• No results found

Electrospun zein nanofibers incorporating cyclodextrins Carbohydrate Polymers

N/A
N/A
Protected

Academic year: 2022

Share "Electrospun zein nanofibers incorporating cyclodextrins Carbohydrate Polymers"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatSciVerseScienceDirect

Carbohydrate Polymers

jo u r n al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Electrospun zein nanofibers incorporating cyclodextrins

Fatma Kayaci, Tamer Uyar

UNAM-InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara,06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received26December2011

Receivedinrevisedform16March2012 Accepted22May2012

Available online 30 May 2012

Keywords:

Cyclodextrin Electrospinning Zein

Nanofibers

a b s t r a c t

Zeinnanofiberscontainingcyclodextrins (zein/CD)wereproducedvia electrospinning.Three types ofCDs(␣-CD,␤-CDand␥-CD)having10%,25%and50%(w/w)wereindividuallyincorporatedinto zeinnanofibers.SEMimagingelucidatedthatthemorphologiesoftheelectrospunzein/CDnanofibers dependedontheCDtypeandweightpercentage.TheincorporationofCDsinzeinimprovedtheelectro- spinnabilityandbead-freenanofiberswereobtainedatlowerzeinconcentrations.Zein/CDnanofibers havingfiberdiameters∼100–400nmwereobtaineddependingonthezeinconcentrations,typesand weightpercentagesofCD.XRDstudiesrevealedthatCDsweremostly distributedwithoutforming crystallineaggregatesforzein/CDnanofiberscontaininglowerweightpercentageofCDs.Thesurface analysesofzein/CDnanofibersbyATR-FTIRandXPSindicatedthatsomeoftheCDswerepresentonthe fibersurface.Thermalanalysesshowedthatzein/␤-CDnanofibershaveshownhigherglasstransition temperaturesandhigherdegradationtemperaturewithincreasingCDcontent.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently,electrospinningtechniquehasgainedagreat inter- est since this technique is quite versatile for fabricating nanofibers/nanowebs from various synthetic or natural poly- mers,polymerblends,sol–gels,ceramics,etc.(Agarwal,Greiner,

&Wendorff,2009;Bhardwaj&Kundu,2010;Ramakrishnaetal., 2006; Teo&Ramakrishna, 2009).Moreover, functional electro- spunnanofibrouscompositestructurescanalsobeproducedby incorporating functional additives and/or nanoparticles in the fiber matrix or on the fiber surface (Andrew & Clarke, 2008;

Anitha,Brabu,Thiruvadigal,Gopalakrishnan,&Natarajan,2012;

Dong, Wang, Sun, & Hinestroza, 2008; He, Hu, Yao, Wang, &

Yu, 2009; Roso, Sundarrajan, Pliszka, Ramakrishna, & Modesti, 2008; Zhang, Shao, et al., 2011).Unique properties of electro- spun nanofibers/nanowebs including a relatively large surface area tovolume ratio and pore sizes within the nanoscale and multi-functionality due to the presence of functional additives andnanoparticlesmakethemfavorablecandidatesinavarietyof applicationareassuchasmembranes/nanofilters,wounddressing, tissue engineering,drugdelivery, nanotextiles,nanocomposites, energy,environment,etc.(Agarwaletal.,2009;Bhardwaj&Kundu, 2010; Chigome,Darko, &Torto, 2011;Lu, Wang,&Wei, 2009;

Ramakrishnaetal.,2006;Teo&Ramakrishna,2009;Thavasi,Singh,

&Ramakrishna,2008;Xie,Li,&Xia,2008;Yoon,Hsiao,&Chu,2008).

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

Inrecentyears,biopolymersfromrenewableresourcessuchas zeinhavegainedattentionforeconomicalandenvironmentalrea- sons(Paraman, &Lamsal,2011;Selling&Woods,2008;Selling, Woods,Sessa,&Biswas,2008).Zein,themajorproteinofcornand aby-productofthebioethanolindustry,isanon-toxic,biocompat- ible,biodegradablepolymerandthispolymercanformfilms.Zein filmsandzeinmicro/nanoparticlescanbeusedforencapsulation ofessentialoils,aromasandflavors, controlledreleaseofactive additives and as an activefood packagingmaterial, etc. (Alkan etal.,2011;Parris,Cooke,&Hicks,2005;Patel,Heussen,Hazekamp, Drost,&Velikov,2012;Sanchez-Garcia,Hilliou,&Lagaron,2010;

Shi,Kokini,&Huang,2009;Zhong,Jin,Davidson,&Zivanovic,2009).

Intherecentyears,electrospinningofzeinnanofibershavereceived muchattentionaswell(Jiang,Reddy,&Yang,2010;Jiang&Yang, 2011;Jiang,Zhao,&Zhu,2007;Miyoshi,Toyohara,&Minematsu, 2005;Sellingetal.,2007,2008;Torres-Giner,Gimenez,&Lagaron, 2008;Yao,Li,&Song,2009).Thesestudiesaremostlyrelatedtothe optimizationoftheelectrospinningparametersofzeinnanofibers (Miyoshietal.,2005;Sellingetal.,2007;Torres-Gineretal.,2008), crosslinkingof zeinnanofibers(Jianget al.,2010;Jiang&Yang, 2011;Sellingetal.,2008)andblendingofzeinwithsomeother typeofbiopolymers(Jiangetal.,2007;Yaoetal.,2009a;Yao,Li, Song,Li,&Pu,2007).Inaddition,␤-carotenewhichisabioactive antioxidant(Li,Lim,&Kakuda,2009)and(−)-epigallocatechingal- letethatisaplantpolyphenol(Fernandez,Torres-Giner,&Lagaron, 2009)wereincorporatedintoelectrospunzeinnanofibermatrixfor thestabilizationoftheseactiveadditives.

