• No results found

University of Groningen Temporal components of interspecific interactions Samplonius, Jelmer Menno

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Temporal components of interspecific interactions Samplonius, Jelmer Menno"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Temporal components of interspecific interactions

Samplonius, Jelmer Menno

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Samplonius, J. M. (2018). Temporal components of interspecific interactions. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

A

Adams R.A. 1996. Sizespecific resource use in juvenile little brown bats, Myotis lucifugus (Chirop -tera: Vespertilionidae): Is there an ontogenetic shift? Canadian Journal of Zoology 74: 1204– 1210.

Ahola M.P., Laaksonen T., Eeva T. & Lehikoinen E. 2007. Climate change can alter competitive rela-tionships between resident and migratory birds. Journal of Animal Ecology 76: 1045–1052. Alatalo R. & Gustafsson L. 1985. Interspecific competition and niche shifts in tits and the goldcrest:

an experiment. Journal of Animal Ecology 54: 977–984.

Alatalo R. V & Lundberg A. 1986. Heritability and selection on tarsus length in the pied flycatcher (Ficedula hypoleuca). Evolution 40: 574–583.

Alatalo R.V. & Moreno J. 1987. Body size, interspecific interactions, and use of foraging sites in tits (Paridae). Ecology 68: 1773–1777.

Alexander J.M., Diez J.M. & Levine J.M. 2015. Novel competitors shape species’ responses to climate change. Nature 525: 515–518.

Aplin L.M., Farine D.R., Morand-Ferron J., Cockburn A., Thornton A. & Sheldon B.C. 2015. Experi-mentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518: 538–541.

Araya-Ajoy Y.G. & Dingemanse N.J. 2014. Characterizing behavioural ‘characters’: an evolutionary framework. Proceedings of the Royal Society B 281: 20132645.

Araya-Ajoy Y.G. & Dingemanse N.J. 2017. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. Journal of Animal Ecology 86: 227–238. Arcese P. & Smith J.N.M. 1985. Phenotypic correlates and ecological consequences of dominance in

song sparrows. Journal of Animal Ecology 54: 817–830.

Arn H. 1955. Mischbruten von kohlmeisen, blaumeisen und kleiber. Ornithologische Beobachter 52: 129.

Arnold K.E., Ramsay S.L., Donaldson C. & Adam A. 2007. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring. Proceedings of the Royal Society of London B:

Biological Sciences 274: 2563–2569.

B

Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Hartley S., Jones T.H., Lindroth R.L., Press M.C., Symrnioudis I., Watt A.D. & Whittaker J.B. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1–16. Balen J.H. Van. 1973. A comparative study of the breeding ecology of the great tit Parus Major in

different habitats. Ardea 61: 1–93.

Barba E. & Gil-Delgado J. 1990. Seasonal variation in nestling diet of the great tit Parus major in orange groves in eastern Spain. Ornis scandinavica 21: 296–298.

Barnard C.J. & Sibly R.M. 1981. Producers and scroungers: A general model and its application to captive flocks of house sparrows. Animal Behaviour 29: 543–550.

Bates D., Mächler M., Bolker B.M. & Walker S.C. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

Battesti M., Moreno C., Joly D. & Mery F. 2012. Spread of social information and dynamics of social transmission within Drosophila groups. Current Biology 22: 309–313.

Bauer Z., Trnka M., Bauerová J., Možný M., Štěpánek P., Bartošová L. & Žalud Z. 2010. Changing climate and the phenological response of great tit and collared flycatcher populations in flood-plain forest ecosystems in Central Europe. International Journal of Biometeorology 54: 99–111. Berthold P., Fiedler W., Schlenker R. & Querner U. 1998. 25-year study of the population

develop-ment of Central European songbirds: a general decline, most evident in long-distance migrants.

(4)

Betts M.M. 1955. The food of titmice in oak woodland. Journal of Animal Ecology 24: 282–323. Björklund M. & Westman B. 1986. Mate-Guarding in the Great Tit: Tactics of a Territorial

Forest-Living Species. Ornis scandinavica 17: 99–105.

Blois J.L., Zarnetske P.L., Fitzpatrick M.C. & Finnegan S. 2013. Climate Change and the Past, Present, and Future of Biotic Interactions. Science 341: 499–504.

Borgström E. 2005. Blandkullar mellan svartvit flugsnappare Ficedula hypoleuca, blåmes Parus

caeruleus och talgoxe P. major. Ornis Svecica 15: 43–44.

Both C. 2000. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density? Journal of Avian Biology 31: 412–417. Both C. 2007. Comment on‘ Rapid advance of spring arrival dates in long-distance migratory birds’.

Science 315: 598b.

Both C. 2010a. Food availability, mistiming, and climatic change. In: Effects of Climate Change on

Birds, pp. 129–147.

Both C. 2010b. Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Current Biology : CB 20: 243–248.

Both C. 2013. Unusual polygyny in pied flycatcher Ficedula hypoleuca: two females in one nest.

Limosa 86: 217–221.

Both C., Artemyev A. V, Blaauw B., Cowie R.J., Dekhuijzen A.J., Eeva T., Enemar A., Gustafsson L., Ivankina E. V, Järvinen A., Metcalfe N.B., Nyholm N.E.I., Potti J., Ravussin P.-A., Sanz J.J., Silverin B., Slater F.M., Sokolov L. V, Török J., Winkel W., Wright J., Zang H. & Visser M.E. 2004. Large-scale geographical variation confirms that climate change causes birds to lay earlier.

Proceedings of the Royal Society of London B: Biological Sciences 271: 1657–1662.

Both C., Asch M. van, Bijlsma R.G., Burg A.B. van den & Visser M.E. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of

Animal Ecology 78: 73–83.

Both C., Bijlsma R.G. & Ouwehand J. 2016. Repeatability in spring arrival dates in Pied Flycatchers varies among years and sexes. Ardea 104: 3–21.

Both C., Bouwhuis S., Lessells C.M. & Visser M.M.E. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441: 81–83.

Both C., Burger C., Ouwehand J., Samplonius J.M., Bijlsma R.G., Ubels R. & Bijlsma R.G. 2017. Delayed age at first breeding and experimental removals show large non-breeding surplus in pied flycatchers. Ardea 105: 43–60.

