• No results found

adsorption polymerization for DNA Surface modification electrospun cellulose of acetate nanofibers viaRAFT Carbohydrate Polymers

N/A
N/A
Protected

Academic year: 2022

Share "adsorption polymerization for DNA Surface modification electrospun cellulose of acetate nanofibers viaRAFT Carbohydrate Polymers"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Carbohydrate Polymers

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption

Serkan Demirci

a,c,∗

, Asli Celebioglu

a,b

, Tamer Uyar

a,b,∗∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,06800Ankara,Turkey

bInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey

cDepartmentofChemistry,FacultyofArtsandSciences,AmasyaUniversity,05100Amasya,Turkey

a r t i c l e i n f o

Articlehistory:

Received13January2014

Receivedinrevisedform22June2014 Accepted23June2014

Availableonline11July2014

Keywords:

Electrospinning Celluloseacetate Nanofiber Surfacemodification RAFTpolymerization DNAadsorption

a b s t r a c t

Wereport on afacile and robust method by whichsurface of electrospuncellulose acetate (CA) nanofiberscanbechemicallymodifiedwithcationicpolymerbrushesforDNAadsorption.Thesurface ofCAnanofiberswasfunctionalizedbygrowingpoly[(ar-vinylbenzyl)trimethylammoniumchloride)]

[poly(VBTAC)]brushesthroughamulti-stepchemicalsequencethatensuresretentionofmechanically robustnanofibers.Initially,thesurfaceoftheCAnanofiberswasmodifiedwithRAFTchaintransferagent.

Poly(VBTAC)brusheswerethenpreparedviaRAFT-mediatedpolymerizationfromthenanofibersurface.

DNAadsorptioncapacityofCAnanofibrouswebsurfacefunctionalizedwithcationicpoly(VBTAC)brushes wasdemonstrated.Thereusabilityofthesewebswasinvestigatedbymeasuringtheadsorptioncapacity fortargetDNAinacyclicmanner.Inbrief,CAnanofiberssurface-modifiedwithcationicpolymerbrushes canbesuitableasmembranematerialsforfiltration,purification,and/orseparationprocessesforDNA.

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

Electrospinningtechniquehasrecentlyreceivedgreatattention sincethisversatiletechniqueenablestheproductionofmultifunc- tionalnanofiber/nanowebsfromawiderangevarietyofmaterials includingpolymers,blends,alloys,composites,ceramics,metals etc. (Agarwal, Greiner, & Wendorff, 2013; Sahay et al., 2012;

Wendorff,Agarwal,&Greiner,2012).Theelectrospunnanofibers andtheirnanowebshavedistinctcharacteristicsuchasveryhigh surfaceareatovolumeratio,nanoscaleporousmorphologyand thediversesurfacefunctionalitiesarealsopossible(Agarwaletal., 2013; Kayaci, Ozgit-Akgun, Biyikli, & Uyar, 2013; Lu & Hsieh, 2010;Muller,Rambo,Porto,Schreiner,&Barra,2013;Sahayetal., 2012;Uyar,Havelund,Hacaloglu,Besenbacher,&Kingshott,2010;

Wendorffetal.,2012).Thesepropertiesofelectrospunnanofibers

∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,06800Ankara,Turkey.Tel.:+903582421614;

fax:+903582421616.

∗∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,06800Ankara,Turkey.Tel.:+903122903571;

fax:+903122664365.

E-mailaddresses:srkndemirci@gmail.com,serkan.demirci@amasya.edu.tr (S.Demirci),uyar@unam.bilkent.edu.tr,tamer@unam.bilkent.edu.tr, tameruyar@gmail.com(T.Uyar).

makethemgoodcandidatesasaffinitymembranesforfiltration, purificationandseparationprocesses(Ma,Kotaki,&Ramakrishna, 2005;Zhu,Yang,&Sun,2011).Surfacemodificationofelectrospun nanofiberswithspecificfunctionalgroupsisofgreatinterestdue totheirpotentialapplicationinfiltration/separation,detectionand controlleddrugrelease(Chigome,Darko,&Torto,2011;Fu,Xu,Yao, Li,&Kang,2009a;Kampalanonwat&Supaphol,2010;Mahanta&

Valiyaveettil,2011;Wangetal.,2012;Yao,Xu,Lin,&Fu,2010).Par- ticularly,polymerfunctionalizednanofibersthatcanbeobtained vialivingradicalpolymerization(LRP)techniquesmayhaveahigh adsorptioncapacityandstrongbindingspecificityduetotheirfree activegroupsonnanofibersurfaces(Chigomeetal.,2011;Yaoetal., 2010).

