• No results found

electrospun nanofibers ␤ -cyclodextrin encapsulatedin complex Release and activity antibacterial of allylisothiocyanate/ Colloids and Surfaces B: Biointerfaces

N/A
N/A
Protected

Academic year: 2022

Share "electrospun nanofibers ␤ -cyclodextrin encapsulatedin complex Release and activity antibacterial of allylisothiocyanate/ Colloids and Surfaces B: Biointerfaces"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ColloidsandSurfacesB:Biointerfaces120(2014)125–131

ContentslistsavailableatScienceDirect

Colloids and Surfaces B: Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Release and antibacterial activity of allyl

isothiocyanate/ ␤-cyclodextrin complex encapsulated in electrospun nanofibers

Zeynep Aytac

a,b

, Sema Y. Dogan

c

, Turgay Tekinay

c,d

, Tamer Uyar

a,b,∗

aInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey

bUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

cGaziUniversity,LifeSciencesApplicationandResearchCenter,Ankara06830,Turkey

dGaziUniversity,PolatlıScienceandLiteratureFaculty,Ankara06900,Turkey

a r t i c l e i n f o

Articlehistory:

Received21December2013

Receivedinrevisedform19March2014 Accepted13April2014

Availableonline22May2014

Keywords:

Electrospinning Nanofibers Allylisothiocyanate

␤-Cyclodextrin Release

Antibacterialactivity

a b s t r a c t

Allylisothiocyanate(AITC)isknownasanefficientantibacterialagentbutithasaveryhighvolatil- ity.Herein,AITCandAITC/␤-cyclodextrin(CD)-inclusioncomplex(IC)incorporatedinpolyvinylalcohol (PVA)nanofiberswereproducedviaelectrospinning.SEMimageselucidatedthatincorporationofAITC andAITC/␤-CD-ICintopolymermatrixdidnotaffectthebead-freefibermorphologyofPVAnanofibers.

1H-NMRand headspaceGC-MSanalysesrevealedthatverylow amountof AITCwas remainedin PVA/AITC-NFbecauseoftherapidevaporationofAITCduringtheelectrospinningprocess.Neverthe- less,muchhigheramountofAITCwaspreservedinthePVA/AITC/␤-CD-IC-NFduetotheCDinclusion complexation.ThesustainedreleaseofAITCfromnanofiberswasevaluatedat30C,50Cand75Cvia headspaceGC–MS.WhencomparedtoPVA/AITC-NF,PVA/AITC/␤-CD-IC-NFhasshownhigherantibac- terialactivityagainstEscherichiacoliandStaphylococcusaureusduetothepresenceofhigheramountof AITCinthissamplewhichwaspreservedbyCD-IC.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Electrospinningisawidelyusedmethodtoproducefunctional nanofibersfromvarietyofmaterialsincludingpolymers,inorganic materialsandcompositestructures[1,2].Generallyelectrospinning is a room temperature process in which the polymer solution isexposed toelectrostatic field and theelectrifiedjetis drawn towardtothegroundedcollectoranddepositedonthecollector asa fibrousweb. Asthesolventevaporates duringtheprocess, nanofibrousmaterialswithuniquepropertieshavingveryhighsur- faceareatovolumeratioandnanoporousstructuresareproduced [1,2].Theuniquepropertiesenableelectrospunnanofiberstobe usedinwounddressing,tissuescaffold,drugdelivery,foodpack- aging,filtration,energy,catalysis,sensors,etc.[1,2].Owingtothe roomtemperatureandambientprocessconditionsthatprovide protectionforthebioactivecompoundsinelectrospunnanofibers,

∗ Correspondingauthorat:InstituteofMaterialsScience&Nanotechnology (UNAM),UNAM,BilkentUniversity,06800Ankara,Turkey.Tel.:+903122903571;

fax:+903122664365.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

electrospinningisusedforproductionoffunctionalnanofiberscon- tainingactiveagentslikeantioxidants[3,4],flavors/fragrances[5,6]

andantibacterialagents[7].

Activeagentsloadedelectrospunnanofibersmaybeusefulin food packaging [3,4,7–11] and biomedical applications[12–14]

asreportedintheliterature.Vega-Lugoetal.madecomparison intermsofreleasecharacteristicsoffreeAITCandAITC/␤-CD-IC includingsoyproteinnanofiberswithchangingrelativehumidity andtheyalsostudiedtheeffectofAITCamountonthereleaseof AITC fromAITC includingpolylacticacidnanofibersin different relative humidity [8]. In another related study, Ge et al. pro- ducedmaterialsforfoodpackagingapplicationsbyimmobilizing glucoseoxidaseenzymeinpolyvinylalcohol/chitosan/teaextract electrospunnanofibrousmembrane[9].Inastudyconductedby ourresearchgroup,polylacticacidnanofibersincorporatedwith inclusioncomplexoftriclosanandcyclodextrinswereproduced viaelectrospinning[7].Ina studyofPérez-Masiá etal.,aphase changing material was encapsulated in electrospun zein fibers for the possible application as smart packaging materials [10].