Both C., Tinbergen J.M. & Visser M.E. 2000. Adaptive Density Dependence of Avian Clutch Size.

Ecology 81: 3391–3403.

Both C., Turnhout C.A.M. Van, Bijlsma R.G., Siepel H., Strien A.J. Van & Foppen R.P.B. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society of London B: Biological Sciences 277: 1259– 1266. Both C. & Visser M.E. 2001. Adjustment to climate change is constrained by arrival date in a

long-distance migrant bird. Nature 411: 296–298.

Both C. & Visser M.E. 2003. Density Dependence, Territoriality, and Divisibility of Resources : From Optimality Models to Population Processes. 161.

Both C. & Visser M.E. 2005. The effect of climate change on the correlation between avian life-history traits. Global Change Biology 11: 1606–1613.

Bradshaw W.E. & Holzapfel C.M. 2007. Evolution of Animal Photoperiodism. Annu. Rev. Ecol. Evol.

Syst. 38: 1–25.

Briedis M., Hahn S., Gustafsson L., Henshaw I., Träff J., Král M. & Adamík P. 2016. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. Journal of Avian Biology: 743–748.

Briggs K.B. & Deeming D.C. 2016. Use of materials in nest construction by Pied Flycatchers Ficedula

(5)

Brown C.R. & Brown M.B. 2000. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behavioral Ecology and Sociobiology 47: 339–345.

Burger C., Belskii E., Eeva T., Laaksonen T., Mägi M., Mänd R., Qvarnström A., Slagsvold T., Veen T., Visser M.E., Wiebe K.L., Wiley C., Wright J. & Both C. 2012. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. Journal of Animal Ecology 81: 926–936.

Burger C., Ouwehand J. & Both C. 2014. The ecological causes of selection for early breeding: Do mistimed pied flycatchers suffer from food limitation? In: Local adaptation or dispersal?: How

Pied Flycatchers cope with climate change, University of Groningen, Groningen, pp. 21–42.

Burnham K.P. & Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical

Informa-tion-Theoretic Approach. Springer, New York.

Buskirk J. Van, Mulvihill R.S. & Leberman R.C. 2012. Phenotypic plasticity alone cannot explain climate-induced change in avian migration timing. Ecology and Evolution 2: 2430–2437.

Busse P. & Gotzman J. 1962. Nesting competition and mixed clutches among some birds inhabiting the nest-boxes (in Polish with English summary). Acta ornithologica 7: 1–32.

C

Campbell B. 1968. The Dean nestbox study, 1942–1964. Forestry 41: 27–46.

Charmantier A. & Gienapp P. 2013. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications: 1–14.

Charmantier A., McCleery R.H., Cole L.R., Perrins C., Kruuk L.E.B. & Sheldon B.C. 2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320: 800–803.

Cholewa M. & Wesołowski T. 2011. Nestling food of european hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons? Acta ornithologica 46: 105–116. Citta J.J. & Lindberg M.S. 2007. Nest-site selection of passerines: effects of geographic scale and

public and personal information. Ecology 88: 2034–2046.

Colautti R.I., Ågren J. & Anderson J.T. 2016. Phenological shifts of native and invasive species under climate change: insights from the Boechera–Lythrum model. Philosophical Transactions of the

Royal Society of London B: Biological Sciences 372: 20160032.

Colombelli-Négrel D., Hauber M.E., Robertson J., Sulloway F.J., Hoi H., Griggio M. & Kleindorfer S. 2012. Embryonic learning of vocal passwords in superb fairy-wrens reveals intruder cuckoo nestlings. Current Biology 22: 2155–2160.

Colombelli-Négrel D., Webster M.S., Dowling J.L., Hauber M.E. & Kleindorfer S. 2016. Vocal imita-tion of mother’s calls by begging Red-backed Fairywren nestlings increases parental provisioning.

The Auk 133: 273–285.

Connell J. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131–138.

Coolen I., Ward A.J.W., Hart P.J.B. & Laland K.N. 2005. Foraging nine-spined sticklebacks prefer to rely on public information over simpler social cues. Behavioral Ecology 16: 865–870.

Cortés-Avizanda A., Jovani R., Doná Zar J. & Grimm V. 2014. Bird sky networks: How do avian scavengers use social information to find carrion? Ecology 95: 1799–1808.

Cowie R. & Hinsley S. 1988. Feeding ecology of great tits (Parus major) and blue tits (Parus

caeruleus), breeding in suburban gardens. Journal of Animal Ecology 57: 611–626.

Cramp S. & Perrins C.M. 1993. The Birds of the Western Palaearctic. Oxford University Press, Oxford, UK.

Cushing D. 1969. The regularity of the spawning season of some fishes. J. Cons. int. Explor. Mer 33: 81–92.

Cushing D.H.D. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Advances in Marine Biology 26: 249–293.

(6)

D

Daan S., Dijkstra C., Drent R. & Meijer T. 1988. Food supply and the annual timing of avian repro-duction. Proceedings of the International Ornithological Congress 19: 392–407.

Danchin E., Giraldeau L.-A., Valone T.J. & Wagner R.H. 2004. Public information: from nosy neigh-bors to cultural evolution. Science 305: 487–491.

Darwin C. 1859. On the Origin of Species by Means of Natural Selection. London.

Davey C.M., Chamberlain D.E., Newson S.E., Noble D.G. & Johnston A. 2012. Rise of the generalists: Evidence for climate driven homogenization in avian communities. Global Ecology and

Biogeog-raphy 21: 568–578.

Davis M.B. & Shaw R.G. 2001. Range shifts and adaptive responses to Quaternary climate change.

Science 292: 673–679.

Dawson A., King V.M., Bentley G.E. & Ball G.F. 2001. Photoperiodic control of seasonality in birds.

Journal of Biological Rhythms 16: 365–380.

Deutsch J.C. & Nefdt R.J. 1992. Olfactory cues influence female choice in two lek-breeding antelopes. Nature 356: 596–598.

Dhondt A.A. 2012. Interspecific Competition in Birds. Oxford University Press, Oxford, UK.

Dhondt A.A. & Eyckerman R. 1980. Competition Between the Great Tit and the Blue Tit Outside the Breeding Season in Field Experiments. Ecology 61: 1291–1296.