LRP reveal advantages because they can control the archi- tecture,molecularweightand molecularweight distributionin comparisonwiththeconventionalradicalpolymerization,dueto minimalterminationreactionsresultinginpolymerchainswith

“living”endgroups(Coessen,Pintauer,&Matyjaszewski,2001;Fu etal.,2009a,2009b;Matyjaszewski,2012;Pyun&Matyjaszewski, 2001).SeveralLRPtechniqueshavebeenreportedforpreparation polymerfunctionalizedsurfaces,suchasnitroxide-mediatedrad- icalpolymerization(Bian&Cunningham,2006;Cimen&Caykara, 2012),atomtransferradicalpolymerization(Bai,Zhang,Cheng,&

Zhu,2012;Bian&Cunningham,2006;Turan,Demirci,&Caykara, 2010), reversible addition-fragmentation chain transfer (RAFT)

http://dx.doi.org/10.1016/j.carbpol.2014.06.086 0144-8617/©2014ElsevierLtd.Allrightsreserved.

(2)

S.Demircietal./CarbohydratePolymers113(2014)200–207 201

polymerization(Demirci&Caykara,2012;Gurbuz,Demirci,Yavuz,

&Caykara,2011;Jiang&Xu,2013)andsingle-electrontransfer- livingradicalpolymerization(Demirci,Kinali-Demirci,&Caykara, 2013;Percecetal.,2006).LRPprovidesexcellentcontroloverthe molecularweightandpolydispersityofgraftpolymers(Braunecker

&Matyjaszewski,2007;Dietrichetal.,2010).AmongallLRPtech- niques,RAFTpolymerizationisthemostimportantone,duetoits compatibilitywithawiderangeofmonomersandreactioncondi- tions(Chen,Liu,Chen,Gong,&Gao,2011;Moadetal.,2010).The stabilityandchemicalversatilityinherentinRAFTagentsmakes RAFT-based procedures highly attractive for the preparation of well-definedpolymerswithspecificpolymerarchitectures(Smith, Holley,&McCormick,2011).

Theelectrospunnanofibrouswebshaveshowngreatpotential to be used as affinity membranes for separate/capture macro- molecules,microorganism,enzymes,heavymetalionsandwaste compounds(Che,Huang,&Xu,2011;Lu&Hsieh,2009;Maetal., 2005;Wangetal.,2011;Zhangetal.,2010).Forexample,Zhang etal.(2010)presentedanewaffinitymembranewhichwassurface modified electrospunpolyacrylonitrilenanofibers forbromelain adsorption.Cheetal.(2011)reportedthatglycosylatednanofibrous membraneshowedstrongselectivity,highadsorptioncapacityand reversiblebindingcapabilitytothespecificproteinconcanavalin A. DNA is thegenetic material of living organisms, and deter- mination ofDNA plays animportant role in many applications rangingfrommedical,forensic,agricultureandfoodsciences(Tao, Lin,Huang,Ren,&Qu,2012).Differentsolidsupportshavebeen usedforadsorptionofDNAduetotheeaseofhandling,andless chemicalrequirements. Wanetal.(2013)reportedthata novel electrochemicalDNAsensorbasedonsurfaceinitiatedenzymatic polymerization. ThisDNA sensor had picomolar sensitivity and broaddetectionrange.EfficientmethodformultipleDNAdetection byexploringsilvernanoclustersandgrapheneoxidenanohybrid materialswasdevelopedbyTaoetal.(2012).Inourpreviousstudy, wealso showedthat cationicpolymer brushescanbeused for quantitativeDNAadsorption(Demirci &Caykara,2013).But,all ofthesematerials,especiallypolymercoatedsolidsurfaceshave lowadsorptioncapacity,becauseofthelowsurfacearea(Baser, Demirel,&Caykara,2011;Rahman&Alaissari,2011).

Herein, poly[(ar-vinylbenzyl)trimethylammonium chloride]

[poly(VBTAC)] grafted cellulose acetate (poly(VBTAC)-g-CA) nanofiberweresuccessfullyproducedbycombinationofelectro- spinning and RAFT polymerizationwith the goalof fabricating affinitymembraneforDNAadsorption.Morphologicalandsurface characteristics of the poly(VBTAC)-g-CA nanofibers were car- riedoutbyscanningelectronmicroscope(SEM),Attenuatedtotal reflectance-Fouriertransforminfrared(ATR-FTIR)spectroscopy,X- rayphotoelectronspectroscopy(XPS)andcontactanglemeasure- ments.Furthermore,DNAadsorptionofpoly(VBTAC)-g-CAnanofi- brouswebfromthebuffersolutionwasinvestigated.Thereusabil- ity of poly(VBTAC)-g-CA nanofibrous web was also tested by measuringtheadsorptioncapacityfortargetDNAafterfivecycles.

