationsofourapproach.

2.1. Data

We use the World Input-Output Database (WIOD) (Timmer

etal.,2015)andthecorresponding‘satellitedata’onenergy-related CO2emissionsforeachsectorineachregion3.Thedatasetreflects

41 regions and 35 sectors. WIODincludes the EU27 (which is

thecurrent EuropeanUnionwithout Croatia), aswellas major economies(includingAustralia,Canada,Japan,Mexico,SouthKorea andUnited States),and newlyindustrialized economies (Brazil, China,Indonesia,India,Russia,TaiwanandTurkey).Theseregions accountforapproximately85%ofworldGDP(Timmeretal.,2015). Theremainderisincludedinaresidualregion,referredtoasthe

2 Foraspatialdistribution,seeFig.A3intheSupplementaryinformation 3 Wedonotconsideremissionsfromlanduseandlandusechange.

‘RestoftheWorld’(ROW).4 Weusetheyear2009,asit

consti-tutesthemostrecentreleasethatincludesemissionsdata.Thishigh regionalandsectoralresolutionenablesadetailedunderstanding ofthecarboncontentofglobalsupplychains.

2.2. Estimatingthenormalizednetcarboncontent

Weapplyamodifiedsupply-sidefootprintanalysistoidentify thecarboncontentofglobalsupplychains.IntheMRIOdata, out-putfromacertainsectorinoneregionemployedasaninputfor production in a differentsector and/orcountryis described by theinter-industryflowmatrixZ ∈R(m∗n)×(m∗n),withmbeingthe numberofsectorsandnbeingthenumberofregions.Final con-sumption,bysectorandcountry,ofallcountriesisdenotedbythe finaldemandmatrix Y ∈R(m∗n)×n.TheelementsofZ aregiven byZr,sr,s,whichdenotesallmonetaryflowsfromregionr,sectors toregionr’,sectors’Correspondingly,YconsistsofelementsYr

r,s, whichrepresenttheaggregatedmonetaryflowfromregionr,sector sintothefinaldemandofregionr.

Inordertoassessthecarboncontentoffinalconsumption,we needtoderivetheLeontiefinverseL,whichspecifiestheinputs usedtogenerateaunitoffinaloutputovertheentiresupplychain (MillerandBlair,2009).Forthisreason,wedividetheelementsof Zbythecorrespondingtotalsectoraloutput Or,s=



r



s Zrs rs +



r Yr

r,s.Thetechnologymatrixthatreflectsallnecessarydirect inputstoproduceoneunitofoutputineachsectorisdenotedby A.TheLeontiefinverseisthencalculatedasL= (I−A)−1,whereI denotestheunitymatrix.Torelatemonetaryinputsfromdifferent sectorstoCO2emissions,weusedataonemissionFrs bysectors inregionr,whichwedividebysectoraloutputsOtoarriveatCO2 emissionsperUSD.

The total CO2 emissions ˆfrs associated withone unit of sec-tor s in region r for final consumption can then be expressed as ˆfs r =



r



s fs rL r,s

r,s.Wecalltheemissionsassociatedwiththe entireglobalsupplychainofaunitoffinaloutputthe‘Normalized NetCarbonContent’(NNCC).NNCCallowsthecomparisonof asso-ciatedcarbonperunitofoutput,andrelatedpriceincreaseswithin sectorsandacrosscountries.Thisapproachyieldsasubstantially higherresolution thanaconventional carbonfootprint analysis, wheretwo vectorsaremultiplied(i.e.,(f·L)·Y),hence omitting importantsectoral,aswellasregional,details.