Dolenec Z. 2002. A mixed brood of nuthatch (Sitta europaea) and Great Tit (Parus major) species.

Natura Croatica 11: 103–105.

Doligez B., Danchin E. & Clobert J. 2002. Public information and breeding habitat selection in a wild bird population. Science 297: 1168–1170.

Doligez B., Pärt T. & Danchin E. 2004. Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher. Journal of Animal Ecology 41: 75–87. Drent R. & Daan S. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68:

225–252.

Drost R. 1936. Über das Brutkleid männlicher Trauenfliegenfänger, Muscicapa hypoleuca. Vogelzug 6: 179–186.

Dunn P.O. & Møller A.P. 2014. Changes in breeding phenology and population size of birds. Journal

of Animal Ecology 83: 729–739.

Dunn P.O., Winkler D.W., Whittingham L.A., Hannon S.J. & Robertson R.J. 2011. A test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92: 450–461.

Durant J., Hjermann D., Ottersen G. & Stenseth N.C. 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

E

Edington J. & Edington M. 1972. Spatial patterns and habitat partition in the breeding birds of an upland wood. Journal of Animal Ecology 41: 331–357.

Edwards M. & Richardson A.J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.

Enemar A. & Sjöstrand B. 1972. Effects of the introduction of Pied Flycatchers Ficedula hypoleuca on the composition of a passerine bird community. Ornis scandinavica 3: 79–89.

F

Fialho R., Rocha C. & Vrcibradic D. 2000. Feeding ecology of Tropidurus torquatus: ontogenetic shift in plant consumption and seasonal trends in diet. Journal of Herpetology 34: 325–330.

Fletcher R.J. 2007. Species interactions and population density mediate the use of social cues for habitat selection. Journal of Animal Ecology 76: 598–606.

(7)

Forsman J.T., Hjernquist M.B. & Gustafsson L. 2009. Experimental evidence for the use of density based interspecific social information in forest birds. Ecography 32: 539–545.

Forsman J.T., Hjernquist M.B., Taipale J. & Gustafsson L. 2008. Competitor density cues for habitat quality facilitating habitat selection and investment decisions. Behavioral Ecology 19: 539–545. Forsman J., Mönkkönen M., Helle P. & Inkeröinen J. 1998. Heterospecific attraction and food

resources in migrants’ breeding patch selection in northern boreal forest. Oecologia 115: 278–286.

Forsman J.T. & Seppänen J.-T. 2011. Learning what (not) to do: testing rejection and copying of simulated heterospecific behavioural traits. Animal Behaviour 81: 879–883.

Forsman J.T., Seppänen J.-T. & Mönkkönen M. 2002. Positive fitness consequences of interspecific interaction with a potential competitor. Proceedings of the Royal Society of London B: Biological

Sciences 269: 1619–1623.

Forsman J.T., Seppänen J.-T. & Nykänen I.L. 2012. Observed heterospecific clutch size can affect offspring investment decisions. Biology letters 8: 341–343.

Forsman J. & Thomson R. 2008. Evidence of information collection from heterospecifics in cavity-nesting birds. Ibis 150: 409–412.

Forsman J.T., Thomson R.L. & Seppanen J.-T. 2007. Mechanisms and fitness effects of interspecific information use between migrant and resident birds. Behavioral Ecology 18: 888–894.

G

Galef B.G. & Whiskin E.E. 2008. ‘Conformity’ in Norway rats? Animal Behaviour 75: 2035–2039. García-Navas V., Ferrer E. & Sanz J.J. 2013. Prey choice, provisioning behaviour, and effects of early

nutrition on nestling phenotype of titmice. Ecoscience 20: 9–18.

García-Navas V. & Sanz J.J. 2011. The importance of a main dish: nestling diet and foraging behav-iour in Mediterranean blue tits in relation to prey phenology. Oecologia 165: 639–649.

Garland A. & Low J. 2014. Addition and subtraction in wild New Zealand robins. Behavioural

Processes 109: 103–110.

Gibb B.J. 1950. The breeding biology of the great and blue titmice. Ibis 92: 507–539.

Gibb J. 1954. Feeding ecology of tits, with notes on treecreeper and goldcrest. Ibis 96: 513–543. Gillings S., Balmer D.E. & Fuller R.J. 2015. Directionality of recent bird distribution shifts and climate

change in Great Britain. Global Change Biology 21: 2155–2168.

Goodenough A.E., Hart A.G. & Stafford R. 2010. Is adjustment of breeding phenology keeping pace with the need for change? Linking observed response in woodland birds to changes in tempera-ture and selection pressure. Climatic Change 102: 687–697.

Gustafsson L. 1987. Interspecific competition lowers fitness in collared flycatchers Ficedula albicollis: an experimental demonstration. Ecology 68: 291–296.

Gustafsson L. 1988. Inter- and intraspecific competition for nest holes in a population of the Collared Flycatcher Ficedula albicollis. Ibis 130: 11–16.

Gwinner E. 1967. Circannuale periodik der mauser und der zugunruhe bei einem vogel.

Naturwis-senschaften 54: 447.

H

Haartman L. von. 1956. Territory in the pied flycatcher Muscicapa hypoleuca. Ibis 98: 460–475. Haartman L. von. 1957. Adaptation in hole-nesting birds. Evolution 11: 339–347.

Harris G.A. 1977. Root Phenology as a Factor of Competition among Grass Seedlings. Journal of

Range Management 30: 172–177.

Hartley P. 1953. An ecological study of the feeding habits of the English titmice. Journal of Animal

Ecology 22: 261–288.

Harvey P.H., Greenwood P.J. & Perrins C.M. 1979. Breeding area fidelity of Great Tits (Parus major).

(8)

Helm B., Ben-Shlomo R., Sheriff M.J., Hut R.A., Foster R., Barnes B.M. & Dominoni D. 2013. Annual rhythms that underlie phenology: biological time-keeping meets environmental change.

Proceed-ings of the Royal Society of London B: Biological Sciences 280: 20130016.

Helm B. & Gwinner E. 2006. Migratory restlessness in an equatorial nonmigratory bird. PLoS biology 4: e110.

Herrera C. 1978. On the breeding distribution pattern of European migrant birds: MacArthur’s theme reexamined. The Auk 95: 496–509.