2. Materialsandmethods 2.1. Materials

Cellulose acetate (CA, Mw∼30,000, 39.8wt.% acetyl), (ar- vinylbenzyl)trimethylammonium chloride (VBTAC, 99%), 4,4- azobis(4-cyanopentanoic acid) (ACPA, ≥98%), benzyl chloride (99%), sulfur (≥99.5%), potassium ferricyanide(III) (99%), N,N’- dicyclohexylcarbodiimide (DCC, 99%), 4-dimethylaminopyridine (DMAP, ≥99%), acetic acid (99.7%), sodium acetate (≥99%), diethylether(≥99%),dichloromethane(DCM,98.5%),ethylacetate (99.8%), methanol (99.8%) were purchased commercially from

Sigma–Aldrich.ACPAwasrecrystallizedfrommethanol.Thewater wasusedfromaMilliporeMilli-Qultrapurewatersystem.Double- strandedDNA(Cy3-labeledDNA)of50basepairfromBioVentures Inc.wassupplied.

2.2. Electrospinning

Thehomogenouselectrospinningsolutionwaspreparedbydis- solvingCAin DCM/methanol (4/1(v/v))binarysolvent mixture at12%(w/v)polymerconcentration.ThenclearCAsolutionwas placedina3mLsyringefittedwithametallicneedleof0.6mm innerdiameter.Thesyringewasfixedhorizontallyonthesyringe pump(KDScientific).Theelectrodeofthehigh-voltagepowersup- ply(Matsusada Precision,AUSeries)wasclamped tothemetal needletip,andthecylindricalaluminumcollectorwasgrounded.

Theparametersoftheelectrospinningwereadjustedas;feedrate ofsolutions=1mL/h,theappliedvoltage=15kV,andthetip-to- collectordistance=10cm.Electrospunnanofibersweredeposited onagroundedstationarycylindricalmetalcollectorcoveredwitha pieceofaluminumfoil.Theelectrospinningapparatuswasenclosed inaPlexiglasbox,andelectrospinningwascarriedoutat25Cat 25%relativehumidity.Thecollectednanofibersweredriedatroom temperatureunderthefumehoodovernight.

2.3. RAFTpolymerizationofVBTAC

4-Cyanopentanoicaciddithiobenzoate(CPAD)wassynthesized accordingtotheliterature procedure(Mayadunneet al.,1999).

CPAD(1.14g,4.095mmol),DCC(0.844g,4.095mmol),DMAP(0.5g, 4.095mmol), and 10mL of benzene were added to a round bottomedflaskandstirredforfewminutesundernitrogenatmo- sphere.TheCAnanofiberswereadded,andthemixturewasstirred overnightatroomtemperature.Theproductwaswashedwithben- zene,2-propanolandwaterseveraltimesanddried.

TheRAFT-mediatedpolymerizationofVBTAC(29.4mmol)was carriedoutinbuffer(28mL,pH=5.0,0.27mol/Laceticacid,and 0.73mol/Lsodiumacetate),initiatorACPA(0.025mmol),freeRAFT agentCPAD(0.125mmol),andRAFTchaintransferagentimmo- bilizedCAnanofiberat 0C in around-bottom flask.To ensure smoothstirringandpreventdamagetothenanofibers,weisolated themagneticstirringbaratthecenterofdevicefromtheslidesby a1cmhighglassO-ring.Thesolutionwasdilutedto30mLvolume withthebuffersolutionanddegassedbypurgingwithnitrogen for20min.Thepolymerizationreactionwasstirredvigorouslyat 70Cfor120min.Thepoly(VBTAC)-g-CAnanofiberswererecov- eredfromthereactionmixtureandrepeatedlywashedwithbuffer and watertoremovetheunreactedchemicals,anddriedunder vacuumat30C.

2.4. Measurementsandcharacterization

Attenuatedtotalreflectance-Fouriertransforminfrared(ATR- FTIR)spectraoftheCAandpoly(VBTAC)-g-CAwereobtainedusing a ThermoNicolet6700spectrometerwitha Smart Orbitatten- uated total reflection attachment.The spectra were taken at a resolution4cm−1after128scanaccumulationforanacceptable signal/noise ratio. The X-ray photoelectron spectra of samples wererecordedbyusingX-rayphotoelectronspectrometer(XPS) (ThermoScientific).XPSwasusedbymeansofafloodguncharge neutralizer systemequippedwitha monochromated Al K-␣X- raysource(h=1486.6eV).Chargingneutralizingequipmentwas usedtocompensatesamplecharging,andthebindingscalewas referencedtothealiphaticcomponentofC1sspectraat285.0eV.

The morphologies of the electrospun CA and poly(VBTAC)-g- CAnanofiberswereinvestigatedwithafield emissionscanning electronmicroscope(FE-SEM)(FEI,Quanta200FEG).Sampleswere

(3)

Scheme1. (a)SchematicrepresentationofelectrospinningofCAnanofibers.(b)Sequenceofsurfacemodificationstepsemployedinthisstudytofunctionalizeelectrospun CAnanofiberswithpoly(VBTAC).(c)DNAadsorptiononpoly(VBTAC)-g-CAnanofibers.

sputteredwith5nmAu/Pd(PECS-682)andaround100fiberdiam- etersweremeasuredfromtheSEMimagestocalculatetheaverage fiberdiameterofeachsample.Thewatercontactanglemeasure- mentswereconductedatroomtemperatureusingagoniometer (DSA100, Krüss)equippedwitha microlitersyringe.Deionized water(5␮L,18Mcmresistivity)wasusedasthewettingliquid.