Withregardstobiomedicalapplications,Mattanaveeetal.(2009) prepared different biomolecules immobilized electrospunpoly- caprolactonenanofiberswiththepurposeofusingthemintissue http://dx.doi.org/10.1016/j.colsurfb.2014.04.006

0927-7765/©2014ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Chemicalstructureof(a)allylisothiocyanate,(b)␤-CD;schematicrepresentationof(c)␤-CD,(d)formationofAITC/␤-CD-ICand(e)electrospinningofnanofibers fromPVA/AITC/␤-CD-ICsolution.

engineering [12]. Merrell et al. obtained curcumin-antioxidant agent-loadedelectrospunpolycaprolactonenanofibersfordiabetic wounddressingapplications[13].InthestudyofUnnithanetal.,an antibacterialelectrospunnanofibersthatareintendedtobeused aswounddressingmaterialwereproducedbyelectrospinningof a drug– ciprofloxacinHCl –including solutionof dextran and polyurethane[14].

Cyclodextrins (CD) are cyclic oligosaccharides (Fig. 1b) and ableto form inclusion complex (IC)with variety of molecules.

CDhave␣-(1-4)linkagesformingatruncated-coneshapedstruc- ture(Fig.1c).␣-CD,␤-CDand␥-CDhaving6,7,8glucopyranose units are the most common CD types [15,16]. Owing to their hydrophobiccavity, CD are ableto formhost–guest complexes viaweakforces,suchasvanderWaalsinteractions,dipole–dipole interactions,andhydrogenbondingwithmoleculesinappropri- atepolarityand dimension.ICof CDwithaguestmoleculehas advantages likeproviding higher solubility,higherthermal sta- bility and bioavailability of hydrophobic guests; controlling of volatility,masking offunpleasant odors,and controllingrelease of drugs and flavors [15–17]. CD are widely used in pharma- ceutical,cosmetics, biotechnology, agriculture,textile,chemical, environmental protection industries [15–17]. There also exist studies concerning application of CD in active food packaging [18–20] and biomedical applications [21–23] in the literature.

Inthefoodpackagingstudies,CD wereincorporatedwithpoly- mersin free formtocaptureundesired molecules in thefoods like cholesterol [18], hexanal and cholesterol [19] or in guest molecule-CD-ICformtoreleaseanantimicrobialagent(trans-2- hexenal)[20].ICofCDand varioustypesofdrugsareprepared and theseCD-drug-ICcouldbeused in biomedicalapplications [21–23].

Allyl isothiocyanate (AITC) (Fig. 1a) is a major pungent, an antimicrobialcompoundfoundincabbage,horseradish,mustard, wasabiaandusedinfoodpackaging[24],andbiomedicalapplica- tions[25,26].ICofAITCwithCDwasinvestigatedintheliterature [27,28].InastudyofLietal.,releaserateofICofAITCand␣-CD andICofAITCand␤-CDwasinvestigatedagainstrelativehumidity [27].Inanotherstudy,Ohtaetal.studiedonthedecompositionand thermodynamicpropertiesofinclusioncomplexationofAITCand CD(␣-CDand␤-CD)[28].

AITC could be used in food packaging applications by incorporating it into polymeric films [29] or fibers [8]. Plack- ett et al. investigated the effect of CD type in the release behavior of AITC from AITC/CD-IC incorporated into polylactic acid–polycaprolactone films [29]. Vega-Lugo et al. studied the release ofAITC fromonlyAITC and AITC/␤-CD-ICincludingsoy proteinnanofibersatdifferentrelativehumidity[8].