2.3. Assessingimpactsoncompetitivenessandemployment

Ouranalysisassumesthatagloballyuniformcarbonpriceis implementedand thattheassociated priceincreasesfor manu-facturedgoods are fullypassed through toconsumers (Kenkel, 2005), regardlessofwhetherthecarbon priceis appliedatthe pointofextraction,production orconsumption(Karstensen and Peters,2018).Thisisinlinewiththeobservationthatintheshort term,priceincreasesresultingfromfueltaxesaremainlyborneby consumers(ChouinardandPerloff,2004;MarionandMuehlegger, 2011).Weassumeperfectsubstitutabilityofeconomicoutputfrom agivensectoracrosscountries,i.e.thatallfinaloutputofagiven sectorisproducedfortheglobalmarket.Theshort-termimpacton industrialcompetitivenessisthendeterminedbythepriceincrease andtheassociated demand-sidereactionwithineach economic

(3)

sector5.Ouranalysisconsidersthatchangesinthedemandoffinal

goodswillhaverepercussionsforallsectorsformingpartoftheir globalsupplychain.Ifaglobalcarbonpricepisimplementedand passedontotheconsumer,finalgoodsfromsectorsinregionr willseeapriceincreaseofpr

s=p· ˆf s

rperUSD.Forouranalysis, weassumeaglobalcarbonpriceofUSD50pertCO2,whichwould beroughlyinlinewiththe2◦Ctarget(High-LevelCommissionon CarbonPrices.,2017).

Weassumethatallfinaloutputisexportedtotheglobalmarket, fromwhichitmaybeconsumedeitherintheregionwhereitwas produced,asdomesticconsumption,orinadifferentregion.We employapriceelasticityofexportvaluesofı=−2.84fromSolleder (2013)6toassesschangesinfinaloutputresultingfromtheseprice

changesbysectorandcountry.Weusethisparametertoproject changesinfinaloutputasafunctionofpricechangesrelativeto theglobalaverage.Thatis,weassumethatsectorsinregionsthat aresubjecttoapriceincreasethatishigher(lower)thantheglobal average,experiencealoss(gain)inmarketshare.Usingtheabove elasticitytomodifyeachentryofthefinalconsumptionmatrixY givesusthematrixY∗.Theelementsofthismatrixarecalculatedas y∗rr,s=yr



r,s· (1+prs− ¯ps)ı,with ¯psbeingtheglobalmeanprice changeforsectors.Y∗canthenbeusedtocalculateallsectoral outputswithaglobalcarbonprice,O∗=LY∗.

ThematrixZcanalsobeusedtodeterminepaymentsfor pro-ductionfactors,suchaswagesandreturnstostakeholders,asthe differencebetweenoutputsfromonesectorandthissector’sinputs fromothereconomicsectors.Theinputsofsectorsofcountryr arecalculatedasIr,s=



r



s

Zrr,s,s.Hencethecorrespondingvalue

added(VAD)canbecalculatedasVADr,s=Or,s−Ir,s.TheVADper unitofoutputisthengivenby

v

adr,s=VADr,s/Or,s.

MultiplyingthenewlyderivedelementsofO∗withthe corre-spondingelements

v

adallowsustoprojectchangesinregionaland sectoralvalueadded.

Finally,WIODalsoaccountsforsectorallaboruseLU(inhoursfor threedifferentlevelsofqualification,low-,medium-,and highly-skilled).WecalculatethesectorallaborintensityLIr,sq insectors, regionrofqualificationqperunitofoutputasLIr,sq =LUr,sq /Or,s. Onthisbasis wecanprojecthowchangesinfinal outputrelate tochangesinlabordemandforeachsectorsandregionLUq∗r,s= LIr,sq ·O∗r,s.Thesumofallsectoralchangesineachregiongivesa roughindicationofimpactsonregionallabormarkets.

2.4. Discussionofthemethodology

Althoughthe analysisallows the identificationof the initial impactsofaglobalcarbonpriceatarelativelyhighlevelofsectoral detail,itfacesanumberoflimitations.

First, sectoral resolution is restricted by the availability of underlyingdata.Althoughtherearedatasetswithhigherregional resolution(Aguiaretal.,2016;Lenzenet al.,2013), wedecided touseWIOD,asit accountsfor thelargestand mostadvanced countrieswithhighqualitynationalaccounting.Thisisanasset (Steen-Olsenetal.,2015).