Ourparticularinterestisthefunctionalizationofelectrospun nanofibers with cyclodextrins (CDs). CDs are cyclic oligosac- charides having a toroid-shapedmolecular structure. The most 0144-8617/$seefrontmatter © 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.carbpol.2012.05.078

(2)

Fig.1. (a)Chemicalstructuresof␣-CD,␤-CDand␥-CDand(b)schematicrepresentationofCD.

commonCDs are named as ␣-CD, ␤-CD and ␥-CD having 6, 7 and8glucopyranoseunits,respectively(Fig.1).Hydrophobiccav- ityof CD actsas a host forthe variousmolecules, and CD can formnon-covalenthost–guestinclusioncomplexes.Thephysical andchemicalpropertiesoftheguestmoleculesaretailoredand becomemorestablewhencomplexedwithCDs(DelValle,2004;

Hedges,1998; Szejtli, 1998), therefore, CDsand their inclusion complexesarequiteapplicableinmanyfieldsincludingpharma- ceuticals,functionalfoods,cosmeticsandhome/personalcareand textiles(DelValle,2004;Hedges,1998;Szejtli,1998,2003).Up todate,severalstudieshavebeencarriedoutdealingwithincor- porationofCDsinelectrospunnanofibersfordifferentpurposes suchascrosslinking offibermatrix(Li&Hsieh,2005), molecu- larfiltration(Uyar,Havelund,Hacaloglu,Besenbacher,&Kingshott, 2010;Uyar,Havelund,Nur,etal.,2010,2009;Zhang,Chen,&Diao, 2011)andCDwasalsousedasareducingandstabilizingagentfor gold(Baietal.,2008)andsilver(Chae,Kim,Yang,&Rhee,2011) nanoparticlesformation.Inourrecentstudies,CDsandCDinclu- sioncomplexes(CD-ICs)ofvolatilefragrancesweresuccessfully incorporatedintoelectrospunnanofibers,andtheseCDfunction- alizedelectrospunnanofiberswereusedasmolecularfilters(Uyar, Havelund,Hacaloglu,etal.,2010;Uyar,Havelund,Nur,etal.,2010, 2009), and CD-ICshaveprovided longershelf-lifeandstabiliza- tionofvolatilefragrancesathighertemperature(Kayaci&Uyar, 2012;Uyar,Hacaloglu,&Besenbacher,2009;Uyar,Hacaloglu,&

Besenbacher,2011;Uyar,Nur,Hacaloglu,&Besenbacher,2009).

Inthisstudy,wereportontheelectrospinningofzeinnanofibers incorporatingCDs.Electrospunzein/CDnanofiberswereobtained byusingthreetypesofCDs;␣-CD,␤-CDand␥-CDandtheweight loadingsoftheseCDswerevariedfrom10%upto50%(w/w)with respecttozein.WefoundthattheadditionofCDinthepolymer solutionsimprovetheelectrospinnabilityofthezeinnanofibers at lower polymer concentration. The morphological, structural, surfaceand thermal characteristicsof theresultingelectrospun zein/CDnanofibers werecharacterizedby SEM, XRD,ATR-FTIR, XPS,DSCandTGA.Thisstudymainlydealswiththeoptimization ofelectrospinningofzein/CDnanofibersandtheirmorphological, structural,surfaceandthermalcharacterizations.

2. Experimentalpart 2.1. Materials

Zeinfrommaize(Sigma–Aldrich)andN,N-dimethylformamide (DMF, Pestanal, Riedel) were purchased. The alpha-, beta- and gamma-cyclodextrins(␣-CD,␤-CDand␥-CD)werepurchasedfrom WackerChemieAG(Germany).Allmaterialswereusedas-received withoutanypurification.

2.2. Preparationofthesolutions

First,40%,50%and60%(w/v)zeinweredissolvedinDMFand electrospinningofzeinsolutionswithoutCDswasperformed.For theelectrospinningofzein/CDsolutions,10%,25%and50%(w/w, withrespecttozein)CDs(␣-CD,␤-CDand␥-CD)weredissolved inDMFandthen,40%,50%and60%zein(w/v,withrespecttosol- ventofDMF)wereaddedtoeachCDsolutionseparatelyandstirred for1hat roomtemperature.Thecompositionsof thesolutions weresummarizedin Table1.Homogeneous andclearsolutions wereobtainedforallofthezein/␤-CDcompositions.Ontheother hand,thezeinsolutionscontaining25%(w/w)␣-CDwasslightly turbidandalsothesolutionscontaining50%(w/w)␣-CDand␥-CD werehighlyturbid.Theresultingzeinandzein/CDsolutionswere electrospun.

2.3. Electrospinning

Thesolutionswereplacedina3mLsyringefittedwithametal- licneedlehavinginnerdiameterof0.8mm.Thesyringewasfixed horizontallyonthesyringepump(Model:SP101IZ,WPI).Several parameterswereappliedinordertooptimizetheelectrospinning ofthesolutionsandtheoptimalparameterswerechosenasfollows.

Voltageof15kVwasappliedtothemetalneedletipbyusinghigh voltagepowersupply (AUSeries,MatsusadaPrecision Inc.).The polymersolutionwaspumpedwithflowrateof0.5mL/hduring electrospinningandthetip-to-collectordistancewassetto12cm.

Thegroundedstationarycylindricalmetalcollector(height:15cm, diameter:9cm)coveredwithaluminumfoilwasusedforthedepo- sitionoftheelectrospunnanofibers.Theelectrospinningprocess wascarriedoutat24Cand30%relativehumidityinanenclosed Plexiglasbox.

2.4. Measurementsandcharacterization

TheviscosityofthesolutionswasmeasuredbyusingAntonPaar PhysicaMCR301Rheometerequippedwithcone/plateaccessory usingthespindletypeCP40-2at22Candaconstantshearrateof 100s−1.Theconductivitymeasurementofthesolutionswasper- formedbyusingMultiparametermeterInoLab®Multi720(WTW) atroomtemperature.

Themorphologyandthediameterofthenanofiberswereexam- ined by usingscanning electron microscope (SEM) (FEI-Quanta 200FEG).Thenanofiberswerecoatedwith5nmAu/Pdpriorto SEMimaging.Around100fiberdiametersweremeasuredfromthe SEMimagestodeterminetheaveragefiberdiameter(AFD)ofthe nanofibers.

(3)

Table1

Propertiesofzeinandzein/CDsolutionsandtheresultingzeinandzein/CDnanofibers.

Solutions %zein (w/v)a

TypeofCD(%) (w/w)b

Viscosity (Pas)

Conductivity (␮S/cm)

Fibermorphology Averagefiberdiameter

(AFD)(nm)