Inthisstudy,AITCencapsulatedinelectrospunpolyvinylalco- hol(PVA)nanofibersweregeneratedbytwomethods.PVAasa nanofibermatrixwaschosensincePVAisasuitablepolymertype forfoodpackagingapplicationsshownintheliteraturebyincorpo- ratingdifferentmoleculesorbacteriaintoPVAfilms[30]andfibers [5,31]duetoitshightensilestrength,flexibility,highoxygenand barrierproperties.FreeAITCandinclusioncomplexofAITCwith

␤-CD(AITC/␤-CD-IC)(Fig.1d)preparedinaqueoussolutionwas incorporatedintoPVAsolution;thenPVA/AITCandPVA/AITC/␤- CD-ICnanofiberswereproducedviaelectrospinning(Fig.1e).The resultingnanofibrouswebswerecharacterizedbySEM,XRD,and

1H-NMR.Therelease of AITCfromnanofiberswasmeasuredat 30C,50Cand75CbyheadspaceGC–MS.Theantibacterialactiv- ities of nanofibers were tested against Escherichia coli (E. coli) andStaphylococcusaureus(S.aureus)accordingtocolonycounting method.

2. Materialsandmethods 2.1. Materials

Polyvinyl alcohol (PVA, Mw∼85.000–146.000g/mol, Sigma Aldrich,87–89%hydrolyzed),allylisothiocyanate(AITC,95%,Sigma Aldrich),beta-cyclodextrin(␤-CD,WackerChemieAG,Germany), deuterateddimethylsulfoxide(DMSO-d6,deuterationdegreemin 99.8% for NMR spectroscopy,Merck) werepurchased and used as-receivedwithoutanyfurtherpurification.Distilledwaterwas suppliedfromMilliporeMilli-Qultrapurewatersystem.

2.2. Preparationofsolutions

AITCcontainingPVAnanofiberswerepreparedbyincorporating AITCintoPVAsolutionsviatwomethods.Inthefirstmethod,free

(3)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 127

Table1

Thepropertiesofthesolutionsusedforelectrospinningandmorphologicalcharacteristicsoftheresultingelectrospunnanofibers(thefibersizeisreportedastheaver- age±standarddeviationand100fiberswereanalyzedforeachcase).

Solutions PVAa(g/kg,w/v) ␤-CDb (g/kg,w/w)

AITCb (g/kg,w/w)

Viscosity (Pas)

Conductivity (␮S/cm)

Averagefiber diameter(nm)

Fiberdiameter range(nm)

Fibermorphology

PVA 75 0.177 470 290±65 140–580 Bead-freenanofibers

PVA/AITC 75 40 0.267 487 210±45 120–330 Bead-freenanofibers

PVA/AITC/␤-CD-IC 75 227 40 0.194 523 235±90 90–540 Bead-freenanofibers

aWithrespecttosolvent(water).

bWithrespecttopolymer(PVA).

AITC(4%,w/w,withrespecttopolymer)wasdispersedinaque- oussolutionandthen7.5%PVA(w/v)wasputintothissolution.

Thesolution(PVA/AITCsolution)wasstirredatroomtemperature overnightandfinallyitwaselectrospun(PVA/AITC-NF).Inthesec- ondmethod,4%AITC(w/w,withrespecttopolymer)wasdispersed inaqueoussolution,then␤-CDwasaddedtogiveamolarratio of2:1(AITC:␤-CD)andresulting solutionwasstirred overnight at room temperature and white, turbidsolution was obtained.

Finally,7.5%PVA(w/v)wasadded(PVA/AITC/␤-CD-ICsolution), andPVA/AITC/␤-CD-ICsolutionwasstirred6hmoreatroomtem- peratureandelectrospun(PVA/AITC/␤-CD-IC-NF).Forcomparison, wehavealsoelectrospunPVAaqueoussolution(7.5%,w/v)without AITCorAITC/␤-CD-IC.Table1summarizesthecompositionsofthe solutionsusedfortheelectrospinningofthenanofibers.

2.3. Electrospinning

PVA,PVA/AITCandPVA/AITC/␤-CD-ICsolutionswereseparately loadedinto3mLplasticsyringe(metallicneedlewith0.8mminner diameter)andthenelectrospunbyusingthehorizontalelectro- spinning setup.The solutions were pumped through a syringe pump(WPI,SP101IZ)at1mL/hrate.Cylindricalmetalcovered withaluminumfoilwasusedasacollector.Theelectricfield(15kV) wasappliedfromahighvoltagepowersupply(AUSeries,Matsu- sadaPrecisionInc.)andthetip-to-collectordistancewas10cm.

Experimentswereperformedat24–25Cunder17–20%humidity.

2.4. Characterizationandmeasurements

The viscosityof PVA, PVA/AITC and PVA/AITC/␤-CD-ICsolu- tionsweredeterminedbyAntonPaarPhysicaMCR301rheometer equippedwithacone/plate accessory(spindletype CP40-2)at aconstantshearrateof100s−1,at25Candtheconductivityof solutionswasmeasuredbyInolab®Multi720-WTWatroomtem- perature.