Hinks A.E., Cole E.F., Daniels K.J., Wilkin T.A., Nakagawa S. & Sheldon B.C. 2015. Scale-Dependent Phenological Synchrony between Songbirds and Their Caterpillar Food Source. The American

Naturalist 186: 84–97.

Hogstad O. 1978. Differentiation of foraging niche among tits, Parus ssp & in Norway during winter.

Ibis 120: 139–146.

Husby A., Visser M.E. & Kruuk L.E.B. 2011. Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS biology 9: e1000585.

I

IPCC. 2013. CLIMATE CHANGE 2013: The Physical Science Basis. Summary for Policy Makers. Cambridge University Press, Cambridge.

J

Jaakkonen T., Kari A. & Forsman J.T. 2013. Flycatchers copy conspecifics in nest-site selection but neither personal experience nor frequency of tutors have an effect. PloS ONE 8: e60395.

Jaakkonen T., Kivela S.M., Meier C.M. & Forsman J.T. 2015. The use and relative importance of intra -specific and inter-specific social information in a bird community. Behavioral Ecology 26: 55–64. Jenni L. & Winkler R. 1989. The feather-length of small passerines: a measurement for wing-length

in live birds and museum skins. Bird Study 36: 1–15.

Jonzén N., Lindén A., Ergon T., Knudsen E., Vik J.O., Rubolini D., Piacentini D., Brinch C., Spina F., Karlsson L., Stervander M., Andersson A., Waldenström J., Lehikoinen A., Edvardsen E., Solvang R. & Stenseth N.C. 2006. Rapid advance of spring arrival dates in long-distance migratory birds.

Science 312: 1959–1961.

K

Källander H., Hasselquist D., Hedenström A., Nord A., Smith H.G. & Nilsson J.-Å. 2017. Variation in laying date in relation to spring temperature in three species of tits (Paridae) and pied flycatchers

Ficedula hypoleuca in southernmost Sweden. Journal of Avian Biology 48: 83–90.

Keddy P.A. 1989. Competition. Chapman and Hall, New York.

Keyzer C.W. de, Rafferty N.E., Inouye D.W. & Thomson J.D. 2017. Confounding effects of spatial vari-ation on shifts in phenology. Global Change Biology 23: 1783–1791.

Kivelä S.M., Seppänen J.-T., Ovaskainen O., Doligez B., Gustafsson L., Mönkkönen M. & Forsman J.T. 2014. The past and the present in decision-making: the use of con- and heterospecific cues in nest-site selection. Ecology 95: 3428–3439.

Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., Engelen A.F. V Van, Forland E., Mietus M., Coelho F., Mares C., Razu-vaev V., Nieplova E., Cegnar T., Antonio López J., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L. V. & Petrovic P. 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal

(9)

Kokko H. 1999. Competition for early arrival birds in migratory birds. Journal of Animal Ecology 68: 940–950.

Kokko H., Gunnarsson T.G., Morrell L.J. & Gill J.A. 2006. Why do female migratory birds arrive later than males? Journal of Animal Ecology 75: 1293–1303.

Krebs J.R. 1982. Territorial defence in the Great Tit: does the resident always win? Behavioral Ecology

and Sociobiology 11: 185–194.

Kreyling J. 2010. Winter climate change: a critical factor for temperate vegetation performance.

Ecological Monographs 85: 1939–1948.

L

Laland K.N. 2004. Social learning strategies. Animal Learning & Behavior 32: 4–14.

Lambrechts M.M., Caro S., Charmantier A., Gross N., Galan M.J., Perret P., Cartan-Son M., Dias P.C., Blondel J. & Thomas D.W. 2004. Habitat quality as a predictor of spatial variation in blue tit reproductive performance: a multi-plot analysis in a heterogeneous landscape. Oecologia 141: 555–561.

Lefebvre L. & Giraldeau L.-A. 1994. Cultural transmission in pigeons is affected by the number of tutors and bystanders present. Animal Behaviour 47: 331–337.

Leggett W. & Deblois E. 1994. Recruitment in marine fishes: is it regulated by starvation and preda-tion in the egg and larval stages? Netherlands Journal of Sea Research 32: 119–134.

Lifjeld J.T. 1988. Prey choice and nestling hunger: an experiment with pied flycatchers, Ficedula

hypoleuca. Animal Behaviour 36: 134–139.

Lifjeld J.T. & Slagsvold T. 1986. The function of courtship feeding during incubation in the pied flycatcher Ficedula hypoleuca. Animal Behaviour 34: 1441–1453.

Lof M.E., Reed T.E., McNamara J.M. & Visser M.E. 2012. Timing in a fluctuating environment: envi-ronmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proceedings of the Royal Society of London B: Biological Sciences 279: 3161– 3169. Löhrl H. 1950. Zur ‘Verdrängung’ von Meisen durch Fliegenschnäpper. Vogelwelt 71: 39–41.

Loukola O.J., Laaksonen T., Seppänen J.-T. & Forsman J.T. 2014a. Active hiding of social information from information-parasites. BMC Evolutionary Biology 14: 32.

Loukola O.J., Seppänen J.-T. & Forsman J.T. 2012. Intraspecific social information use in the selection of nest site characteristics. Animal Behaviour 83: 629–633.

Loukola O.J., Seppänen J.T. & Forsman J.T. 2014b. Pied flycatchers nest over other nests, but would prefer not to. Ornis Fennica 91: 201–208.

Loukola O.J., Seppänen J.-T., Krams I., Torvinen S.S. & Forsman J.T. 2013. Observed fitness may affect niche overlap in competing species via selective social information use. The American

natu-ralist 182: 474–483.

M

Mackenzie J. 1950. Competition for nest-sites among hole-breeding species. British birds 43: 184– 185.

Maclean I.M.D., Austin G.E., Rehfisch M.M., Blew J., Crowe O., Delany S., Devos K., Deceuninck B., Günther K., Laursen K., Roomen M. Van & Wahl J. 2008. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology 14: 2489–2500. Mägi M., Mänd R., Tamm H., Sisask E., Kilgas P. & Tilgar V. 2009. Low reproductive success of great

tits in the preferred habitat: A role of food availability. Écoscience 16: 145–157.