zein40 40 0.0332 435 Nanofiberswithmanybeads

zein50 50 0.0859 344 Nanofiberswithfewbeads 80±35

zein60 60 0.206 264 Bead-freenanofibers 170±30

zein40/␣-CD10 40 ␣-CD,10 0.0421 359 Nanofiberswithmanybeads

zein40/␤-CD10 40 ␤-CD,10 0.0428 357 Nanofiberswithmanybeads

zein40/␥-CD10 40 ␥-CD,10 0.0439 333 Nanofiberswithfewbeads 60±10

zein40/␣-CD25 40 ␣-CD,25 0.0522 270 Nanofiberswithfewbeads 60±20

zein40/␤-CD25 40 ␤-CD,25 0.0562 283 Nanofiberswithfewbeads 70±20

zein40/␥-CD25 40 ␥-CD,25 0.0732 267 Nanofiberswithfewbeads 60±10

zein40/␣-CD50 40 ␣-CD,50 0.0849 96.8 NanofiberswithbeadsandCDaggregates

zein40/␤-CD50 40 ␤-CD,50 0.0727 78.8 NanofiberswithbeadsandCDaggregates

zein40/␥-CD50 40 ␥-CD,50 0.101 115.6 NanofiberswithbeadsandCDaggregates

zein50/␣-CD10 50 ␣-CD,10 0.125 286 Bead-freenanofibers 90±20

zein50/␤-CD10 50 ␤-CD,10 0.171 278 Bead-freenanofibers 100±25

zein50/␥-CD10 50 ␥-CD,10 0.212 268 Bead-freenanofibers 110±30

zein50/␣-CD25 50 ␣-CD,25 0.212 138 NanofiberswithCDaggregates 185±45

zein50/␤-CD25 50 ␤-CD,25 0.208 167 Bead-freenanofibers 150±30

zein50/␥-CD25 50 ␥-CD,25 0.239 161 Bead-freenanofibers 155±35

zein50/␣-CD50 50 ␣-CD,50 0.39 74.3 NanofiberswithCDaggregates 240±85

zein50/␤-CD50 50 ␤-CD,50 0.381 97.8 NanofiberswithCDaggregates 360±140

zein50/␥-CD50 50 ␥-CD,50 0.354 126.5 NanofiberswithCDaggregates 265±110

zein60/␣-CD10 60 ␣-CD,10 0.329 211 Bead-freenanofibers 225±30

zein60/␤-CD10 60 ␤-CD,10 0.292 200 Bead-freenanofibers 185±40

zein60/␥-CD10 60 ␥-CD,10 0.218 189.4 Bead-freenanofibers 170±40

zein60/␣-CD25 60 ␣-CD,25 0.69 89.8 NanofiberswithCDaggregates 375±80

zein60/␤-CD25 60 ␤-CD,25 0.441 113 Bead-freenanofibers 410±130

zein60/␥-CD25 60 ␥-CD,25 0.664 109.6 Bead-freenanofibers 380±240

zein60/␣-CD50 60 ␣-CD,50 1.56 41.6 Nofiberformation

zein60/␤-CD50 60 ␤-CD,50 1.02 85.6 Nofiberformation

zein60/␥-CD50 60 ␥-CD,50 0.752 85.8 Nofiberformation

aWithrespecttosolvent(DMF).

bWithrespecttopolymer(zein).

X-raydiffraction(XRD)dataofthenanofiberswerecollectedby usingPANalyticalX’PertPowderdiffractometerwithCuK␣radia- tioninarange2=5–30.

Surface characterizations of the nanofibers were performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) (Bruker, VERTEX 70) and K-Alpha- monochromated high-performance X-ray photoelectron spec- trometer (XPS) (Thermo Scientific). The ATR-FTIR spectrawere recordedfrom700to4000cm−1witharesolutionof4cm−1bytak- ing64scansforeachsample,andthesespectrawereobtainedwith FTIRspectrometerequippedwithaliquidnitrogencooledmercury cadmiumtelluride(MCT) detectorbyusingATRsetupcontain- ingagermaniumcrystal.XPSwasusedbymeansofafloodgun chargeneutralizersystemequippedwithamonochromatedAlK-

␣X-raysource(h=1486.6eV).Wideenergysurveyscans(WESS) wereobtainedoverthe0–1360eVbindingenergy(BE)rangeata detectorpassenergyof150eVinordertodeterminethesurfaceele- mentalcompositionofthenanofibers.Thehighresolutionspectra wererecordedforC1sregionatpassenergyof50eV.

Thethermalpropertiesofthenanofiberswereinvestigatedby usingdifferentialscanningcalorimetry(DSC)(TAQ2000)andther- mal gravimetric analyzer (TGA) (TA Q500). DSC analyseswere

carriedoutwithabout5mgofsamplesundertheN2 asapurge gas.Initially,thesampleswereequilibratedat25Cthentheywere heatedto200Cat10C/min.TGAwasperformedfromroomtem- peratureto500Cataheatingrateof20C/minunderthenitrogen atmosphere.

3. Resultsanddiscussion

3.1. Electrospinningofzeinnanofibers

In the literature,the electrospinning of zeinnanofibers was mostlycarriedoutbyusingethanol/watermixturesolventsystem whichresultedinribbon-likefibermorphologyduetotherapid skinformationandcollapseofthefibercorebecauseoftheveryfast evaporationofthesolvent(Miyoshietal.,2005;Sellingetal.,2007;

Torres-Gineretal.,2008).However,round-shapedzeinnanofibers canbeobtainedbyusingsolventsystemshavinghighboilingpoints suchasDMF(Jiangetal.,2007).Inourstudy,theelectrospinningof zeinnanofiberswascarriedoutbyusingDMFasasolventsystem.

ThereasonofchoosingDMFisbecausethinnerandmoreuniform zeinfiberscanbeobtained(Jiangetal.,2007)whencomparedto ethanol/watersystem(Miyoshietal.,2005;Sellingetal.,2007;

Fig.2.RepresentativeSEMimagesofelectrospunzeinnanofibersobtainedfromzeinsolutionsinDMFataconcentrationof(a)40%,(b)50%and(c)60%(w/v).

(4)

Torres-Gineretal.,2008),andothermoreimportantreasonisthat DMFisaverygoodsolventforCDs,andthereforewewereableto preparezein/CDhomogeneoussolutionsinmostcases.

Thecharacteristics (composition, viscosityand conductivity) ofthe zeinand zein/CD solutions and themorphologiesof the electrospunnanofibersandtheiraveragefiberdiameter(AFD)are summarizedin Table1. Zeinsolutionshavingdifferentconcen- trationswereelectrospuninorder tofindtheoptimalpolymer concentrationforobtainingbead-freeuniformnanofibers.Therep- resentativeSEMimagesofzeinnanofiberselectrospunfrom40%, 50%and60%(w/v)zeinsolutionsinDMFaredepictedinFig.2.At lowerzeinconcentration(40%,w/v),micronsizeirregularspher- icalbeadedstructureswereobtainedduetothelowviscosityof thepolymersolution.Astheconcentrationofzeinsolutionwas increasedto50%(w/v),thenumberofbeadswasdecreasedsig- nificantly and theshape of beads became more elongated and nanofibershavingAFDof80±35nmwereobtained.Uniformand bead-freezeinnanofibershavingAFDof170±30nmwereobtained when60%(w/v)zeinsolutionwaselectrospunindicatingthat60%

(w/v)istheoptimalzeinconcentrationforproducinguniformzein nanofibersattheappliedelectrospinningconditions.Ourresults correlatewiththeliteraturefindingswherethebead-freeuniform zeinnanofiberswereproducedabove50%(w/v)zeinconcentra- tionwhenDMFwasusedasasolventsystem(Jiangetal.,2007).