The morphologies of the electrospun PVA-NF, PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF wereexaminedby scanningelectron microscopy (SEM, FEI—Quanta 200 FEG). Prior to taking SEM images,nanofibersamplesmountedonmetalstubswithdouble- sidedadhesivetapewerecoatedwith5nmAu/Pd(PECS-682)to minimizecharging.Diametersofthenanofibersweremeasured directlyfromtheSEMimages(n≥100)andaveragefiberdiameter (AFD)wascalculated.

Thecrystalline structureof PVA-NF, ␤-CD,PVA/AITC-NF and PVA/AITC/␤-CD-IC-NFwere recordedby X-raydiffraction (XRD, PANalyticalX’Pertpowderdiffractometer)applyingCuK␣radia- tionina2range7.5–30.

Theprotonnuclearmagneticresonance(1H-NMR)spectrawere recorded onBrukerDPX-400in DMSO-d6 at400MHzat 25C.

30mg/mLofAITC,PVA-NF,␤-CD,PVA/AITC-NFandPVA/AITC/␤- CD-IC-NFweredissolvedinDMSO-d6toexaminethepresenceof AITCinthesamplesandstoichiometryofPVA/AITC/␤-CD-IC-NF.

Integration of the chemical shifts (ı) given in parts per mil- lion(ppm)of thesampleswascalculatedbyusingMestReNova software.

The cumulative amount of AITC released from PVA/AITC- NF and PVA/AITC/␤-CD-IC-NF were determined for 240minby headspace gaschromatography–massspectrometry (GC–MS)of AgilentTechnologies7890AgaschromatographcoupledtoanAgi- lentTechnologies5975CinertMSDwithatriple-axisdetector.The capillarycolumnusedwasHP-5MS(Hewlett-Packard,Avondale, PA)(30m×0.25mmi.d.,0.25␮mfilmthickness).Theheadspace GC–MSexperiments wereperformedwitha CTCPAL autosam- pler.20mgofPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFtakenfrom thealuminumfoilwereplacedin20mLheadspaceglassvials.The vialswereagitatedat500rpmat30C,50Cand75Cofincuba- tiontemperatureand20%relativehumidity.Heliumwasusedas carriergaswasataflowrateof1.2mL/min.500␮Lofvaporwas injectedtotheheadspaceGC–MSbyusingaheadspaceinjector (MSH02-00B,volume:2.5mL,scale:60mm).Thesyringetemper- aturewas50C.Oventemperaturewasheldat50Cfor1minand increasedto200Cattherateof20C/minandheldatthistem- peraturefor3min.Thermaldesorptionwasconductedinthesplit mode(20:1).HeadspaceGC–MSanalyseswerecarriedoutinthe completeselectedionmonitoringmode(SIM).Flavor2andNIST 0.5librarieswereusedtodecideAITCpeak.Thereleaseexperi- mentwasperformedintriplicateandtheresultswerereportedas average±standarddeviation.

The antibacterial activity of PVA/AITC-NF and PVA/AITC/␤- CD-IC-NF was assessed by colony counting method against Gram-negativeE.coliandGram-positiveS.aureusbacteria.200␮L oftheE.coliandS.aureusgrownovernightwereinoculatedinto 10mLofLuria–Bertani(LB)brothandnanofibersweresterilized byUVirradiationandputintotheflasks.About1mgofnanofiber samplesandcontrolswereincubatedat37Candstirred100rpm for24h.Samplesfromeachflaskandcontrolswereseriallydiluted, 100␮LofeachwasspreadontoLBagarandcolonieswerecounted andphotographedafter24h.Allexperimentswereperformedin triplicateandreportedasaverage±standarddeviation.

3. Resultsanddiscussion

3.1. Morphologyanalysisofnanofibers

As an aim toward producing PVA nanofibers (NF)encapsu- latingAITC,freeAITC andinclusioncomplexofAITC with␤-CD (AITC/␤-CD-IC)wasincorporatedintoPVAnanofibers(PVA/AITC- NFandPVA/AITC/␤-CD-IC-NF)byusingelectrospinningtechnique.