Mallord J., Orsman C., Cristinacce A., Stowe T., Charman E. & Gregory R. 2016. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis 159: 76–90.

Martin W.G. & Patrick H. 1961. The effect of taurine on the sulfate-S35 retention by chicks. Poultry

(10)

Mazerolle M.J. 2015. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). Maziarz M. & Wesołowski T. 2010. Timing of breeding and nestling diet of wood warbler Phylloscopus

sibilatrix in relation to changing food supply. Bird Study 57: 540–552.

Meller K., Vähätalo A. V., Hokkanen T., Rintala J., Piha M. & Lehikoinen A. 2016. Interannual varia-tion and long-term trends in proporvaria-tions of resident individuals in partially migratory birds.

Journal of Animal Ecology 85: 570–580.

Merilä J. 1994. Two mixed clutches of blue tits Parus caeruleus and collared flycatchers Ficedula

albi-collis. Ornis Svecica 4: 188–189.

Merilä J. & Wiggins D. 1995. Interspecific competition for nest holes causes adult mortality in the Collared Flycatcher. Condor 97: 445–450.

Milazzo M., Mirto S., Domenici P. & Gristina M. 2013. Climate change exacerbates interspecific inter-actions in sympatric coastal fishes. Journal of Animal Ecology 82: 468–477.

Miles W.T.S., Bolton M., Davis P., Dennis R., Broad R., Robertson I., Riddiford N.J., Harvey P. V., Riddington R., Shaw D.N., Parnaby D. & Reid J.M. 2017. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Global Change Biology 23: 1400– 1414. Minot E. & Perrins C. 1986. Interspecific interference competition--nest sites for blue and great tits.

Journal of Animal Ecology 55: 331–350.

Møller A.P., Rubolini D. & Lehikoinen E. 2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.SA. 105: 16195–16200.

Mönkkönen M., Härdling R., Forsman J. & Tuomi J. 1999. Evolution of heterospecific attraction: using other species as cues in habitat selection. Evolutionary Ecology 13: 91–104.

Mönkkönen M. & Helle P. 1997. Heterospecific attraction affects community structure and migrant abundances in northern breeding bird communities. Can. J. Zool. 75: 2077–2083.

Mönkkönen M., Helle P. & Soppela K. 1990. Numerical and behavioural responses of migrant passer-ines to experimental manipulation of resident tits (Parus spp.): heterospecific attraction in northern breeding bird communities? Oecologia 85: 218–225.

Morbey Y.E., Coppack T. & Pulido F. 2012. Adaptive hypotheses for protandry in arrival to breeding areas: A review of models and empirical tests. Journal of Ornithology 153: 207–215.

Morbey Y.E. & Ydenberg R.C. 2001. Protandrous arrival timing to breeding areas: A review. Ecology

Letters 4: 663–673.

Morse D.H. 1967. Foraging Relationships of Brown-Headed Nuthatches and Pine Warblers. Ecology 48: 94–103.

N

Naef-Daenzer L., Naef-Daenzer B. & Nager R.G. 2000. Prey selection and foraging performance of breeding great tits Parus major in relation to food availability. Journal of Avian Biology 31: 206–214.

Naimi B. 2015. usdm: uncertainty analysis for species distribution models.

Newson S.E., Moran N.J., Musgrove A.J., Pearce-Higgins J.W., Gillings S., Atkinson P.W., Miller R., Grantham M.J., Baillie S.R. & Battley P. 2016. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158: 481– 495. Newton I. 1994. The role of nest sites in limiting the numbers of hole-nesting birds: a review.

Biolog-ical Conservation 70: 265–276.

Nilsson A.L.K., Lindström Å., Jonzén N., Nilsson S.G. & Karlsson L. 2006. The effect of climate change on partial migration - The blue tit paradox. Global Change Biology 12: 2014–2022. Nocera J.J., Forbes G.J. & Giraldeau L.-A. 2006. Inadvertent social information in breeding site

selection of natal dispersing birds. Proceedings of the Royal Society B: Biological Sciences 273: 349–355.

(11)

O

Ondrušová K. & Adamík P. 2013. Characterizing the mammalian hair present in Great Tit (Parus

major) nests. Bird Study 60: 428–431.

Orians G.H. & Wittenberger J.F. 1991. Spatial and temporal scales in habitat selection. The American

Naturalist 137: S29–S49.

Ottosson U., Bäckman J., Smith H. & Dickinson J. 2001. Nest-attenders in the pied flycatcher (Ficedula hypoleuca) during nestling rearing: a possible case of prospective resource exploration.

The Auk 118: 1069–1072.

Ouwehand J., Ahola M.P., Ausems A.N.M.A., Bridge E.S., Burgess M., Hahn S., Hewson C.M., Klaassen R.H.G., Laaksonen T., Lampe H.M., Velmala W. & Both C. 2016. Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca.

Journal of Avian Biology 47: 69–83.

Ouwehand J. & Both C. 2016. Alternate non-stop migration strategies of pied flycatchers to cross the Sahara desert. Biology Letters 12: 20151060.

Ouwehand J., Burger C. & Both C. 2017. Shifts in hatch dates do not provide pied flycatchers with a rapid ontogenetic route to adjust offspring time schedules to climate change. Functional Ecology 31: 2087–2097.

P

Parejo D. 2016. Informational Mismatches: A Neglected Threat of Climate Change to Interspecific Interactions. Frontiers in Ecology and Evolution 4: 1–6.

Parejo D. & Avilés J.M. 2016. Social information use by competitors : Resolving the enigma of species coexistence in animals ? Ecosphere 7: e01295.

Parejo D., Danchin E. & Avilés J.M. 2005. The heterospecific habitat copying hypothesis: Can competitors indicate habitat quality? Behavioral Ecology 16: 96–105.

Parejo D., White J., Clobert J., Dreiss A. & Danchin E. 2007. Blue Tits use fledgling quantity and quality as public information in breeding site choice. Ecology 88: 2373–2382.

Parmesan C., Ryrholm N. & Stefanescu C. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.

Parmesan C. & Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

Pärt T., Arlt D., Doligez B., Low M. & Qvarnström A. 2011. Prospectors combine social and environ-mental information to improve habitat selection and breeding success in the subsequent year.

Journal of Animal Ecology 80: 1227–1235.