Thisbehaviorisverytypicalfortheelectrospinningofpolymeric solutionswherethetransitionfrombeadedstructuretobead-free nanofibersisobservedbyincreasingthepolymerconcentration.

Higherpolymerconcentrationresultedinhighersolutionviscos- ityduetothepresenceofmorepolymerchainentanglementsand thereforethebeadedstructuresareeliminatedsincetheelectrified polymerjetcanbestretchedfullyyieldingbead-freenanofibers (Ramakrishna,Fujihara,Teo,Lim,&Ma,2005;Uyar&Besenbacher, 2008).

3.2. Electrospinningofzein/CDnanofibers

Thezein/CDsolutionswereclearandhomogeneousexceptfor thesolutionscontaininghigherweightpercentageof␣-CDand␥- CD.Thezein/␤-CDsolutionswereclearinallcompositionswhereas thezein/CDsolutionscontaining50%(w/w)␣-CDand␥-CDwere highlyturbid, andzein/CDsolutioncontaining25% (w/w)␣-CD wasslightlyturbid.Theturbiditywasobservedpossiblybecauseof theprecipitationofthe␣-CDand␥-CDathigher%loading,andit isanticipatedthattheelectrospinningofthesezein/CDsolutions wouldcontainCD aggregatesin thefibermatrix. Inthecase of clearzein/CDsolutions,thehomogeneousdistributionoftheCDsin thefibermatrixisexpectedfortheelectrospunzein/CDnanofibers containingloweramountofCDs.TheSEMimagingoftheelectro- spunzein/CDnanofibersgavesomeinsightfulinformationforthe presenceofCDaggregatesinthefibermatrix.

The representative SEM images of the electrospun zein/CD nanofibersaredepictedinFig.3.Itwasobservedthattheaddition ofCDstozeinsolutionsimprovedtheelectrospinnability,andless beadedstructuresand/orbead-freenanofiberswereobtainedat lowerzeinconcentrationswhencomparedtozeinsolutionswith- outCDs.

The electrospinning of 40% (w/w) zein solutions containing CDs resulted in nanofibershaving much less beaded structure whencomparedto40%(w/w)pristinezeinsolution.Fig.3ashows theSEMimagesofelectrospunzein/CDnanofibersobtainedfrom 40%(w/v)zeinsolutioncontaining10%,25%and50%(w/w,with respecttozein)CDs(␣-CD,␤-CDand␥-CD).Theelectrospinning of40%(w/w)zeinsolutions containing10%(w/w)CDsresulted inreduction of beadstosomeextent(Fig.3a1–a3). Inthecase ofzein40/␥-CD10sample,theeliminationofbeadsismuchmore pronounced which is possibly because of the higher solution

viscositycompared tozein40/␣-CD10and zein40/␤-CD10solu- tions.Furthermore,itwasclearlyobservedthattheadditionof25%

(w/w)CDstothe40%(w/v)zeinsolutionsimprovedtheelectro- spinnabilityofthezein/CDsolutions,andyieldednanofiberswith muchlessbeadshavingmoreelongatedstructures(Fig.3a4–a6).

Thisispossiblybecauseofthehighersolutionviscosityofzein/CD systemswherethebeadedstructuresaremostlyeliminateddue tothemorestretchingofelectrifiedsolutionjet.However,even theadditionof50%(w/w)CDsresultedinmoreviscoussolutions, theelectrospinningofthesezein/CDsolutionsyieldednanofibers havingirregularstructures(Fig.3a7–a9)suggestingthatuniform zein/CDnanofiberscannotbeproducedwhenthehighweightper- centageofCDswasused.Theirregularstructuresconsistingofnot onlybeadsbut alsoCDaggregates weremuch moreprominent inzein40/␣-CD50andzein40/␥-CD50nanofiberswhencompared tozein40/␤-CD50,sincethezein40/␣-CD50and zein40/␥-CD50 solutions werehighlyturbidprior toelectrospinning indicating thatCDaggregateswerealreadypresentinthesolution,andthese CDaggregatespossiblycouldnotbestretchedoutalongthefiber matrixduringtheelectrospinningprocess.Inthecaseofzein40/␤- CD50,thebeads wereless in number since thezein40/␤-CD50 solutionwasclear,andsomeCDaggregateswerepossiblyformed duringtheelectrospinningprocesswhenthesolventevaporation tookplace.

The electrospinning of 50% (w/v) zein solution yielded nanofiberswithfew beads as mentioned above(Fig.2b),how- ever, bead-free nanofibers were obtained from 50% (w/v) zein solutionwiththeadditionof10%and25%(w/w)CDs(␣-CD,␤- CDand␥-CD)exceptforzein50/␣-CD25system(Fig.3b).Inthe caseofzein50/␣-CD25nanofibers,someirregularstructureswere observedwhichisbecauseofthepresenceof␣-CDaggregatesas discussedlaterintheXRDsection.Similarto40%(w/v)zeinsys- tem,theadditionof 50% (w/w)CDsin 50% (w/v)zeinsolution yieldednanofibershavingirregularstructuresduetotheaggre- gationof CD crystalsasconfirmed byXRD results.It wasclear thattheadditionofCDsincertainratios(10%and25%,w/w)to the50%(w/v)zeinsolutionsassistedtoeliminatethebeadforma- tionandprovidedbead-freezein/CDnanofiberswithoutincreasing polymerconcentration.We observedsimilareffectonthemor- phologyoftheelectrospunPS(Uyar,Havelund,Hacaloglu,etal., 2009),PMMA(Uyar,Balan,Toppare,&Besenbacher,2009)andPEO (Uyar&Besenbacher,2009)nanofiberscontainingCDsinourrecent studies.

The electrospinning of 60% zein (w/v) solutions contain- ing 10% and 25% (w/w) CDs resulted in bead-free nanofiber morphology except for zein60/␣-CD25 system (Fig. 3c). The zein60/␣-CD25nanofibershavesomebead-likestructuressimilar tozein50/␣-CD25systemwhichispossiblyduetoCDaggregates.

Furthermore,60%zein(w/v)solutioncontaining50%(w/w)CDs couldnot be electrospundue tothe very highviscosity ofthe solutions.