ThemorphologicalcharacterizationofPVA-NF,PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFwascarriedoutviaSEM.SEMimagesand averagefiberdiameter(AFD)alongwithfiberdistributionsofthe nanofibersaredepictedin Fig.2.In thecase ofelectrospinning of pristinePVA solution,bead-free anduniformPVA-NF having AFDof290±65nmwasobtained.Then,weincorporatedAITCand AITC/␤-CD-ICintoPVAsolutionandthenelectrospinningwasper- formedinordertoobtainfunctional nanofibers.Asclearlyseen fromSEMimages,theincorporationofAITCorAITC/␤-CD-ICdid notcauseanynotablechangeinthemorphologyoftheelectrospun nanofibers.TheAFDofPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFwas veryclosetoeachotherwhichwere210±45nmand235±90nm,

(4)

Fig.2. SEMimagesandfiberdiameterdistributionswithaveragefiberdiameter(AFD)oftheelectrospunnanofibersobtainedfromsolutionsof(a)PVA,(b)PVA/AITC,(c) PVA/AITC/␤-CD-IC.

respectively.ThesenanofiberswereslightlythinnerthanthePVA- NF. The slight variations of fiber diameters observed for the nanofibersampleswerepossiblyduetodifferencesinviscosityand conductivityofthesolutions[1,2,32].Theviscosity,conductivity andAFDvaluesofPVA,PVA/AITCandPVA/AITC/␤-CD-ICsolutions areshowninTable1.PVA/AITCandPVA/AITC/␤-CD-ICsolutions havehigherviscosityandhigher conductivitycompared toPVA solution.

3.2. Crystallinestructureofnanofibers

XRD was performed for PVA-NF, ␤-CD, PVA/AITC-NF and PVA/AITC/␤-CD-IC-NFandthediffractionpatternsaredepictedin Fig.3.AITCisaliquidcompoundatroomtemperature,sowedid notrunXRDanalysisforpureAITC.PVAisasemi-crystallinepoly- merandtheXRDofPVA-NFhasshownabroaddiffractionataround 2∼19.6[33].XRDpatternofPVA/AITC-NFwassimilartoPVA-NF, thusPVAkeepsitssemi-crystallinestructureafterincorporationof AITC.Thecage-typepackingcrystalstructureobservedinCDgener- allytransformintochannel-typepackinginCD-IC.Theas-received

␤-CDhasacage-typepackinganditscharacteristicdiffractionpat- ternisgiveninFig.3.Thechannel-typepackingof␤-CDhassalient characteristicpeakat2∼12[6].Here,thepeakat2∼12inXRD patternofPVA/AITC/␤-CD-IC-NFwasobservedandweconcluded thattheICformationbetweenAITCand␤-CDinPVA/AITC/␤-CD-IC- NFwaspresent.Inaddition,thecage-typepackingof␤-CDpattern

wasabsentinthefibersampleandthismaysupporttheAITC/␤- CD-ICformationaswell.

3.3. AITCcontentinnanofibers

PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF were tested by 1H- NMRtodeterminethestoichiometryofAITC/␤-CD-ICandwhether

Fig.3. XRDpatternsofPVAnanofibers,␤-CDandAITCcontainingPVAnanofibers.

(5)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 129

Fig.4. 1H-NMRspectraofAITC,PVA,␤-CDandAITCcontainingPVAnanofibers.

AITC was present in PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF (Fig.4).ThepeaksforAITCwereobservedataround4.2,5.3,and 5.9ppmcorrespondingtotheprotonsofAITC[34].Thestoichiom- etryofAITCand␤-CD-ICinPVA/AITC/␤-CD-IC-NFwasdetermined

as0.68:1.00(AITC:␤-CD)byintegratingthepeakratioofthecharac- teristicchemicalshiftsofAITC(5.3ppm)and␤-CD(5.7ppm).Thus, initialmolarratioof2:1forAITC:␤-CDwhichwasusedtoobtain AITC/␤-CD-ICwaspreservedsubstantially.So,PVA/AITC/␤-CD-IC- NFstillcontainedsomeofAITCinthefibersamplewhereaswe couldnotobserveanypeakofAITCinPVA/AITC-NF.Therefore,we deducedthatextremelylowquantityofAITCexistinPVA/AITC-NF.

ThepossiblereasonforthissituationisevaporationofAITCdur- ingtheelectrospinningofsolutionsinceAITCisahighlyvolatile substance.Infact,wewereabletosmellAITCheavilyduringelec- trospinningofPVA/AITC-NF.Inbrief,1H-NMRstudyshowedthat

␤-CDpreventedevaporationofAITCtosomeextentduringelectro- spinningprocessandhighloadingofAITCinPVA/AITC/␤-CD-IC-NF wasachievedcomparedtoPVA/AITC-NF.