Second, using monetary input-output (IO) data implicitly assumeshomogeneityofproductsacrossregions.Thisassumption

5Giventhisassumption,weuseapriceelasticityofexportvaluestosimulatethe

short-termimpactofpricechangesinfinaldemand.Ouranalysisassumesthatall commoditiesproducedinagivensectoraresubjecttothesameelasticity(however, thecompositionofcommoditiesproducedineachsectordoesneednotbeidentical acrosscountries).

6Theelasticityreferstochangesintradevaluecausedbyanexporttax.The

ı-valueisclosetothenumbersobservedbyHeadandMayer(2014),who,ina meta-analysis,findamedianpriceelasticityfortradegravityequationsof-3.19.

Fig.1.Short-termpriceincreasesacrosscountriesfromaglobalUSD50carbon pricebyeconomicsector.Boxesrepresent25thto75thpercentiles,blackcenter linesrefertomedians,whiskersineachdirectioncorrespondtothe10thpercentile (lowerbound)andthe90thpercentile(upperbound).AnoutlierforCoke,Refined PetroleumandNuclearfuelshasbeenexcludedfromtheplot12.Theboxplots

indi-catetheheterogeneityincarboncontentofglobalsupplychainsoffinaldemand goodsendingintherespectiveregionalsector.

canbequestioned(forfurtherdetailsseee.g.Alexeeva-Talebietal. (2012);Steen-Olsenetal.(2015)andWardetal.(2017)). Consider-ingdifferencesinproductsacrosssectorsandregionswouldadd additionaldetail toourapproach.In thesamevein,usingmore heterogenic elasticitiesacross sectors could help refine results. However,giventhatproductsinacertainsectoraresimilaracross countries,itseemsunlikelythatthisextensionwouldoverturnthe maininsightsofouranalysis.

Third,thispaperaimstoidentifytheshort-termimplicationsof priceshocks.Thistypeofanalysisishighlyrelevantinassessingthe politicaleconomicimplicationsofdifferentpolicies(Fullertonand Muehlegger,2019),but doesnotappropriatelycapturedynamic adjustment effects in the long run. Long-term effects, suchas changesinglobalsupplychains,substitutionofcarbon-intensive inputs,orinducingtechnologicalchange,couldbeassessedwith computablegeneralequilibrium(CGE) models(seee.g.Carbone andRivers(2017)andMattooetal.(2009)).However,CGE mod-elsareunabletoappropriatelycaptureshort-termeffectsandthe (potentiallycostly)adaptationprocessesfromonestateof equilib-riumtoanother(FullertonandMuehlegger,2019).Ourapproach, bycontrast,considersglobalsupplychainsandinternational con-nectionsata higherlevel ofdetail thana CGE7, thusproviding

importantcomplementaryinformation.

3. Results

Thissectionfirstassessesshort-termpriceincreasesthatwould occur,byeconomicsectorandregion,inresponsetothe introduc-tionofaglobalcarbonprice.Wethenusethisinformationtoassess

12ThisoutlierisEstoniawitha53%projectedpriceincrease.Itislikelytobecaused

bythecomparativelylargeimportanceofEstonianshaleoilproduction(IEA,2009), seeTableA1intheSIforfurtherdetail.

7Typicallynestedproductionfunctions,whichareusedforCGEmodellinghave

(4)

Fig.2.ProjectedpriceincreasesduetoacarbonpriceofUSD50pertCO2vs.theshareofagivensectorintheregion’stotalvalueadded.Thedottedlinesshowtheaverage

priceincreaseacrossthecountriesconsideredandtheaverageregionalVADshare.OnlyregionswithaVADsharegreaterthantheglobalmeanareplotted.Valuesforprice increasesandregionalvalueaddedforallsectorsaregiveninTableA1andTableA7intheSI,respectively.

potentialimpactsoneconomicoutput,valueaddedand employ-ment.