In brief, the addition of CDs to zein solutions significantly affected the electrospinning, and bead-free nanofibers were obtainedfromlowerzeinconcentrationsforzein/CDsystemswhen comparedtopurezeinsolution.Thisismostlyduetothehigher viscosityofthe zein/CDsolutions,and highersolutionviscosity resultedinmoreuniformfiberswhenelectrospun(Ramakrishna etal.,2005;Uyar&Besenbacher,2008).Inaddition,themorpholo- giesof thezein/CDnanofibers containingdifferentkindof CDs (␣-CD,␤-CDand␥-CD)haveshownslightvariationsamongeach otherbecauseofthedifferencesinviscosityandconductivityof thesesolutions.ItwasobservedinTable1thattheAFDincreasesas thecontentoftheCDsincreasessincethepresenceofCDscausesa viscosityincreaseofthesolutionswhileitreducestheconductivity ofthesolutions.Therefore,zein/CDsolutionshavinghigherviscos- ityandlowerconductivityvaluesyieldedthickerfibersduetothe

(5)

Fig.3.RepresentativeSEMimagesofelectrospunnanofibersof(a1)zein40/␣-CD10,(a2)zein40/␤-CD10,(a3)zein40/␥-CD10,(a4)zein40/␣-CD25,(a5)zein40/␤-CD25,(a6) zein40/␥-CD25,(a7)zein40/␣-CD50,(a8)zein40/␤-CD50and(a9)zein40/␥-CD50;(b1)zein50/␣-CD10,(b2)zein50/␤-CD10,(b3)zein50/␥-CD10,(b4)zein50/␣-CD25,(b5) zein50/␤-CD25,(b6)zein50/␥-CD25,(b7)zein50/␣-CD50,(b8)zein50/␤-CD50and(b9)zein50/␥-CD50;(c1)zein60/␣-CD10,(c2)zein60/␤-CD10,(c3)zein60/␥-CD10,(c4) zein60/␣-CD25,(c5)zein60/␤-CD25and(c6)zein60/␥-CD25.

(6)

Fig.4.XRDpatternsof(a)(i)zein50,(ii)zein50/␣-CD10,(iii)zein50/␣-CD25,(iv) zein50/␣-CD50and(v)␣-CD;(b)(i)zein50,(ii)zein50/␤-CD10,(iii)zein50/␤-CD25, (iv)zein50/␤-CD50and(v)␤-CD;(c)(i)zein50,(ii)zein50/␥-CD10,(iii)zein50/␥- CD25,(iv)zein50/␥-CD50and(v)␥-CD.

lessstretchingoftheelectrifiedjet(Ramakrishnaetal.,2005;Uyar

&Besenbacher,2008).

3.3. Structuralcharacterizationofzein/CDnanofibers

TheXRDpatternsofelectrospunzeinnanofibersandzein/CD nanofibers are shown in Fig. 4 and the XRD patterns of as- receivedCDswerealsoshownforcomparison.Zeinnanofibershave showntwobroadpeakshavingmaximaat2=8.99(9.8 ˚A)andat

2=19.38(4.58 ˚A).Itisreportedthatthelargerd-spacingaround 10 ˚Aisassociatedwiththemeandistanceofapproachofneighbor- inghelices(thespacingoftheinter-helixpackingofzeinchains) whereas theshorter d-spacingat around4.5 ˚Ais relatedtothe averagebackbonedistancewithin␣-helixstructureofzein(Yao, Li,Song,Li,&Pu,2009).

CDs(␣-CD,␤-CDand␥-CD)arecrystallinematerialshavingdis- tinctdiffractionpatternsat2=5–30(Fig.4).CDsgenerallyhave twotypesofcrystalstructures;in‘cage-type’thecavityofeach CD moleculeis blockedby theadjacentCD molecules whereas theCDmolecules arealignedand stackedontopof eachother inthe‘channel-type’structure.TheXRDofas-receivedCDshave showndiffractionpatternsfor‘cage-type’crystallinestructuresas reportedintheliterature(Harata,1998;Rusaetal.,2002;Saenger etal.,1998).

Some structural changes were observed for the zein/CD nanofibersdependingontheweightpercentagesandtypesofCDs.

TheXRDofzein50/␣-CD10nanofibershaveshowntwobroadhalo diffractionpatternscenteredat2=8.94(9.9 ˚A)andat2=20.18 (4.4 ˚A)whichisverysimilartothezeinnanofibers.Thediffraction peaks for the ␣-CD crystals were absent in this sample indi- cating that ␣-CD molecules were distributed in the zein fiber matrixwithoutforminganyphase separatedcrystalaggregates.

Forzein50/␣-CD25andzein50/␣-CD50nanofibers,thedecreaseof thepeakat2=8.99suggestedthatthespacingoftheinter-helix packingofzeinchainswasdisturbedandthezeinmolecularaggre- gatesweresomehowdestroyedwiththepresenceof␣-CDathigher weightpercentages.Moreover,slightly intensediffractionpeaks wereobservedforzein50/␣-CD25nanofiberssuggestingthatsome aggregationof␣-CDcrystalswaspresentinthissample.The␣-CD crystallinepeaksweremuchmorepronouncedforthezein50/␣- CD50sample.ThisfindingcorrelateswiththeSEMimageswhere thebead-likestructuresforzein50/␣-CD25andirregularstructures forzein50/␣-CD50wereobservedfor thesesamplesdue tothe presenceofsome␣-CDaggregates.TheXRDpatternscorrespond tochannel-typepackingof␣-CDsincethesalientdiffractionpeak 2 ∼= 20ischaracteristicforthe␣-CDchannel-type(Harata,1998;

Rusaetal.,2002;Saengeretal.,1998).Ingeneral,the‘channel- type’packingofCDisassociatedwiththeinclusioncomplexstate.

For instance, Tonelliet al. reportedthat protein based polymer suchasBombyxmorisilkfibroincanformaninclusioncomplex with␥-CD(Cristian,Bridges,Ha,&Tonelli,2005).However,here wedidnotanticipatetheinclusioncomplexationofzeinwith␣- CD due tothe small size cavity of ␣-CD. As mentioned in the experimentalpart,thezein50/␣-CD25and zein50/␣-CD50solu- tionswereturbidanditismostlikelythat␣-CDprecipitatedas

‘channel-type’crystalsinthezein/DMFsolutionsystem.Wehave alsoobservedsimilarsituationsforelectrospunPScontaining␣- CDwherethe␣-CDprecipitatedas‘channel-type’crystalswithout forminginclusioncomplexation(Uyar,Havelund,Hacaloglu,etal., 2009).Additionally,theXRDofzein50/␤-CD50andzein50/␥-CD50 havealsoshown somediffractionpeaksdue tothepresenceof someCDcrystallineaggregatesbutthesediffractionsdidnotcorre- spondtochannel-typepackingsuggestingthatCDswerenotinthe complexstatewithzeinchainsinzein50/CD50nanofibers.InXRD, thetypicalchannel-type␤-CDhastwomajorpeaksat2 ∼= 11.5 and 18 (Harada,Okada, Li,&Kamachi, 1995), and the charac- teristicdiffractionforchannel-type␥-CDhasonemajorpeakat 2 ∼= 7.5withminorreflectionsat2 ∼= 14,15,16,16.8and22 (Uyar,Hunt,Gracz,&Tonelli,2006).However,forzein50/␤-CD50 andzein50/␥-CD50nanofibers,thediffractionpeaksweredifferent thanthechannel-typepackingasdiscussedbelow.