Pearce-Higgins J.W., Yalden D.W. & Whittingham M.J. 2005. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia 143: 470– 476.

Perdeck A.C., Visser M.E. & Balen J.H. van. 2000. Great Tit Parus major survival, and the beech-crop cycle. Ardea 88: 99–108.

Perrins C.M. 1970. The timing of birds’ breeding seasons. Ibis 112: 242–255. Perrins C.M. 1991. Tits and their caterpillar food supply. Ibis 133: 49–54.

Petrassi F., Sorace A., Tanda F. & Consiglio C. 1998. Mixed clutches of Blue Tits Parus caeruleus and Great Tits Parus major in nest boxes in Central Italy. Ornis Svecica 8: 49–51.

Phillimore A.B., Leech D.I., Pearce-Higgins J.W. & Hadfield J.D. 2016. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Global Change Biology 22: 3259–3272.

Pigliucci M. 2005. Evolution of phenotypic plasticity: where are we going now? Trends in ecology &

evolution 20: 481–486.

Pike T.W. & Laland K.N. 2010. Conformist learning in nine-spined sticklebacks’ foraging decisions.

(12)

Pol M. van de, Bailey L.D., McLean N., Rijsdijk L., Lawson C.R., Brouwer L. & Gimenez O. 2016. Identifying the best climatic predictors in ecology and evolution. Methods in Ecology and

Evolu-tion 7: 1246–1257.

R

R Development Core Team. 2015. R: a language and environment for statistical computing. R Development Core Team. 2016. R: a language and environment for statistical computing.

Radford A.N. 2008. Age-related changes in nestling diet of the cooperatively breeding green wood-hoopoe. Ethology 114: 907–915.

Ramsay S.L. & Houston D.C. 2003. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis 145: 227–232.

Reed T.E., Grøtan V., Jenouvrier S., Sæther B.-E. & Visser M.E. 2013a. Population growth in a wild bird is buffered against phenological mismatch. Science 340: 488–491.

Reed T.E., Jenouvrier S. & Visser M.E. 2013b. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. Journal of Animal Ecology 82: 131–144.

Riddington R. & Gosler A. 1995. Differences in reproductive success and parental qualities between habitats in the Great Tit Parus major. Ibis 137: 371–378.

Robertson B.A. & Hutto R.L. 2006. A framework for understanding ecological traps and an evalua-tion of existing evidence. Ecology 87: 1075–1085.

Robinson R.A., Baillie S.R. & Crick H.Q.P. 2007. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis 149: 357–364.

Root R.B. 1967. The niche exploitation pattern of the Blue- gray Gnatcatcher. Ecological Monographs 37: 317–350.

Royama T. 1970. Factors governing the hunting behaviour and selection of food by the great tit (Parus major L.). Journal of Animal Ecology 39: 619–668.

Rugani R., Fontanari L., Simoni E., Regolin L. & Vallortigara G. 2009. Arithmetic in newborn chicks.

Proceedings of the Royal Society B: Biological Sciences 276: 2451–2460.

S

Saino N., Ambrosini R., Rubolini D., Hardenberg J. von, Provenzale A., Hüppop K., Hüppop O., Lehikoinen A., Lehikoinen E., Rainio K., Romano M. & Sokolov L. 2011. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proceedings. Biological

sciences / The Royal Society 278: 835–842.

Saino N., Rubolini D., Serra L., Caprioli M., Morganti M., Ambrosini R. & Spina F. 2010. Sex-related variation in migration phenology in relation to sexual dimorphism: A test of competing hypo -theses for the evolution of protandry. Journal of Evolutionary Biology 23: 2054–2065.

Salido L., Purse B. V., Marrs R., Chamberlain D.E. & Shultz S. 2012. Flexibility in phenology and habitat use act as buffers to long-term population declines in UK passerines. Ecography 35: 604–613.

Samplonius J.M. & Both C. 2014. A case of a three species mixed brood after two interspecific nest takeovers. Ardea 102: 105–107.

Samplonius J.M. & Both C. 2017a. Competitor phenology as a social cue in breeding site selection.

Journal of Animal Ecology 86: 615–623.

Samplonius J.M. & Both C. 2017b. Data from: Competitor phenology as a social cue in breeding site selection. Dryad Digital Respository 86: https://doi.org/10.5061/dryad.bs427.

Samplonius J.M., Kappers E.F., Brands S. & Both C. 2016a. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. Journal of Animal Ecology 85: 1255–1264.

(13)

Samplonius J.M., Kappers E.F., Brands S. & Both C. 2016b. Data from: Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. Dryad Digital

Respos-itory 85: http://dx.doi.org/10.5061/dryad.5p65q.

Samplonius J.M., Kromhout Van Der Meer I.M. & Both C. 2017a. Nest site preference depends on the relative density of conspecifics and heterospecifics in wild birds. Frontiers in Zoology 14: 56. Samplonius J.M.J.M., Kromhout Van Der Meer I.M.I.M. & Both C. 2017b. Replication Data for: Nest

site preference depends on the relative density of conspecifics and heterospecifics in wild birds.

DataverseNL Digital Repository 14: http://hdl.handle.net/10411/ZRXWDL.

Sanderson F.J., Donald P.F., Pain D.J., Burfield I.J. & Bommel F.P.J. van. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation 131: 93–105.

Sanz J.J.J. 1998. Effect of habitat and latitude on nestling diet of pied flycatchers Ficedula hypo leuca.

Ardea 86: 81–88.

Sasvári L., Török J. & Tóth L. 1987. Density dependent effects between three competitive bird species. Oecologia 72: 127–130.

Scarf D., Hayne H. & Colombo M. 2011. Pigeons on Par with Primates in Numerical Competence.

Science 334: 1664–1664.

Seppänen J.-T. & Forsman J.T. 2007. Interspecific social learning: novel preference can be acquired from a competing species. Current Biology : CB 17: 1248–1252.

Seppänen J.-T., Forsman J.T., Mönkkönen M., Krams I. & Salmi T. 2011. New behavioural trait adopted or rejected by observing heterospecific tutor fitness. Proceedings of the Royal Society of

London B: Biological Sciences 278: 1736–1741.