3.1. Impactsonindustries

Fig.1 assessestheshort-termeffectofa globalcarbonprice ofUSD50pertCO2 onthepricesoffinaloutputacrosssectors. Foranygiveneconomicsector,thereisasubstantialvariationin termsof NNCCfor finaloutput,which canbeattributedto dif-ferencesin productiontechnologiesand energy systemswithin supplychains.Thisvariationresultsinsubstantialdifferencesin pricechangesoffinaloutputacrosscountriesforanygiven eco-nomicsector.Insomecountries,priceincreasesformetalswouldbe morethan20%,andmorethan15%forchemicals,plastic,and(fossil andnuclear)fuels.Thehighestlevelsofheterogeneityacross coun-triesareidentifiedforCoke,RefinedPetroleumandNuclearFuelas wellasOtherNon-MetallicMinerals(refertoTableA1inthe Sup-plementaryinformationforfurtherdetails).Thelowest(average) priceincreasesareprojectedforTextilesandTextileProducts, Man-ufacturingnec8,ElectricalandOpticalEquipment,andTransport

Equipmentand Machinerynec.Fromaregionalperspective,the highestpriceincreasesareprojectedinnewlyindustrializingAsian economies,suchasChina,IndonesiaandIndia.OtherEastAsian economies(suchasKoreaandTaiwan)aswellasEasternEuropean states(suchasRussiaor Bulgaria)alsodisplaycarbon-intensive supplyandproductionchains.Acarbonpricewouldresultin com-parativelylargeincreasesinthepricesofthefinaloutputofthese regions.Incontrast,economieswiththeleastcarbon-intensive sup-plyandproductionchains(severalEUmembersaswellasBrazil) wouldseeonlymodestpriceincreases.

8 nec=notelsewhereclassified

Forthreeofthefourmostcarbon-intensivesectors(Fuel,Other Non-Metallic-Minerals,ChemicalsandBasicMetals)andthe major-ityoftheothersectors,valueaddedispositivelycorrelatedwith carbon-intensity(seeTableA10intheSI).Thisobservationsuggests that countries withmore carbon-intensive production patterns wouldbeover-proportionally affectedbya globalcarbon price. Suchapolicywouldplacethehighestburdenonthemostimportant economicsectors.

Figs.2and3relatepriceincreasesthatwouldresultfromaglobal priceof50USDpertCO2inacertainsectortothatsector’s eco-nomicimportance.InFig.2economicimportanceismeasuredby thepercentagecontributionofaparticularsectortothenational value-added(VAD).Fig.3considersVADrelativetoglobalVADfor eachparticularsector(i.e.aproxyfortheproducingcountry’sshare oftheglobalmarket)9.Thedashedlinesrepresentglobalaverages.

Henceregionalsectorsofhighdomestic(Fig.2)orglobal(Fig.3) relevancewithintheglobalsamplearelocatedintherighthalf. Regionalsectorsinthetop-rightquadrantarealsoprojectedtobe subjecttostrongpriceincreases.

Forinstance,forChina’sTextilesector,weprojectarelatively largepriceincreaseofabout5%.Thissectoraccountsforabout3% ofChina’stotalVAD,andabout30%ofglobalvalueaddedinthe Textilesector.Incomparison,forTurkey(forwhichTextilesaccount forabout5%oftotalnationalVAD)thepriceincreasewouldbeonly about2%,whichisbelowtheglobalaveragepriceincreaseforthis sector.Hence,wewouldexpectaglobalcarbonpricetogeneratean increaseinTurkey’sglobalmarketshareinTextiles,butadecline

9Anadditionalinvestigationofcompetitivenessimpactsusing“Revealed

(5)

Fig.3.ProjectedpriceincreasesduetoacarbonpriceofUSD50pertCO2vs.theshareofaregionintheglobalvalueaddedforagivensector.Thedottedlinesshowthe

averagepriceincreaseacrosscountriesandtheaverageVADshare.OnlyregionswithaVADsharelargerthantheworldmeanareplotted.Valuesforpriceincreasesand sectoralsharesinglobalvalueaddedaregiveninTableA1andTableA6intheSI,respectively.

inChina’sshare.Likewise,forMetals,Chinawouldexperiencea priceincreaseofmorethan10%,whereaspricesinmostEuropean countriesaswellasJapanandBrazilwouldincreasebylessthan theglobalaverage.