Evidenceofthenonspecificadsorptionwasobtainedbymeansof opticalfluorescencemicroscopy.Fluorescencemicroscopyimages wererecordedbyusinganOlympusBX51microscopewitha40× objective.

2.5. DNAadsorptionstudy

DNAsolutionwaspreparedinanaqueoussolutionofphosphate buffer saline (PBS). The adsorption of DNA onto poly(VBTAC)- g-CA nanofibers was performed in a 3.0mL volume. 10mg of poly(VBTAC)-g-CA nanofibers was added to 2.0mL DNA (20.0␮g/mL)containingbuffersolution(i.e.adsorptionmedium).

Attheendoftheincubationtime, poly(VBTAC)-g-CAnanofibers wereseparatedquickly.TheDNAconcentrationwasdetermined bymeasuringtheabsorbanceat260nminaUV–visspectropho- tometerusingastandardcalibrationcurve.Alloftheabsorbance values were measured at least three times and averaged. The amountofDNAadsorbedontothepoly(VBTAC)-g-CAnanofibers (␮gDNA/mgdrynanofibers)wascalculatedfromtheinitialand finalDNAconcentrationsintheclearphase.Anaverageresultof minimumthreereproducibledatawasconsideredallowingerrors in ±0.05␮g/mg poly(VBTAC)-g-CA nanofibers. In order to test thereusabilityofpoly(VBTAC)-g-CAnanofibersforDNAadsorp- tion,fivecyclesofadsorption/desorptionwerecarriedoutusing buffersolution(potassiumhydrogenphthalate/hydrochloricacid, pH=3.0).Aftereachadsorption/desorptioncycle,DNAconcentra- tionwasdeterminedbyUV–visspectrophotometer.Inordertouse thepoly(VBTAC)-g-CAnanofibersforthenextexperiment,itwas washedwithbuffersolutionanddistilledwater,sequentially.

3. Resultsanddiscussion

3.1. Formationpoly(VBTAC)graftedCAnanofibers

An illustration of immobilization of RAFT agent onto CA nanofibersandsubsequentRAFTpolymerizationtoformcationic poly(VBTAC)brushesandDNAadsorptionisshowninScheme1.

Thepoly(VBTAC)-g-CA nanofiberswere preparedvia three-step processinvolving;(i)electrospinning ofCAnanofibers,(ii)cou- plingofRAFTagenttotheelectrospunCAnanofibersurfacevia esterificationreactionof non-acetylated-OH groupsof CAwith CPAD,(iii)surfaceinitiatedRAFTpolymerizationofVBTAC.Fig.1 showstheFTIRspectraofuntreatedCAnanofibersandCPADimmo- bilizedCA(CPAD-CA)nanofibers.Thecharacteristicbandofthe 39.8%acetylCAwasobservedat1737,1220and1034cm−1dueto theC O,asymmetricandsymmetricC Ostretching,respectively (Celebioglu,Demirci,&Uyar,2014).ThebandareaoftheC Ogroup increasedwithesterificationreaction.ATR-FTIRspectrumofCA- CPADnanofibersalsoshowedabsorbancebandat2246cm−1forthe C Nand1040cm−1fortheC Sstretching.CPAD-CAnanofibers havehigherabsorbancethanCAnanofibers.Thecharacteristicband ofCAwasobservedat1739cm−1 duetotheC Ostretching.On theotherhand,thebandsofpoly(VBTAC)appearedat1481cm−1 forthescissor CH2 vibration,at1403cm−1 asymmetric CH3 deformationvibrationandat1610cm−1 C C stretchesofthe aromatic ring (Demirci & Caykara,2012). The spectrum of the poly(VBTAC)-g-CAnanofiberswascharacterizedbythepresence oftheabsorptionbandstypicalofthepurecomponents.,withthe intensityroughlyproportionaltograftingratio.

Thechemicalcompositionofthepoly(VBTAC)-g-CAnanofibers wasdeterminedbyXPS(Table1,Fig.2).ThecorelevelXPSspec- traofCPADoverlayerconsistofN1sandC1speakscurvefitted intothecomponentswithbindingenergiesatabout400.1eV(N C) forN1sand289.1eV(C O),287.9eV(O C O),286.0eV(C N), 285.4eV(C S),and285.0eV(C C/C H)forC1s(Table1,Fig.2).

(4)

S.Demircietal./CarbohydratePolymers113(2014)200–207 203

Table1

AtomicconcentrationandbindingenergiesgivenhighresolutionXPSfornanofibersa.