InXRD,itwasobservedthatthediffractionpatternsofzein50/␤- CD10 and zein50/␤-CD25 nanofiberswere very similar to that of purezeinnanofibers (Fig.4b).In thecase of zein50/␤-CD50 nanofibers, the intensity of first peak at around 2=9.0 was

(7)

loweredsignificantlyindicatingthattheinter-helixpackingofzein molecularaggregates were substantially disturbed. In addition, veryweakdiffractionpeaksataround2=6.9,13.6 and24.4 wereobservedforthissamplepossiblybecauseofthepresenceof some␤-CDaggregatesinthefibermatrix.However,thesepeaksdid notcorrespondtoeithercage-typepackingorchannel-typepack- ingindicatingthattheregularpackingof␤-CDwasdisturbedbythe zeinchains.Forzein50/␤-CD10andzein50/␤-CD25nanofibers,no crystallinepeakswereobservedsuggestingthat␤-CDmolecules weredistributedinthefibermatrixwithoutforminganycrystal aggregates.

Moreovertheincorporationof␥-CDintozeinfibermatrixhasa verysimilarstructuraleffectasseenforzein/␣-CDandzein/␤-CD.

TheXRDpatternofzein50/␥-CD10nanofiberswassimilartopure zeinnanofibersshowingtwodistinctbroadhaloataround2=9 and2=20(Fig.4c).Theincorporationof25%and50%(w/w)␥- CDtofibermatrixresultedindisruptionofinter-helixpackingof zeinchainsasdeducedfromtheXRDpatternsofzein50/␥-CD25 andzein50/␥-CD50sincethepeakataround2=9 wasconsid- erablyweakened.Inaddition,certaindiffractionpeaksataround 2=6,8.4 and17.4 wereobservedfor zein50/␥-CD50sample suggestingthatsomecrystalline␥-CDaggregateswerepresentin thissampleasobservedintheSEMimageofthissample.Yet,these peakssomewhatdifferentthanthecage-typepackingorchannel- typepackingsuggestingthat␥-CDpackingwasdisturbedbythe zeinchainswhichwassimilarlyobservedforthezein50/␤-CD50.

Inbrief,itwasobservedthattheshorterd-spacingca4.5 ˚Acorre- latedtotheaveragebackbonedistancein␣-helixstructureofzein didnotchangewiththeadditionofCDs,whiletheintensityofthe largerd-spacingaround9 ˚Aassociatedwiththemeandistanceof approachofneighboringhelicesdecreasedsignificantlyasthecon- tentofCDincreasedfrom10%to50%(w/w)inzein/CDnanofibers.

Thisresultimpliedthestructuralchangesdependingontheside- chainpackingwereobservedforzein withtheadditionofCDs.

Moreover,XRDdatasuggestedthatCDsweremostlydistributed inthezeinfibermatrixwithoutformingcrystallineaggregatesat lowerweightpercentages(10%of␣-CD,and10%and25%of␤- CDand␥-CD),but,incorporationof25%␣-CDand50%ofallthree typesofCDsyieldedsomecrystallineCDaggregatesinthezeinfiber matrix.

3.4. Surfacecharacterizationofzein/CDnanofibers

The surface analyses of zein/CD nanofiberswere performed byusingsurfacesensitivetechniques,ATR-FTIRandXPSinorder to corroborate the presence of CDs on the surface of the zein nanofibers.TheATR-FTIRspectraoftheelectrospunzeinnanofibers andzein/CDnanofibersareshowninFig.5a.Zeinproteinback- bonehastwocharacteristicvibrationalbands;amideIandamide II.ThecharacteristicabsorptionbandofamideIcorrespondstothe C Ostretching,whilethatofamideIIcorrespondsN Hbending andC Nstretching(Fernandezetal.,2009;Yaoetal.,2009b).The characteristicabsorptionbandsat1653and1540cm−1indicated thepresenceofamideIandamideII,respectivelyforpurezein nanofibers(Fig.5a1–a3).

ThecharacteristicpeakofcoupledC–C/C–Ostretchingvibra- tionsand the antisymmetric stretchingvibration of the C–O–C glycosidicbridgeofCDwereobservedforzein/CDnanofibersat 1028,1080and1150cm−1,respectively(Uyar,Balan,etal.,2009).

ItwasalsoclearthattheintensityofCDrelatedpeakswasincreased astheCDcontentincreasedfrom10%to50%(w/w)inthezein/CD nanofibers.TheATR-FTIRdataconfirmedthesuccessfulincorpora- tionofCDsinthezeinnanofibersandsomeCDswerepresenton thesurfaceofthezein/CDnanofibers.

InATR-FTIRstudy,itwasobservedthattheamideIandamide IIpeakswereslightlyshiftedtolowerwavenumberforzein/CD

Fig.5.ATR-FTIRspectraofelectrospunnanofibersof(a1)(i)zein50,(ii)zein50/␣- CD10,(iii)zein50/␣-CD25and(iv)zein50/␣-CD50;(a2)(i)zein50,(ii)zein50/␤- CD10,(iii)zein50/␤-CD25and(iv)zein50/␤-CD50;(a3)(i)zein50,(ii)zein50/␥- CD10,(iii)zein50/␥-CD25and(iv)zein50/␥-CD50and(b)overlayofXPSC1sspectra ofthezeinandzein/␤-CDnanofibersandpure␤-CDpowder.

(8)

Fig.6.(a1)DSCthermograms;(a2)enlargedregionofDSCthermogramsbetween140and190Cofelectrospunnanofibersof(i)zein50,(ii)zein50/␤-CD10,(iii)zein50/␤-CD25 and(iv)zein50/␤-CD50and(b)TGAthermogramsofzein50andzein50/␤-CDnanofibersandpure␤-CDpowder.

nanofiberswhencomparedtopurezeinnanofibers.Forinstance, theamideIpeakwasobservedat1651,1650and1648cm−1 for zein50/␣-CD10,zein50/␣-CD25andzein50/␣-CD50,respectively.

Similarly,theamideIIpeakwasshiftedtolowerwavenumberas theweightpercentageofthe␣-CDwasincreasedfrom10%to50%.

Thatis,absorptionpeakofamideIIwasobservedat1536,1535 and1520cm−1forzein50/␣-CD10,zein50/␣-CD25andzein50/␣- CD50,respectively.ThepeakshiftofamideIandamideIItolower wavenumbersfor zein/CDnanofiberssuggested thepresence of interactionbetweenzeinand␣-CD,andtheinteractionbecame morepronouncedfornanofibersampleshavinghigherloadingof

␣-CD.Inthecaseofzein/␤-CDandzein/␥-CDnanofibersamples, theshiftintheamideIwasnotsignificantbuttheamideIIpeakwas shiftedtoaround1535cm−1suggestingthepresenceofinteraction betweenCDmoleculesandzeinchainsforthesesamplesaswell.