3.4. ThereleasestudyofAITCfromnanofibers

The application of AITC is somehow restricted because of its highly volatile nature, unpleasant odor and hydrophobic nature[27].Here, wehaveincorporatedAITC/␤-CD-ICintoPVA polymer solution, and PVA/AITC/␤-CD-IC-NF were obtainedvia electrospinning.Foracomparativestudy,wehavealsoproduced PVA/AITC-NFwithoutCD-IC.Therehavebeenreportsin thelit- eratureabouttheapplicationofCDinfoodpackagingmaterials tocontrolthedeliveryofactivecompounds[8,20,27,29].Here,we haveevaluatedthereleasebehaviorofAITCfromPVA/AITC-NFand PVA/AITC/␤-CD-IC-NFatthreedifferenttemperatures(30C,50C and75C)byusingheadspaceGC–MS(Fig.5).

ThecumulativeamountofAITCreleasedat30C,50Cand75C (for240min) fromPVA/AITC-NFwereminimalandsignificantly muchlowerthanthatofPVA/AITC/␤-CD-IC-NFsample.Itisevident thatverysmallamountofAITCwaspresentinthePVA/AITC-NF sampleasalsoconfirmedby1H-NMRstudieswhichwecouldnot even detectAITC inthis sample.In thecase ofPVA/AITC/␤-CD- IC-NF,theamountofAITCwassignificantandthereleaseofAITC fromthenanofibersamplewasincreasedgraduallywithtimeand finally becameconstant. Hence,we have successfully produced PVA/AITC/␤-CD-IC-NFwithasustainedreleasebehaviorofAITC.

Inaddition,asthetemperaturewasincreasedfrom30Cto75C, theamountofAITCreleasedwasalsoincreasedobviouslyforboth PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFsamples.Thisis related withthehigherdiffusioncoefficientofmoleculesathighertem- peratures [35]. Athigher temperatures, the motionof polymer chainsincreases,sothemovementofactivemoleculethroughthe amorphous partsof thepolymeris favored [36]. Moreover,the incrementinthereleaseofAITCfromPVA/AITC/␤-CD-IC-NFwas muchclearerthanPVA/AITC-NF.Inshort,headspaceGC-MSresults clearlyconfirmedthattheevaporationofAITCwashinderedbyCD- ICandmuchhigheramountofAITCwasencapsulatedinthePVA nanofiberswhenAITCwascomplexedwith␤-CD.

3.5. Antibacterialactivityofnanofibers

AITC,themajorpungentcompoundinplants,hasbeenreported tohavestrongantimicrobialactivityinbothliquidandvaporforms.

Here,wehavetestedtheantibacterialactivityofPVA/AITC-NFand PVA/AITC/␤-CD-IC-NFbycolony countingmethodagainst Gram negativeE.coliandGrampositiveS.aureusbacteria.Fig.6ashows representativeimagesofbacteriacoloniestreatedbyPVA/AITC- NF and PVA/AITC/␤-CD-IC-NF; and Fig. 6b shows the effect of PVA/AITC-NFandPVA/AITC/␤-CD-IC-NFonthegrowthinhibition rateofE.coliandS.aureus.Thegrowthinhibitionrate(%)ofbacte- riawascalculatedbyassumingthatplateswithoutnanofibershave 100% growth.PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFexhibited 31.98% and 94.41% antibacterialactivity againstE.coli whereas

(6)

Fig.5.CumulativereleaseofAITCfromPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFat30C,50Cand75C(n=3).Theerrorbarsinthefigurerepresentthestandarddeviation (SD).

antibacterial activity against S. aureus was 53.55% and 99.82%, respectively.ItwasobviousPVA/AITC/␤-CD-IC-NFsample(includ- ingabout0.0107mg AITC accordingto NMR result)hasshown muchbetterantibacterialactivitywhencomparedtoPVA/AITC-NF.

ThisismostlikelyduetothepresenceofhigheramountofAITCin PVA/AITC/␤-CD-IC-NFwhichwaspreservedbyCD-IC.Inthecase ofPVA/AITC-NF,someantibacterialactivityagainstE.coliandS.

aureuswasobservedsinceverylowlevelofAITCwaspresentin thissampleasitwasdetectedbyheadspaceGC–MSanalysis.More- over,theelectrospinningprocessinwhichveryhighvoltageswere appliedhasnonegativeeffectontheantibacterialpropertyofAITC encapsulatedinPVA/AITC-NFandPVA/AITC/␤-CD-IC-NF.Inaddi- tion,thedifferenceintheantibacterialactivityofbothnanofiber samplesagainstE.coliandS.aureusmaybecausedbythedifference

Fig.6.(a)ExemplaryimagesofcoloniesofEscherichiacoli,Staphylococcusaureus;E.coliandS.aureuscoloniestreatedbyPVA/AITC-NF;E.coliandS.aureuscoloniestreated byPVA/AITC/␤-CD-IC-NF;(b)growthinhibitionrate(%)ofE.coliandS.aureusinPVA/AITC-NFandPVA/AITC/␤-CD-IC-NF(n=3).Theerrorbarsinthefigurerepresentthe standarddeviation(SD).