Nanofibers O1s N1s C1s S2p

N+ C N O C O O C O C N C S C C/C H S C S C

CA

Energy(eV) 532.7 289.1 287.6 285.0

Conc.(%) 38.01 61.99

CA-CPAD

Energy(eV) 532.6 400.1b 289.1 287.9 286.0 285.4 285.0 162.5 161.4

Conc.(%) 31.83 1.16 64.45 5.56

Poly(VBTAC)-g-CA

Energy(eV) 532.7 402.1 399.9 289.0 287.8 286.1 285.3 285.0 162.6 161.3

Conc.(%) 14.27 6.01 78.66 1.06

aBindingenergiesarecalibratedtoaliphaticcarbonat285.0eV.

bBindingenergyattributabletotheC Nspecies.

TheimmobilizationofCPADontoCAnanofiberwasalsoconfirmed fromtheappearanceofaS2ppeakcurvefittedintotwocompo- nentswithbindingenergiesatabout162.5eV(C S)and161.4eV (C S).Overall,theATR-FTIRandXPSstudiesconfirmedthesuc- cessfulcouplingoftheRAFT agent(CPAD)onto electrospunCA nanofiberssurface.ThecorelevelXPSspectraofnanofiberscon- sistofN1sandC1speakscurvefittedintothecomponentswith bindingenergiesatabout402.1eV(C N+)and399.9eV(C N)forN 1sand289.0eV(C O),287.8eV(O C O),286.1eV(C N),285.3eV (C S)and285.0eV(C C/C H)forC1s.

Fig.1. FTIRspectra of CAnanofibers,CA-CPAD nanofibers,poly(VBTAC)-g-CA nanofibersandpoly(VBTAC).

The static water contact angle of CPAD functionalized CA nanofiberwas62±3whichwaslowerthanthevalueof88±2 fortheCAnanofiberbeforetheimmobilization(Table2).Whenthe CAnanofibersweregraftedwithpoly(VBTAC),thestaticwatercon- tactangleofthesurfacedecreasedsubstantiallytoabout39±4, consistentwiththehydrophilicnatureofpoly(VBTAC).

Fig. 3 shows the representative SEM images of the CA and poly(VBTAC)-g-CAnanofibers.TheSEMimagingshowedthatthe electrospun CA nanofibers were bead free and smooth mor- phology having average fiber diameter (AFD) of 810±260nm (Fig.3a).Itshouldbenotedthatsurfacemorphologiesandaverage

Fig. 2.XPS survey scan spectra of CA nanofibers, CA-CPAD nanofibers and poly(VBTAC)-g-CAnanofibers.

(5)

Fig.3.SEMimagesofCAnanofibers(a),poly(VBTAC)-g-CAnanofibers(b)andDNAadsorbedpoly(VBTAC)-g-CAnanofibers(c).

fiber diameter of poly(VBTAC)-g-CA nanofibers were different fromthe CA nanofibers.Thatis, thesmooth appearance of CA nanofiber surface was no longer present (Fig. 3b) due to the poly(VBTAC)grafting.Additionally,poly(VBTAC)-g-CAnanofibers wereslightly thicker having AFD of 1030±310nmwhen com- paredtopureCAnanofibersbecauseofthepoly(VBTAC)coating aswellaspossibleswellingofnanofibersduringgraftingprocess.

Thesechangesinthesurfaceappearanceofthepoly(VBTAC)-g-CA nanofibersarethephysicalevidencesforthesuccessfulgrafting reaction.

3.2. AdsorptionofDNA

DNAmoleculesarelikelyimmobilized ontothecationicsur- faces by electrostatic interaction between negatively charged

Table2

Staticwatercontactangleandphotographsof5␮Lwaterdropletsfornanofibers.

Nanofibers Contactangle() Image

CA 88±2

CA-CPAD 62±3

PVBTAC-g-CA 39±4

DNAandpositivelychargedpolymersurface.AdsorptionofDNA onto the CA and poly(VBTAC)-g-CA nanofibrous web waspro- videdfluorescence microscopy. Asit can beseen in Fig. 4,the redspotsindicatedthepresenceofDNAmolecules.Theadsorp- tion kinetics of DNA was performed at 20C. The pristine CA nanofibrous web was used as a reference material. The result shown in Fig.5a indicatesthat there is nosignificanteffect of incubationtimeontheadsorptionofDNAontothepoly(VBTAC)- g-CA nanofibers. The adsorbedamount of DNA almost reaches a plateauafter 90min. This behavior can be explained due to the rapid and strong electrostatic attraction between cationic poly(VBTAC)-g-CAnanofibersandanionicDNAmolecules,andvery highsurfaceareatovolumeratioofnanofibrousweb,sotheequi- libriumconcentrationofadsorbedDNAis reachedveryquickly.

The maximumDNA adsorption capacity was 2.4␮g/mgfor the pristineCAweband26.6␮g/mgfor thepoly(VBTAC)-g-CAweb.

These resultsindicated that thegrafting of poly(VBTAC)onCA nanofibersprovidedasignificantincreaseintheDNAadsorption capacity.Fig.3cshowstheSEMimagesofthepoly(VBTAC)-g-CA nanofibers afterDNA adsorption in which the DNA adsorption onthe poly(VBTAC)-g-CA nanofiberswas observed microscopi- cally.