But,thepeakshiftforamideIandamideIIwasmuchmoresignif- icantinthecaseofzein/␣-CDnanofiberscomparedtozein/␤-CD andzein/␥-CDnanofiberspossiblebecause␣-CDhassmallersize whichcaninteractmorewiththezeinchains.

AsobservedintheSEMimaging,theuniformnanofiberswere obtainedinthecaseof␤-CD,therefore,moredetailedsurfaceanal- ysesandthermalcharacterizationswerecarriedoutforzein/␤-CD nanofibers.Thein-depthsurface chemistryanalysesfor zein/␤- CDnanofiberswereperformedbyXPSinordertodetermineto whatextent␤-CDmoleculesarepresentonthesurfaceofthezein nanofibers.Table2showselementarycompositionsbasedonwide energysurvey spectraof the␤-CD,zeinnanofibersand zein/␤- CDnanofibers.Oxygencontentoutersurfaceofthesampleswas increasedwiththeincreasingtheamountof␤-CD(from10%to

50%,w/w)usedintheelectrospinningofnanofibers.Highenergy resolutionC1sspectrawerealsorecordedtogetmoredetailed informationaboutsurfacechemistryofthezein/␤-CDnanofibers.

Theoverlay of normalized C 1s spectraof thezein nanofibers, zein/␤-CDnanofibersand␤-CDaregiveninFig.5b.Therearethree differentcomponentsforalloftheC1shigh-resolutionspectra.The positionofoneisataround284.5eV,C1,isassignedtoaliphaticcar- bons,C–Cand/orC–H(Shietal.,2009;Uyar,Havelund,Hacaloglu, etal.,2010,2009;Uyar,Havelund,Nur,et al.,2010,2009).It is aprominentpeakforpurezeinnanofibers.ThecomponentC2at about285.7eVisarisenfromeitherC–O–CorC–OH;andC3(cor- relatedtoO–C–O)locatedataround287.7werefoundinbothzein nanofibersand␤-CD(Shietal.,2009;Uyar,Havelund,Hacaloglu, etal.,2010;Uyar,Havelund,Nur,etal.,2010,2009).Thepeaks aremore distinctivefor ␤-CD,therefore therelativeconcentra- tionsofC2andC3increasedwithincreasingamountofthe␤-CD usedinthepreparationofzein/␤-CDnanofibers.Itisfoundthatthe increaseinoxygencontentisduetothepresenceofC–O–C/C–OH and/orO–C–Oonthesurfaceofzeinnanofibers.Thepresenceof

Table2

AtomicconcentrationsgeneratedfromXPSwideenergysurveyscans.

Samples C(%) O(%) N(%)

␤-CD 36.61 63.39

zein50 78.19 13.04 8.77

zein50/␤-CD10 77.06 15.14 7.8

zein50/␤-CD25 75.43 16.25 8.32

zein50/␤-CD50 72.62 18.64 8.74

(9)

the␤-CDonthesurfaceofthezein/␤-CDnanofibersisconfirmed withthese results. On the otherhand, the␤-CD concentration oftheprobedvolumeiscalculatedasapproximately4%,7%and 13%forzein/␤-CD10,zein/␤-CD25andzein/␤-CD50,respectively fromtheelementary compositionsin Table2. Thesurface con- tentofCDforallthreezein/␤-CDsamplesislowerthantheCD contentofthesolutionstheywerepreparedfrom.Thisindicates thatthesomeof theCDmoleculeslocatedonthefibersurface whereassomeCD moleculesareburied inthebulkof thefiber matrix.Zeinisausefulfoodpackagingmaterial(Alkanetal.,2011;

Shietal.,2009),andCDshaveinclusioncomplexationcapability withvarietyofmoleculesincludingaromas,colors,antioxidants, antibacterials,odors,andotherfunctionalingredients(DelValle, 2004;Hedges,1998;Szejtli,1998),therefore,zein/CDnanofibers mayhavethepotentialstobeusedasactivefoodpackaging(López- de-Dicastillo,Gallur, Catalá,Gavara,&Hernandez-Mu ˜noz,2010;

López-de-Dicastillo,Jordá-Beneyto,Catalá,Gavara,&Hernandez- Mu ˜noz,2011)materialsowingtosurfaceassociatedCDmolecules andtheirhighsurfaceareas.

3.5. Thermalcharacterizationofzein/CDnanofibers

Thethermalcharacteristicsofthezein/␤-CDnanofiberswere studiedbyDSCandTGA.Fig.6adisplaystheDSCthermograms ofzeinnanofibersandzein/␤-CDnanofiberscontaining10%,25%

and50%(w/w)␤-CD.Zeinnanofibersandzein/␤-CDnanofibers haveshownabroadendothermicpeakhavingapeakmaximumat around100CintheDSCthermogramindicatingthatthesamples containsomeamountofwater.Theglasstransitiontemperature (Tg)ofthesampleswasalsodetectedfromtheDSCthermograms.

TheTgofthepurezeinnanofiberswasobservedataround154C which is in closeagreement withtheTg value reportedin the literatureforzein(Torres-Giner,Gimenez,&Lagaron,2008;Torres- Giner,Ocio,&Lagaron, 2009).TheTg values forzein50/␤-CD10, zein50/␤-CD25andzein50/␤-CD50nanofiberswereobservedat around158C,165C and172C,respectively. Itwasclearthat thehigherTgvalueswereobservedastheweightloadingsof␤- CD wereincreasedfrom10% to50%.Theaddition ofCD inthe zeinnanofiberscausedanincreaseintheTgvalueswhichispos- sibly due tothe less chain mobility of zein in the presence of CD.

Fig. 6b shows the TGA thermograms of pure ␤-CD, zein nanofibersandzein/␤-CDnanofibers.TheTGAofpure␤-CDhas aninitialweightloss(∼12%)below100Candmajorweightloss between325and350Cowingtowaterlossandmaindegrada- tion of ␤-CD, respectively (Anitha et al., 2012).Similar tozein nanofibers,waterlossforzein/␤-CDnanofiberswerealsoobserved butthewaterweightpercentagewasaround3–5%(w/w)indicating thatlessamountofwaterwaspresentinthenanofibers.Inaddi- tion,anotherminorweightlossregimebetween125and200C wasobservedforzeinnanofibersandzein/␤-CDnanofibers.This weightlossispossiblyduetothepresenceofremainingsolvent (DMF)inthenanofibersamples.