Overall, the most severely affected economic activities are locatedindevelopingandEasternEuropeancountries.Although, forChina,manysectorsrepresentarelativelysmallVADsharein thenationaleconomy,thecorrespondingprojectedpriceincrease couldleadtosignificantshiftsintheglobaleconomyinabsolute terms.Duetoitssize,Chinaisthelargestglobalproducerin numer-ouseconomicsectors.TheAsianeconomiesofoursample(withthe exceptionofJapan)wouldbeparticularlynegativelyimpactedbya globalcarbonprice10.Bycontrast,USindustrieswithalargeshare

inglobalVADtendtobecleanerthanaveragesupplychains.This indicatesthattheintroductionofaglobalcarbonpricewouldboost theseindustries’comparativeadvantageandresultinincreasing marketshares.

3.2. Short-termeffectsonemploymentandGDP

Toassesspotentialshort-termeffectsofaglobalcarbonpriceon sectoralemploymentandnationalGDP,wecalculatethechanges infinaloutputthatwouldoccurasaresultofpricechanges assum-ingthattheindustriesconcerneddonotadjusttheirproduction

10AnadditionalmarketconcentrationanalysisisdoneintheSI.

methodsandworkersareunabletofindemploymentelsewhere

(seeSection2.3).Theresultsofthisanalysisshouldberegarded astheupperboundarymeasureoftheeconomicoutputandlabor forceunderpressure,ratherthananaccurateprojectionofGDP andjoblossesresultingfromaglobalcarbonprice.Understanding theextentoftheeffectsonGDPandthelaborforceunder pres-suremightbeofconsiderablepoliticalimportance;eventhough actuallossesinproductionandemploymentcanbeexpectedto reduce,theprospectoflosingafractionofoutputandemployment inagivenindustryislikely tobesufficienttogeneratepolitical resistanceamongworkersandshareholders.

Fig.4analyzesthetotalexpectedshort-termeffectsintodirect and indirecteffects. Directeffectsarethose thatwouldonly be caused by changes in final output. Indirect effects result from the additional changes in global supply chains that affect all downstreamsectorsproducingintermediateinputs.Valuesgreater (lower)thanone,denotepotentialgains(losses)inregionalGDP. For instance, a value of 1.01 denotes a potentialgain of 1% of regionalGDP.Overall,directeffectsdominateanddeterminethe directionofthetotaleffectformostregions.Totaleffectsrangefrom GDPunderpressureofabout3%forChinaandIndia,topotential gainsofabout1%forIreland.

(6)

Fig.4.DirectandindirecteffectsofaglobalcarbonpriceofUSD50pertCO2onGDP.Thefiguredistinguishesbetweendirecteffects(referringtosectoralfinaldemand

changesbyconsumers)andindirecteffects(referringtodemandchangesbydownstreamsectors).Thesizeofdotsreferstothetotaleffectinpercentagepoints,whichis obtainedbymultiplyingthetwofactors(directandindirect)andconvertingtheresulttoapercentagechange.TableA1intheSIprovidesvalues.

Fig.5.Projectedpressureonlabormarketsresultingfromaglobalcarbonpriceof50USDpertCO2.Theresultsconsiderthreedifferentlevelsoflaborqualification,i.e.

high,mediumandlow.Thebarsrefertothelefty-axis.Impactswhichareindicatedbydotsrefertotherighty-axis.Theresultspresentaceterisparibusimpactandmight thereforeserveasanupperboundoftheimpactonthejobmarket.

and2%ofthetotalworkforcerespectively11.Moreover,jobsare

impactedindifferentwaysdependingonthequalificationlevel.In thelargemajority(>75%)ofallcountries,low-skilledjobsare pro-jectedtoseethelargestrelativechanges.Thisisprobablybecause theproportionoflowqualifiedlaborisgreaterthanaverageinthe sectorsinvestigated,seeTableA8intheSI.InChina,morethan 2%ofthelow-skilledworkforcewouldbeunderpressure.Indiais anexception,asresultsindicatethatthemedium-skillworkforce wouldbemostseverelyaffected.Nevertheless,morethan3%of thelow-skilledworkforcewouldalsobeunderpressureinthis country.