Theadsorptionisothermsrepresenttherelationshipbetween theamountadsorbedbyaunitweightofadsorbentandtheamount ofadsorbateremaininginthesolutionatequilibrium.Fig.5bshows thedependenceoftheadsorptionofDNAonthepoly(VBTAC)-g-CA nanofibrouswebontheequilibriumDNAconcentration.Theini- tialconcentrationofDNAintheadsorptionmediumwaschanged between10and100␮g/mL.TheLangmuirisothermmodelassumes amonolayeradsorptionontoasurfacecontainingafinite num- berofadsorptionsitesofuniformstrategiesofadsorptionwithno

(6)

S.Demircietal./CarbohydratePolymers113(2014)200–207 205

Fig.4. FluorescencemicroscopyimagesofCAnanofibers(a),poly(VBTAC)-g-CAnanofibers(b)andpoly(VBTAC)-g-CAnanofibersafterdesorptionprocedure(c).

transmigrationofadsorbateintheplaneofsurface,anditisgiven bythefollowingequation:

Ce

qe = 1 qmKm+ Ce

qm

whereCe(␮g/mL)istheequilibriumconcentrationofDNAsolu- tion, qe (␮g/mg) is the equilibrium amount of DNA adsorbed, qm(␮g/mg)is themaximumamountofDNAadsorbedperunit

massofnanofiber, andKm (mL/mg)is aconstantrelated tothe adsorption. Asillustrated in Fig.5b,a linearplot withcorrela- tioncoefficient(R2)valueof0.973wasobtainedfromLangmuir isothermequationwhenplottingCe/qeagainstCewithaslopeand interceptequalto1/qmand1/Kmqm,respectively.Kineticparame- terswerecalculatedas2.52×10−2mL/␮gforKmand23.51␮g/mg forqm.Moreover,theLangmuirequationfitswellforDNAimmo- bilizationonthepoly(VBTAC)-g-CAwebundertheconcentration

Fig.5. Adsorptionkinetics(a),adsorptionisotherm(b)andreusability(c)ofpoly(VBTAC)-g-CAnanofibers.

(7)

range studied. Adsorption capacity of some solid surfaces was previouslyinvestigatedasdetailedelsewhere(Baseretal.,2011;

Demirci et al., 2013; Rahman & Alaissari, 2011). Compared to solidsurfaces,poly(VBTAC)-g-CAnanofibrouswebshowedhigher adsorptioncapacity.

TheessentialfeatureoftheLangmuirisothermcanbeexpressed bymeansofadimensionlessconstantseparationfactororequi- librium parameter (RL). RL is calculated using the following equation:

RL= 1 1+KmC0

whereKmistheLangmuirconstantwhichindicatesthenatureof adsorptionandtheshapeoftheisotherm,andC0referstotheinitial DNAconcentration(␮g/mL).TheparameterRL>1,RL=1,0<RL<1, RL=0indicatestheisothermshapeaccordingtounfavorable,linear, favorableandirreversible,respectively(Demircietal.,2013;Kim, Barraza,&Velev,2009;Mallampati&Valiyaveettil,2012).TheRL

valuesofDNAadsorptiononpoly(VBTAC)-g-CAnanofiberswere giveninTableS1(Supplementarydata).TheRL valuesconfirmed thattheadsorptionisfavorableunderconditionsusedinthisstudy.

The reusability of poly(VBTAC)-g-CA nanofibrous web was investigatedbymeasuringtheadsorptioncapacityfortargetDNA ina cyclic manner.Theadsorption/desorption procedureswere repeatedfivetimestoverifythereusabilityoftheweb.Thecycles ofadsorption/desorptionprocessesareshowninFig.5c.Drastic decrease(approximately 11.5%)in theadsorption capacity was seenduringtheeachcycle,andthepoly(VBTAC)-g-CAnanofibers retainedDNA anuptake capacity of ∼46% afterfivecycles. Fig.

S1(Supplementary data) shows the XPS survey spectra of the poly(VBTAC)-g-CAnanofibersafteradsorptionanddesorptionpro- cedure.AscanbeseenfromFig.S1b(Supplementarydata),intensity of the P 2ppeak at 133eV decreased. However, unfortunately P 2p peak and fluorescence signal (Fig. 4c) of poly(VBTAC)-g- CAnanofibersdidnotdisappearcompletely.Ourpreviousstudy clearlydemonstratethatpoly(VBTAC)polymerbrushesarecationic behavioratdifferentpHs(Demirci&Caykara,2013).Ontheother hand,DNAisnegativelychargedduetothephosphategroupson itsbackbone,and withdecreasingpHthesenegativephosphate groupsbecomeprotonatedandDNAmoleculeturnslessnegative.

Thisisduetoelectrostaticinteractionbetweenpoly(VBTAC)-g-CA nanofibersandlessnegativeDNAmolecules(pH=3.0)anditwas evidentthatourwashingproceduredidnotabletoremoveallthe adsorbedDNA.Becauseofthis,theadsorptioncapacityofDNAwas decreasedfrom23.51to12.64␮g/mgwithincreasingnumberof reuse.