(7)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 131

betweencellwallcompositionoftwobacteria,whichareGram negativeandGrampositive,respectively.Gramnegativebacteria haveasemi-permeable barrierthatdeceleratespassingof com- pounds[37].

4. Conclusion

Inthisstudy,weperformedtheelectrospinningoffunctional PVAnanofibersincorporatingAITCandAITC/␤-CD-IC.SEMimages showedthatthebead-freefibermorphologyofPVAnanofibersdid notchangeaftertheincorporationofAITCandAITC/␤-CD-ICinto polymermatrix.Weobservedthattheextremelylowquantityof AITCexistinPVA/AITC-NFduetothequickevaporationofAITC duringtheelectrospinningofPVA/AITCsolutionsinceAITChasa highlyvolatilenature.On thecontrary,much higheramountof AITCwasencapsulatedinthePVA/AITC/␤-CD-IC-NFsampledue tothecyclodextrin inclusioncomplexation. Hence,PVA/AITC/␤- CD-IC-NFhasshownimprovedantibacterialactivityagainstE.coli and S. aureus when compared to PVA/AITC-NF without CD-IC.

Inbrief,newlydevelopedPVA/AITC/␤-CD-IC-NFwithhighload- ingefficiency,sustainedrelease behaviorandconsiderably high antibacterialactivitymayhavepotentialsforactivefoodpackaging andbiomedicalapplications.

Acknowledgments

Dr. Uyar acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK) (Project no. 111M459) and EU FP7-PEOPLE-2009-RG Marie Curie-IRG (NANOWEB, PIRG06-GA-2009-256428) and The Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA- GEBIP) for funding the research. Z. Aytac thanks to TUBITAK (Projectno.111M459)forthePh.D.scholarship.Dr.Tekinaythanks GaziUniversityScientificResearchProjectUnitfortheirsupport.

References

[1]S.Ramakrishna,AnIntroductiontoElectrospinningandNanofibers,WorldSci- entificPublishingCompanyIncorporated,Singapore,2005.

[2]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,JohnWiley&SonsPublishing,Weinheim,2012.

[3]A.Fernandez,S.Torres-Giner,J.M.Lagarón,FoodHydrocoll.23(2009)1427.

[4]Y.P.Neo,S.Ray,J.Jin,M.Gizdavic-Nikolaidis,M.K.Nieuwoudt,D.Liu,S.Y.Quek, FoodChem.136(2012)1013.

[5]F.Kayaci,T.Uyar,FoodChem.133(2012)641.

[6]T.Uyar,Y.Nur,J.Hacaloglu,F.Besenbacher,Nanotechnology20(2009)125703.

[7]F.Kayaci,O.C.Umu,T.Tekinay,T.Uyar,J.Agric.FoodChem.61(2013)3901.

[8]A.-C.Vega-Lugo,L.-T.Lim,FoodRes.Int.42(2009)933.

[9]L.Ge,Y.-s.Zhao,T.Mo,J.-r.Li,P.Li,FoodControl26(2012)188.

[10]R.Pérez-Masiá,A.López-Rubio,J.M.Lagarón,FoodHydrocoll.30(2013)182.

[11]C.Kriegel,A.Arrechi,K.Kit,D.McClements,J.Weiss,Crit.Rev.FoodSci.Nutr.

48(2008)775.

[12]W.Mattanavee,O.Suwantong,S.Puthong,T.Bunaprasert,V.P.Hoven,P.Supa- phol,ACSAppl.Mater.Interfaces1(2009)1076.

[13]J.G.Merrell,S.W.McLaughlin,L.Tie,C.T.Laurencin,A.F.Chen,L.S.Nair,Clin.

Exp.Pharmacol.Physiol.36(2009)1149.

[14]A.R.Unnithan,N.A.Barakat,P.Tirupathi,G.Gnanasekaran,R.Nirmala,Y.-S.Cha, C.-H.Jung,M.El-Newehy,H.Y.Kim,Carbohydr.Polym.90(2012)1786.

[15]E.DelValle,ProcessBiochem.39(2004)1033.

[16]J.Szejtli,Chem.Rev.98(1998)1743.

[17]A.R.Hedges,Chem.Rev.98(1998)2035.