4. Discussionandconclusions

Itisfrequentlyarguedthatunilateralclimatepolicymightlead toadditionalpressureonEITEindustriesandrelatedjobs,

partic-11 Thisisapproximatelythesameproportionoftheworkforcethathasbeen

affectedintheUSasaresultofChina’sentryintotheWorldTradeOrganization (Acemogluetal.,2016).

ularlyinindustrializedcountries.Thispaperdemonstratesthata globaluniformcarbonpricewould,however,simplyshiftthe prob-lemtodevelopingcountries.Thesenegativelyimpactedcountries andindustriesmightthereforebereluctanttoacceptbinding cli-matemeasuresorrefusetoconstructivelyengageininternational climatenegotiations.

Theresultspresentedinthispaperprovideaninitialbasisforthe developmentofsector-specificpoliciestolowerthevulnerability ofhighlyrelevantindustriestoaglobalcarbonprice,ortoincrease theircapacity todeal with the associated price increases.This mightbeofspecialimportanceforpoorercountriesconsidering thatmanufacturinghasbeenthe“mainavenueofrapideconomic convergence”, i.e. of high importance for developing countries (Rodrik,2015,p.28).Forcountrieswithcarbon-intensive electric-itysupply,e.g.China,theimpactscouldbesignificantlyreduced by de-carbonizing electricity production. Other alternativesare

to promote efficient technologies that reduce the demand for

(7)

Furthermore, a rational and successful climatepolicy might need toensure that losers are compensated(Trebilcock, 2014; UNEP,2017).Recyclingcarbontaxrevenuescouldprovidesuch opportunities(Goulder,1995;Klenertetal.,2018).Learningfrom pastexperiencesof(successful)structuraltransformationswithin developedeconomiescanalsohelpgenerateappropriatemeasures toensurea‘justtransition’(Smith,2017)towardsadecarbonized globaleconomy.

Statementofcontribution

HWcontributed theinitialresearchidea.HW developedthe analysisframeworkandanalyzeddatawithinputsbyMJandJCS. HW,MJandJCSwrotethepaper.

Acknowledgement

The authors gratefully acknowledges funding by the

Ger-man Federal Ministry of Education and Research (BMBF) grant

“Klimapolitische Maßnahmen und Transformationspfade zur

BegrenzungderglobalenErwärmungauf1,5◦C(PEP1p5)”, fund-ingcode01LS1610B.The authorsalsowant tothankAlexander Rohlf, Brigitte Knopf, Peter Ward, the participants of the 8th AtlanticWorkshoponEnergyandEnvironmentalEconomics,the participantsof theDIEworkshop onSustainableProductionand Consumptionandanonymousrefereesforvaluablecommentsand suggestions.

AppendixA. Supplementarydata

Supplementarymaterial relatedto thisarticle canbe found, intheonlineversion,atdoi:https://doi.org/10.1016/j.eneco.2019. 104549.

References

Acemoglu,D.,Autor,D.,Dorn,D.,Hanson,G.H.,2016.Importcompetitionandthe greatUSemploymentsagofthe2000s.J.LaborEcon.34,141–198.

Aguiar,A.,Narayanan,B.,McDougall,R.,2016.AnoverviewoftheGTAP9database. J.Glob.Econ.Anal.1,181–208.

Alexeeva-Talebi,V.,Boehringer,C.,Löschel,A.,Voigt,S.,2012.Thevalue-addedof sectoraldisaggregation:implicationsoncompetitiveconsequencesofclimate changepolicies.EnergyEcon.34,127–142.

Böhringer,C.,Balistreri,E.J.,Rutherford,T.F.,2012.Theroleofbordercarbon adjust-mentinunilateralclimatepolicy:overviewofanEnergyModelingForumstudy (EMF29).EnergyEcon.34,97–110.

Branger,F.,Quirion,P.,2014.Wouldbordercarbonadjustmentspreventcarbon leak-ageandheavyindustrycompetitivenesslosses?Insightsfromameta-analysis ofrecenteconomicstudies.Ecol.Econ.99,29–39.