4. Conclusions

In conclusion, cationic poly(VBTAC)-g-CA nanofibers were manufacturedviacombinationofelectrospinningandRAFTpoly- merizationtechniqueswiththegoaloftheadsorptionofDNA.Our systematicstudiesbyusingtechniquessuchasATR-FTIRandXPS confirmedthesuccessfulgraftingofpoly(VBTAC)onelectrospun CAnanofibers.TheSEMimagingshowedthattheelectrospunCA nanofibers were bead free and smooth morphology. However, surfacemorphologiesandaveragefiberdiameterofpoly(VBTAC)- g-CA nanofibers were different from the CA nanofibers. These changes in the surface appearance of the poly(VBTAC)-g-CA nanofibersarethephysicalevidencesforthesuccessfulgrafting reaction.Thestaticwatercontactangleofthenanofibersdecreased from88±2to39±4,consistentwiththehydrophilicnatureof poly(VBTAC).The DNA adsorption capacity was determined as 23.51␮g/mgfromtheLangmuirisothermforpoly(VBTAC)-g-CA nanofibrousweb. Wehave alsodemonstratedthereusabilityof thepoly(VBTAC)-g-CAwebbymeasuringtheadsorptioncapacity

fortargetDNAinacyclicmanner.Ourstudieshaveshownthat poly(VBTAC)-g-CAnanofiberspresentsaconvenientapproachfor DNA immobilization. The results reported in this article could open up new opportunities for fabricating surface functional- izedelectrospunnanofibers/nanowebsand theirapplicationsin biotechnologicaluses.

Acknowledgements

Dr T. Uyar acknowledges EU FP7-PEOPLE-2009-RG Marie Curie-IRG(NANOWEB,PIRG06-GA-2009-256428)andTheTurkish AcademyofSciences–OutstandingYoungScientistsAwardPro- gram(TUBA-GEBIP)forpartialfunding.A.Celebiogluacknowledges TUBITAK-BIDEBforthenationalPhDstudyscholarship.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/

j.carbpol.2014.06.086.

References

Agarwal,S.,Greiner,A.,&Wendorff,J.H.(2013).Functionalmaterialsbyelectro- spinningofpolymers.ProgressinPolymerScience,38(6),963–991.

Bai,L.,Zhang,L.,Cheng,Z.,&Zhu,X.(2012).Activatorsgeneratedbyelectrontrans- ferforatomtransferradicalpolymerization:Recentadvancesincatalystand polymerchemistry.PolymerChemistry,3(10),2685–2697.

Baser, B., Demirel, G., & Caykara, T. (2011). DNA adsorption on poly(N,N- dimethylacrylamide)-graftedchitosanhydrogels. JournalofAppliedPolymer Science,120(3),1420–1425.

Bian,K.,&Cunningham,M.F.(2006).Surface-initiatednitroxide-mediatedradical polymerizationof2-(dimethylamino)ethylacrylateonpolymericmicrospheres.

Polymer,47(16),5744–5753.

Braunecker,W.A.,&Matyjaszewski,K.(2007).Controlled/livingradicalpolymer- ization:Features,developments,andperspectives.ProgressinPolymerScience, 32(1),93–146.

Celebioglu,A.,Demirci,S.,&Uyar,T.(2014).Cyclodextrin-graftedelectrospuncellu- loseacetatenanofibersviaclickreactionforremovalofphenanthrene.Applied SurfaceScience,305,581–588.

Che,A.F.,Huang, X.J.,&Xu,Z.K.(2011).Polyacrylonitrile-basednanofibrous membranewithglycosylatedsurfaceforlectinaffinityadsorption.Journalof MembraneScience,366(1–2),272–277.

Chen,J.,Liu,M.,Chen,C.,Gong,H.,&Gao,C.(2011).Synthesisandcharacteriza- tionofsilicananoparticleswithwell-definedthermoresponsivepnipamviaa combinationofraftandclickchemistry.ACSAppliedMaterials&Interfaces,3(8), 3215–3223.

Chigome,S.,Darko,G.,&Torto,N.(2011).Electrospunnanofibersassorbentmaterial forsolidphaseextraction.Analyst,136(14),2879–2889.

Cimen,D.,&Caykara,T.(2012).BiofunctionaloligoN-isopropylacrylamidebrushes onsiliconwafersurface.JournalofMaterialsChemistry,22(26),13231–13238.

Coessen,V.,Pintauer,T.,&Matyjaszewski,K.(2001).Functionalpolymersbyatom transferradicalpolymerization.ProgressinPolymerScience,26(3),337–377.

Demirci, S., & Caykara, T. (2012). Controlled grafting of cationic poly[(ar- vinylbenzyl)trimethylammoniumchloride] onhydrogen-terminated silicon substratebysurface-initiatedRAFTpolymerization.ReactiveandFunctionalPoly- mers,72(9),588–595.