[18]C.López-de-Dicastillo,M.a.Jordá,R.n.Catalá,R.Gavara,P.Hernandez-Munoz, J.Agric.FoodChem.59(2011)11026.

[19]C.López-de-Dicastillo,M.Gallur,R.Catalá,R.Gavara,P.Hernandez-Munoz,J.

Membr.Sci.353(2010)184.

[20]M.J.Joo,C.Merkel,R.Auras,E.Almenar,Int.J.FoodMicrobiol.153(2012)297.

[21]M.R.Freitas,L.A.Rolim,M.F.L.R.Soares,P.J.Rolim-Neto,M.M.d.Albuquerque, J.L.Soares-Sobrinho,Carbohydr.Polym.89(2012)1095.

[22]S.K.Khalil,G.S.El-Feky,S.T.El-Banna,W.A.Khalil,Carbohydr.Polym.90(2012) 1244.

[23]M.D.Moya-Ortega,C.Alvarez-Lorenzo,H.k.H.Sigurdsson,A.Concheiro,T.Lofts- son,Carbohydr.Polym.80(2010)900.

[24]J.Shin,B.Harte,E.Ryser,S.Selke,J.FoodSci.75(2010)65.

[25]S.Hayashi,E.Nakamura,T.Endo,Y.Kubo,K.Takeuchi,Inflammopharmacology 15(2007)218.

[26]S.Hayashi,E.Nakamura,Y.Kubo,N.Takahashi,A.Yamaguchi,H.Matsui,S.

Hagen,K.Takeuchi,J.Physiol.Pharmacol.59(2008)691.

[27]X.Li,Z.Jin,J.Wang,FoodChem.103(2007)461.

[28]Y.Ohta,K.Takatani,S.Kawakishi,Biosci.Biotechnol.Biochem.64(2000)190.

[29]D.Plackett,A.GhanbariSiahkali,L.Szente,J.Appl.Polym.Sci.105(2007)2850.

[30]B.Marcos,T.Aymerich,J.M.Monfort,M.Garriga,J.FoodSci.75(2010)502.

[31]A.López-Rubio,E.Sanchez,Y.Sanz,J.M.Lagarón,Biomacromolecules10(2009) 2823.

[32]T.Uyar,F.Besenbacher,Polymer49(2008)5336.

[33]J.H.Park,H.W.Lee,D.K.Chae,W.Oh,J.D.Yun,Y.Deng,J.H.Yeum,ColloidPolym.

Sci.287(2009)943.

[34]Y.Ohta,Y.Matsui,T.Osawa,S.Kawakishi,Biosci.Biotechnol.Biochem.68 (2004)671.

[35]C.Y.Hu,M.Chen,Z.W.Wang,Packag.Technol.Sci.25(2012)97.

[36]M.Galotto,A.Torres,A.Guarda,N.Moraga,J.Romero,FoodRes.Int.44(2011) 566.

[37]M.Ignatova,Z.Petkova,N.Manolova,N.Markova,I.Rashkov,Macromol.Biosci.

12(2012)104.

Referenties

GERELATEERDE DOCUMENTEN

exhibited diffraction peaks of hexagonal wurtzite structure of ZnO (ICDD 01-074-9940) revealing the successful deposition of ZnO seed as well as nanoneedles on electrospun PAN

Our preliminary findings suggested that ␤-CD-functionalized CA nanofibers have potentials to be used as molecular filters for the purpose of water purifica- tion and/or waste

In brief, the addition of CDs to zein solutions significantly affected the electrospinning, and bead-free nanofibers were obtained from lower zein concentrations for zein/CD systems

We compared the release profiles of NAP from PCL/NAP and PCL/NAP- ␤CD-IC nanofibers and we examined the effect of inclusion complexation on the release behavior of NAP from

The initial 1:1 molar ratio of the triclosan:CD was kept for triclosan/HP␤CD-IC NF after the electrospinning and whereas 0.7:1 molar ratio was observed for triclosan/HP ␥CD-IC NF

The loss of vanillin was observed at slightly high- er temperature for PVA/vanillin/ a -CD-IC and PVA/vanillin/b-CD-IC nanowebs when compared to PVA/vanillin nanoweb suggesting that

Schoneker, 2003). We observed that PVA NF could not preserve geraniol without the CD-IC, yet incorporation of geraniol/ γ-CD-IC in PVA NF suc- cessfully yielded geraniol with

SFS release from PCL-HPC/SFS/HP ␤CD-IC- NF that was prepared by placing HPC/SFS/HP ␤CD-IC-NF between PCL nanofibrous mats was slower compared to HPC/SFS/HP ␤CD- IC-NF without