Carbone,J.C.,Rivers,N.,2017.Theimpactsofunilateralclimatepolicyon competi-tiveness:evidencefromcomputablegeneralequilibriummodels.Rev.Environ. Econ.Policy11,24–42.

Chouinard,H.,Perloff,J.M.,2004.Incidenceoffederalandstategasolinetaxes.Econ. Lett.83,55–60,http://dx.doi.org/10.1016/j.econlet.2003.10.004.

Cramton,P.,MacKay,D.J.C.,Ockenfels,A.,Stoft,S.(Eds.),2017.GlobalCarbonPricing. MITPress,Cambridge,MA,USA.

Dechezleprêtre,A.,Sato,M.,2017.Theimpactsofenvironmentalregulationson competitiveness.Rev.Environ.Econ.Policy11,183–206.

Edenhofer,O.,Jakob,M.,Creutzig,F.,Flachsland,C.,Fuss,S.,Kowarsch,M.,Lessmann, K.,Mattauch,L.,Siegmeier,J.,Steckel,J.C.,2015.Closingtheemissionpricegap. Glob.Environ.Change31,132–143,http://dx.doi.org/10.1016/j.gloenvcha.2015. 01.003.

Forin,S.,Radebach,A.,Steckel,J.C.,Ward,H.,2018.Theeffectofindustry delocal-izationonglobalenergyuse:aglobalsectoralperspective.EnergyEcon.70, 233–243.

Fullerton,D.,Muehlegger,E.,2019.Whobearstheeconomiccostsof environmen-talregulations?Rev.Environ.Econ.Policy13,62–82,http://dx.doi.org/10.1093/ reep/rey023.

Gerlagh,R.,Kuik,O.,2014.Spillorleak?Carbonleakagewithinternational technol-ogyspillovers:aCGEanalysis.EnergyEcon.45,381–388.

Goulder,L.H.,1995.Environmentaltaxationandthedoubledividend:areader’s guide.Int.TaxFinance2,157–193.

Head,K.,Mayer,T.,Chapter32014.Gravityequations:workhorse,Toolkit,and cookbook.Handb.Int.Econ.4,131–195, http://dx.doi.org/10.1016/B978-0-444-54314-1.00003-3.

High-LevelCommissiononCarbonPrices,2017.ReportoftheHigh-Level Com-missiononCarbonPrices.WorldBank,WashingtonD.C,URL:https://www. carbonpricingleadership.org/report-of-the-highlevel-commission-on-carbon-prices(accessed2019-06-23).

IEA,[WWWDocument]URLhttps://www.iea.org/statistics/statisticssearch/report/ ?year=2009&country=ESTONIA&product=Coal(accessed2018-04-20)2009.Est. Coal2009.

Jakob,M.,Steckel,J.C.,Edenhofer,O.,2014.Consumption-versusproduction-based emissionpolicies.Annu.Rev.Resour.Econ.6,297–318,http://dx.doi.org/10. 1146/annurev-resource-100913-012342.

Karstensen,J.,Peters,G.P.,2018.Distributionsofcarbonpricingonextraction, com-bustionandconsumptionoffossilfuelsintheglobalsupply-chain.Environ.Res. Lett.13,http://dx.doi.org/10.1088/1748-9326/aa94a3.

Kenkel,D.S., 2005.Arealcohol taxhikes fullypassed throughtoprices? Evi-dencefromAlaska. Am.Econ.Rev.95,273–277,http://dx.doi.org/10.1257/ 000282805774670284.

Kim,K.,Kim,Y.,2012.InternationalcomparisonofindustrialCO2emissiontrends andtheenergyefficiencyparadoxutilizingproduction-baseddecomposition. EnergyEcon.34,1724–1741.

Klenert,D.,Mattauch,L.,Combet,E.C.,Edenhofer,O.,Hepburn,C.,Rafaty,R.,Stern, N.,2018.Makingcarbonpricingwork.Nat.Clim.Change8,669–677.

Koesler,S.,Pothen,F.,2013.TheBasicWIODCGEModel:AComputableGeneral EquilibriumModelBasedontheWorldInput-OutputDatabase.ZEWDok.NR, 13-04.