Seppänen J.-T., Forsman J.T., Monkkönen M. & Thomson R.L. 2007. Social information use is a process across time, space, and ecology, reaching heterospecifics. Ecology 88: 1622–1633. Seppänen J., Mönkkönen M. & Forsman J.T. 2005. Presence of other species may counter seasonal

decline in breeding success: a field experiment with pied flycatchers Ficedula hypoleuca. Journal

of Avian Biology 36: 380–385.

Siikamäki P. 1998. Limitation of reproductive success by food availability and breeding time in pied flycatchers. Ecology 79: 1789–1796.

Sisask E., Mänd R., Mägi M. & Tilgar V. 2010. Parental provisioning behaviour in Pied Flycatchers

Ficedula hypoleuca is well adjusted to local conditions in a mosaic of deciduous and coniferous

habitat. Bird Study 57: 447–457.

Slagsvold T. 1975. Competition between the Great Tit Parus major and the Pied Flycatcher Ficedula

hypoleuca in the breeding season. Ornis scandinavica 6: 179–190.

Slagsvold T. 1976. Annual and geographical variation in the time of breeding of the Great Tit Parus

major and the Pied Flycatcher Ficedula hypoleuca in relation to environmental phenology. Ornis scandinavica 7: 127–145.

Slagsvold T. 1978. Competition between the Great Tit Parus major and the Pied Flycatcher Ficedula

hypoleuca: an experiment. Ornis scandinavica 9: 46–50.

Slagsvold T. 2004. Cross-fostering of pied flycatchers (Ficedula hypoleuca) to heterospecific hosts in the wild: a study of sexual imprinting. Behaviour 141: 1079–1102.

Slagsvold T. & Wiebe K.L. 2007. Hatching asynchrony and early nestling mortality: the feeding constraint hypothesis. Animal Behaviour 73: 691–700.

Slagsvold T. & Wiebe K.L. 2017. On the use of heterospecific information for nest site selection in birds. Journal of Avian Biology 48: 1035–1040.

Smallegange I.M., Fiedler W., Köppen U., Geiter O. & Bairlein F. 2010. Tits on the move: Exploring the impact of environmental change on blue tit and great tit migration distance. Journal of

Animal Ecology 79: 350–357.

Smith J.N.M. & Sweatman H.P. a. 1974. Food-searching behavior of titmice in patchy environments.

(14)

Stamps J.A. 1988. Conspecific Attraction and Aggregation in Territorial Species. The American

Natu-ralist 131: 329–347.

Stenseth N.C. & Mysterud A. 2002. Climate, changing phenology, and other life history traits: nonlin-earity and match-mismatch to the environment. Proc. Natl. Acad. Sci. U.SA. 99: 13379– 13381. Stjernberg M. 1974. Nest-building by the Pied Flycatcher Ficedula hypoleuca. Ornis Fennica 51: 85– 109. Sugita Y. 1980. Imitative choice behavior in guppies. Japanese Psychological Research 22: 7–12. Suzuki T.N. & Tsuchiya Y. 2010. Feeding a Foreign Chick: a Case of a Mixed Brood of Two Tit Species.

The Wilson Journal of Ornithology 122: 618–620.

Svensson E. & Nilsson J.-åke. 1995. Food supply, territory quality, and reproductive timing in the blue tit (Parus caeruleus). Ecology 76: 1804–1812.

Szymkowiak J., Thomson R.L. & Kuczyński L. 2017. Interspecific social information use in habitat selection decisions among migrant songbirds. Behavioral Ecology 28: 767–775.

T

Teague O’Mara M., Dechmann D.K.N. & Page R.A. 2014. Frugivorous bats evaluate the quality of social information when choosing novel foods. Behavioral Ecology 25: 1233–1239.

Tejedo M. 1992. Effects of body size and timing of reproduction on reproductive success in female natterjack toads (Bufo calarnita). Journal of Zoology 228: 545–555.

Thackeray S.J., Henrys P.A., Hemming D., Bell J.R., Botham M.S., Burthe S., Helaouet P., Johns D.G., Jones I.D., Leech D.I., Mackay E.B., Massimino D., Atkinson S., Bacon P.J., Brereton T.M., Carvalho L., Clutton-Brock T.H., Duck C., Edwards M., Elliott J.M., Hall S.J.G., Harrington R., Pearce-Higgins J.W., Høye T.T., Kruuk L.E.B., Pemberton J.M., Sparks T.H., Thompson P.M., White I., Winfield I.J. & Wanless S. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535: 241–245.

Thackeray S.J., Sparks T.H., Frederiksen M., Burthe S., Bacon P.J., Bell J.R., Botham M.S., Brereton T.M., Bright P.W., Carvalho L., Clutton-Brock T., Dawson A., Edwards M., Elliott J.M., Harrington R., Johns D., Jones I.D., Jones J.T., Leech D.I., Roy D.B., Scott W.A., Smith M., Smithers R.J., Winfield I.J. & Wanless S. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.

Therneau T. 2015. A package for survival analysis in S.

Therneau T., Crowson C. & Atkinson E. 2016. Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model. : 1–24.

Thomas C.D., Bodsworth E.J., Wilson R.J., Simmons a D., Davies Z.G., Musche M. & Conradt L. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411: 577– 581. Thomson R.L., Forsman J.T. & Mönkkönen M. 2003. Positive interactions between migrant and

resi-dent birds: testing the heterospecific attraction hypothesis. Oecologia 134: 431–438.

Tinbergen L. 1960. The natural control of insects in pinewoods. Archives Néerlandaises de Zoologie 13: 265–343.

Tinbergen J.M. 1981. Foraging decisions in starlings (Sturnus vulgaris L.). Ardea 69: 1–67.

Tompa F. 1967. Reproductive success in relation to breeding density in Pied Flycatchers, Ficedula

hypoleuca (Pallas). Acta Zoologica Fennica 118: 1–28.

Török J. 1986. Food segregation in three hole-nesting bird species during the breeding season. Ardea 74: 129–136.

Török J. & Tóth L. 1988. Density dependence in reproduction of the collared flycatcher (Ficedula

albi-collis) at high population levels. Journal of Animal Ecology 57: 251–258.

Tulp I., Schekkerman H., Klaassen R.H.G., Ens B.J. & Visser G.H. 2009. Body condition of shorebirds upon arrival at their Siberian breeding grounds. Polar Biology 32: 481–491.