Themajorweightlossforthezeinnanofiberswasrecordedat around275–350Cwhichisconsistentwiththemaindegradation temperaturereportedfortheelectrospunzeinnanofibers(Torres- Giner&Lagaron,2010;Woods,Selling,&Cooke,2009).Sincethe degradationtemperatureforzeinand␤-CDwasoverlapped,we observedasinglebutbroaderweightlossforzein/␤-CDnanofibers.

Moreover,weobservedthatthethermaldegradationofzein/CD nanofiberswasshiftedslightlytohighertemperaturewithincreas- ing␤-CDcontent.Hence,zein/␤-CDnanofibershaveshownslightly higherdegradationtemperaturecomparedtopurezeinnanofibers indicatingthattheincorporationoftheCDmoleculesinthezein fibermatrixresultedinhigherthermalstability.

4. Conclusion

Zein/CD nanofibers were obtained from electrospinning of zein/CDsolutions inDMF.Threetypes ofCDs(␣-CD,␤-CD and

␥-CD)usingdifferentweightloadings(10%,25%and 50%,w/w) wereincorporatedinzeinsolutionshavingvariousconcentrations (40%,50%and 60%,w/v),and thesezein/CDsolutionsweresuc- cessfullyelectrospun.WefoundthattheadditionofCDinthezein solutions causedanincrease in solutionviscosityandtherefore resultedinimprovementoftheelectrospinnability,andlessbeaded structuresand/orbead-freezein/CDnanofiberswereobtainedat lowerzeinconcentrationswhencomparedtopristinezeinsolu- tions.Dependingonthezeinconcentration,CDweightpercentage andCDtype,bead-freezein/CDnanofibershavingfiberdiameters in the range of ∼100–400nm were obtained. The morphologi- cal,structural, surfaceand thermalcharacterizationsof zein/CD nanofiberswerestudiedbySEM,XRD,ATR-FTIR,XPS,DSCandTGA.

SEMimagingrevealedthatthemorphologiesoftheelectrospun zein/CDnanofibersweresignificantlyaffectedbytheCD weight percentageandCDtypeaddedinzein/CDsolutions.XRDstudysug- gestedstructuralchangesforzeinchainpackingwherethespacing oftheinter-helixpackingofzeinchainswasdisturbedwiththe additionofCDs,inaddition,itwasfoundthatCDsweremostlydis- tributedinthefibermatrixwithoutformingcrystallineaggregates whenlowerweightpercentagesofCDswereused(10%and25%of

␤-CDand␥-CDand10%of␣-CD),however,incorporationof50%

(w/w)ofallthreetypesofCDsand25%of␣-CDyieldedcrystalline aggregatesinthezeinfibermatrix.Thethermalanalysescarriedout byDSCandTGAindicatedtheimprovementofthermalproperties forzein/␤-CDnanofibers,thatis,zein/␤-CDnanofibershaveshown higherglasstransitiontemperatureandhigherdegradationtem- peraturewithincreasing␤-CDcontentwhencomparedtopristine zeinnanofibers.ThesurfaceanalysesbyATR-FTIRandXPSshowed thatsomeCDmoleculeswerepresentonthesurfaceofzein/␤- CDnanofibers.Theseelectrospunzein/CDnanofibersmayhavethe potentialtobeusedasactivefoodpackagingmaterialsowingto veryhighsurfaceareaofzeinnanofibersandsurfaceassociatedCD moleculessinceCDmoleculeshaveinclusioncomplexationcapa- bilitywithvariousmoleculesand thereforefunctionaladditives suchasantioxidants,flavors,aromas,antibacterialagentscanbe complexedwithCDsorremovalofunpleasantodorsfromthesur- roundingscanbeachievedbyCDs.

Acknowledgements

StatePlanningOrganization(DPT)ofTurkeyisacknowledged forthesupportofUNAM-InstituteofMaterialsScienceandNano- technology. Dr. Uyar acknowledges Marie Curie International ReintegrationGrant(IRG) NANOWEB(PIRG06-GA-2009-256428) and The Scientific &Technological Research Council of Turkey (TUBITAK)(project #111M459)for funding. F. Kayaci thanksto TUBITAK-BIDEBfornationalPhDstudyscholarship.

References

Agarwal,S.,Greiner,A.,&Wendorff,J. H.(2009).Electrospinningofmanmade andbiopolymernanofibers—Progressintechniques,materials,andapplications.

AdvancedFunctionalMaterials,19(18),2863–2879.

Alkan,D.,Aydemir,L.Y.,Arcan,I.,Yavuzdurmaz, H.,Atabay,H.I.,Ceylan, C., etal.(2011).Developmentofflexibleantimicrobialpackagingmaterialsagainst Campylobacterjejunibyincorporationofgallicacidintozeinbasedfilms.Journal ofAgriculturalandFoodChemistry,59(20),11003–11010.

Andrew,J.,&Clarke,D.(2008).Enhancedferroelectricphasecontentofpolyvinyli- denedifluoridefiberswiththeadditionofmagneticnanoparticles.Langmuir, 24(16),8435–8438.

Anitha,S.,Brabu,B.,Thiruvadigal,D.J.,Gopalakrishnan,C.,&Natarajan,T.(2012).

Optical, bactericidal and water repellent properties of electrospun nano- compositemembranesofcelluloseacetateandZnO.CarbohydratePolymers, 87(2),1065–1072.

Referenties

GERELATEERDE DOCUMENTEN

We compared the release profiles of NAP from PCL/NAP and PCL/NAP- ␤CD-IC nanofibers and we examined the effect of inclusion complexation on the release behavior of NAP from

As an aim toward producing PVA nanofibers (NF) encapsu- lating AITC, free AITC and inclusion complex of AITC with ␤-CD (AITC/ ␤-CD-IC) was incorporated into PVA nanofibers (PVA/AITC-

It was observed that, the average pore diameter and cumulative pore volume determined by density functional theory (DFT) also decreased after surface modification of the PET

Representative SEM images of (a and b) electrospun nylon 6,6 nanofibers having 330 and 70 nm fiber diameters, respectively, (c and d) same electrospun nanofibers coated with 600

We have prepared HPβCD/triclosan-IC solutions having two different stoichiometries, that is, HPβCD/triclosan having a 1:1 molar ratio and one containing a greater number of

TN-C derived bioactive epitope acted as the sole triggering factor for osteogenic commitment of MSCs, since ALP activity, calcium deposition, and expression of osteogenic marker

The poly(VBTAC)-g-CA nanofibers were prepared via three-step process involving; (i) electrospinning of CA nanofibers, (ii) cou- pling of RAFT agent to the electrospun CA nanofiber

Uyar, Polymer–inoganic core–shell nanofibers by electrospinning and atomic layer deposition: flexible nylon–ZnO core–shell nanofiber mats and their photocatalytic activity,