Koesler,S.,Schymura,M.,2015.Substitutionelasticitiesinaconstantelasticityof substitutionframework–empiricalestimatesusingNonlinearLeastSquares. Econ.Syst.Res.27,101–121.

Lenzen,M.,Moran,D.,Kanemoto,K.,Geschke,A.,2013.BuildingEora:amulti-region input-outputdatabaseathighcountryandsectorresolution.Econ.Syst.Res.25, 20–49,http://dx.doi.org/10.1080/09535314.2013.769938.

Marion,J.,Muehlegger,E.,2011.Fueltaxincidenceandsupplyconditions.J.Public Econ.95,1202–1212,http://dx.doi.org/10.1016/j.jpubeco.2011.04.003. Mattoo,A.,Subramanian,A.,vanderMensbrugghe,D.,Hu,J.,2009.Reconciling

climatechangeandtradepolicy.Cent.Glob.Dev.Work.Pap.,189.

Miller,R.E.,Blair,P.D.,2009.Input-OutputAnalysis,secondedition.Cambridge Uni-versityPress,Boston.

Rodrik,D.,2015.Prematuredeindustrialization.J.Econ.Growth21,1–33,http://dx. doi.org/10.1007/s10887-015-9122-3.

Saygin,D.,Worrell,E.,Patel,M.K.,Gielen,D.J.,2011.Benchmarkingtheenergyuse ofenergy-intensiveindustriesinindustrializedandindevelopingcountries. Energy36,6661–6673.

Smith,S.,2017.JustTransition.OECDRep.

Solleder,O.,2013.Tradeeffectsofexporttaxes.Grad.Inst.Int.Dev.Stud.Work.Pap., 08/2013.

Steen-Olsen,K.,Owen,A.,Hertwich,E.G.,Lenzen,M.,2015.Effectsofsector aggre-gationonCO2multipliersinmultiregionalinput–outputanalyses.Econ.Syst. Res.26,284–302.

Timmer,M.,Dietzenbacher,E.,Los,B.,Stehrer,R.,Vries,G.J.,2015.Anillustrated userguidetotheworldinput–outputdatabase:thecaseofglobalautomotive production.Rev.Int.Econ.23,575–605.

Trebilcock,M.J.,2014.DealingWithLosers.OxfordUniversityPress,Oxford.

UNEP, URL:www.unenvironment.org/resources/emissions-gap-report (accessed 2018-04-20)2017.TheEmissionsGapReport2017.

UNFCCC,2015.ParisAgreement.

Voigt,S.,DeCian,E.,Schymura,M.,Verdolini,E.,2014.Energyintensity develop-mentsin40majoreconomies:Structuralchangeortechnologyimprovement? EnergyEcon.41,47–62.

Ward,H.,Radebach,A.,Vierhaus,I.,Fügenschuh,A.,Steckel,J.C.,2017.Reducing globalCO2emissionswiththetechnologieswehave.Resour.EnergyEcon.49, 201–217.

Referenties

GERELATEERDE DOCUMENTEN

Under the option of increasing the ETS target (1a), cumulative emission reduction relative to the Reference Scenario would remain similar to the effect under the

If we can observe a convergence between LNG import prices in all the geographically distinct markets, then we can conclude that the law of one price is applicable to the global

For countries that run a trade surplus and specifically the German economy, that is one of the largest exporters, export market access and an additional supply of intermediate goods

The aim of this paper is twofold: (1) Analyzing the potential bias of time-series, consumption- based footprint calculations when datasets in current prices are being used and

The finding of an extremely high pass-through of domestic intermediate input prices prevails when the alternative import price change measures based on UN Comtrade data, tY1 and

The measurements of the SAP under realistic conditions are corrupted by network interference, which can originate from mobile macrocell users, mobile users within the SAP coverage

spokesperson, of which ads they favoured more, than the ad featuring the White spokesperson due to greater perceived similarity with both spokespeople of minority race. However, Black

Volgens Kirk en Suvarierol is dit het geval, omdat door de overheid wordt aangenomen dat al deze zaken nieuw zijn voor niet-westerse migranten en de overheid wil benadrukken dat