Turtumoygard T. & Slagsvold T. 2010. Evolution of brood parasitism in birds: constraints related to prey type. Behaviour 147: 299–317.

(15)

U

Ulfstrand S. 1962. On the Nonbreeding Ecology and Migratory Movements of the Great Tit (Parus

major) and the Blue Tit (Parus caeruleus) in Southern Sweden: With Notes on Related Species.

Sveriges Ornitologiska Förening.

Usui T., Butchart S.H.M. & Phillimore A.B. 2017. Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. Journal of Animal Ecology 86: 250–261.

V

Vedder O., Bouwhuis S. & Sheldon B.C. 2013. Quantitative assessment of the importance of pheno-typic plasticity in adaptation to climate change in wild bird populations. PLoS Biology 11: e1001605.

Veen T., Sheldon B.C., Weissing F.J., Visser M.E., Qvarnström A. & Sætre G.-P. 2010. Temporal differ-ences in food abundance promote coexistence between two congeneric passerines. Oecologia 162: 873–884.

Verhulst S. & Nilsson J.-A.J.A. 2008. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philosophical Transactions of the Royal Society B 363: 399–410.

Verhulst S. & Tinbergen J. 1991. Experimental evidence for a causal relationship between timing and success of reproduction in the great tit Parus m. major. Journal of Animal Ecology 60: 269–282. Viol I. Le, Jiguet F., Brotons L., Herrando S., Lindstrom A., Pearce-Higgins J.W., Reif J., Turnhout C.

Van & Devictor V. 2012. More and more generalists: two decades of changes in the European avifauna. Biology Letters 8: 780–782.

Visser M.E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society of London B: Biological Sciences 275: 649–659.

Visser M.E., Adriaensen F., Balen J.H. Van, Blondel J., Dhondt A.A., Dongen S. Van, Feu C. Du, Ivankina E. V, Kerimov A.B., Laet J. De, Matthysen E., McCleery R., Orell M. & Thomson D.L. 2003. Variable responses to large-scale climate change in European Parus populations.

Proceed-ings of the Royal Society of London B: Biological Sciences 270: 367–372.

Visser M.E.M.E. & Both C. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B 272: 2561–2569.

Visser M.E., Both C. & Lambrechts M.M. 2004. Global climate change leads to mistimed avian repro-duction. Advances in ecological research 35: 89–110.

Visser M.E., Caro S.P., Oers K. van, Schaper S.V. & Helm B. 2010. Phenology, seasonal timing and circannual rhythms: towards a unified framework. Phil. Trans. R. Soc. B 365: 3113–3127. Visser M.E., Gienapp P., Husby A., Morrisey M., la Hera I. de, Pulido F. & Both C. 2015. Effects of

spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biology 13: e1002120.

Visser M.E. & Holleman L.J. 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London B: Biological Sciences 268: 289–294. Visser M.E., Holleman L.J.M. & Gienapp P. 2006. Shifts in caterpillar biomass phenology due to

climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147: 164–172.

Visser M.E., Noordwijk A.J. van, Tinbergen J.M. & Lessells C.M. 1998. Warmer springs lead to mist-imed reproduction in great tits (Parus major). Proceedings of the Royal Society of London B:

Biolog-ical Sciences 265: 1867–1870.

Visser M.E., Schaper S. V., Holleman L.J.M., Dawson A., Sharp P., Gienapp P. & Caro S.P. 2011. Genetic variation in cue sensitivity involved in avian timing of reproduction. Functional Ecology 25: 868–877.

Vonesh J.R. 2005. Egg predation and predator-induced hatching plasticity in the African reed frog,

(16)

W

Walther G.-R. 2010. Community and ecosystem responses to recent climate change. Philosophical

transactions of the Royal Society of London. Series B, Biological sciences 365: 2019–2024.

Whiten A., Horner V. & Waal F.B.M. de. 2005. Conformity to cultural norms of tool use in chim-panzees. Nature 437: 737–740.

Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media. Wilkin T.A., King L.E. & Sheldon B.C. 2009. Habitat quality, nestling diet, and provisioning behaviour

in great tits Parus major. Journal of Avian Biology 40: 135–145.

Winemiller K.O. 1989. Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan ilanos. Environmental Biology of Fishes 26: 177–199.

Winge K. & Järvi T. 1988. Nest-hole defence by the Great Tit against Pied Flycatcher intrusion: A test of the‘ parental investment’ and the‘ fighting ability’ hypotheses. Oikos 51: 364–366.

Winkel W. & Hudde H. 1997. Long-term trends in reproductive traits of tits (Parus major, P.

caeruleus) and pied flycatchers Ficedula hypoleuca. Journal of Avian Biology 28: 187–190.

Winkler D.W., Dunn P.O. & McCulloch C.E. 2002. Predicting the effects of climate change on avian life-history traits. Proc. Natl. Acad. Sci. U.SA. 99: 13595–13599.

Wright J., Both C., Cotton P. & Bryant D. 1998. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning strategies. Journal of Animal Ecology 67: 620–634.

Yang L.H. & Rudolf V.H.W. 2010. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology letters 13: 1–10.

(17)

Referenties

GERELATEERDE DOCUMENTEN

This test explored which of our main proposed drivers of variation – plant type, plant organ, habitat (site), and season – most strongly influ- enced the overall variation in

Even though the ketogenic diet is mainly used as an alternative treatment for people with medication resistant epilepsy, the diet may have many other potential

In chapter 4, I experimentally demonstrated that flycatchers adjust their settlement deci- sions based on the timing cues provided by great and blue tits, and in chapter

In hoofdstuk 5 hebben we aangetoond dat aankomende vliegenvangers liever mezeninformatie gebruiken in gebieden waar meer mezen zitten, maar vliegenvanger - informatie de voorkeur

den Burg voor het regelen van computergerelateerde zaken, Jacob Hogendorf voor het beschikbaar stellen van materiaal, Paul Steerenberg voor hulp bij financiële

Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, EE-51014 Tartu, Estonia; Department of Zoology and Animal Ecology, University of Latvia, R

(2018) Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders, Global Change Biology, In Press,

However, competing species within trophic levels may respond differently to temperature changes, which may affect their optimal response to climate change and the outcome