Demirci,S.,&Caykara,T.(2013).RAFT-mediatedsynthesisofcationicpoly[(ar- vinylbenzyl)trimethyl ammonium chloride] brushes for quantitative DNA immobilization.MaterialsScienceandEngineeringC,33(1),111–120.

Demirci,S.,Kinali-Demirci,S.,&Caykara,T.(2013).Stimuli-responsivediblock copolymer brushes viacombination of click chemistryand living radical polymerization.JournalofPolymerSciencePartA:PolymerChemistry,51(12), 2677–2685.

Dietrich,M.,Glassner,M.,Gruendling,T.,Schmid,C.,Falkenhagen,J.,&Barner- Kowollik,C.(2010).FacileconversionofRAFTpolymersintohydroxylfunctional polymers:AdetailedinvestigationofvariablemonomerandRAFTagentcom- binations.PolymerChemistry,1(5),634–644.

Fu,G.D.,Xu,L.Q.,Yao,F.,Li,G.L.,&Kang,E.T.(2009).Smartnanofiberswithapho- toresponsivesurfaceforcontrolledrelease.ACSAppliedMaterials&Interfaces, 1(11),2424–2427.

Fu,G.D.,Xu,L.Q.,Yao,F.,Zhang,K.,Wang,X.F.,Zhu,M.F.,etal.(2009).Smart nanofibersfromcombinedlivingradicalpolymerization,clickchemistry,and electrospinning.ACSAppliedMaterials&Interfaces,1(2),239–243.

Gurbuz,N., Demirci,S., Yavuz,S.,& Caykara,T.(2011). Synthesisofcationic N-[3-(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surface-initiatedRAFTpolymerization.JournalofPolymerSciencePartA:Polymer Chemistry,49(2),423–431.

(8)

S.Demircietal./CarbohydratePolymers113(2014)200–207 207

Jiang,H.,&Xu,F.J.(2013).Biomolecule-functionalizedpolymerbrushes.Chemical SocietyReviews,42(8),3394–3397.

Kampalanonwat, P., & Supaphol, P. (2010). Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Applied Materials & Interfaces, 2(12), 3619–3627.

Kayaci,F.,Ozgit-Akgun,C.,Biyikli,N.,&Uyar,T.(2013).Surface-decoratedZnO nanoparticlesandZnOnanocoatingonelectrospunpolymericnanofibersby atomiclayerdepositionforflexiblephotocatalyticnanofibrousmembranes.RSC Advances,3(19),6817–6820.

Kim,S.,Barraza,H.,&Velev,O.D.(2009).Intenseandselectivecolorationoffoams stabilizedwithfunctionalizedparticles.JournalofMaterialsChemistry,19(38), 7043–7049.

Lu,P.,&Hsieh,Y.-L.(2009).Lipaseboundcellulosenanofibrousmembranevia CibacronBlue F3GAaffinityligand.JournalofMembraneScience, 330(1–2), 288–296.

Lu,P.,&Hsieh,Y.-L.(2010).Multiwalledcarbonnanotube(MWCNT)reinforced cellulosefibersby electrospinning.ACSAppliedMaterials&Interfaces,2(8), 2413–2420.

Ma,Z.,Kotaki,M.,&Ramakrishna,S.(2005).Electrospuncellulosenanofiberas affinitymembrane.JournalofMembraneScience,265(1–2),115–127.

Mahanta,N.,&Valiyaveettil,S.(2011).Surfacemodifiedelectrospunpoly(vinyl alcohol)membranesforextractingnanoparticlesfromwater.Nanoscale,3(11), 4625–4631.

Mallampati,R.,&Valiyaveettil,S.(2012).Applicationoftomatopeelasaneffi- cientadsorbentforwaterpurification-alternativebiotechnology?RSCAdvances, 2(26),9914–9920.

Matyjaszewski,K.(2012).Generalconceptandhistoryoflivingradicalpolymeriza- tion.InK.Matyjaszewski,&T.P.Davis(Eds.),Handbookofradicalpolymerization (pp.361–406).Hoboken:JohnWiley&Sons.

Mayadunne,R.T.A.,Rizzardo,E.,Chiefari,J.,Chong,Y.K.,Moad,G.,&Thang,S.H.

(1999).Livingradicalpolymerizationwithreversibleaddition–fragmentation chaintransfer(RAFTpolymerization)usingdithiocarbamatesaschaintransfer agents.Macromolecules,32(21),6977–6980.

Moad,G.,Chen,M.,Haussler,M.,Postma,A.,Rizzardo,E.,&Thang,S.H.(2010).

FunctionalpolymersforoptoelectronicapplicationsbyRAFTpolymerization.

PolymerChemistry,2(3),492–519.

Muller,D.,Rambo,C.R.,Porto,L.M.,Schreiner,W.H.,&Barra,G.M.O.(2013).

Structureandpropertiesofpolypyrrole/bacterialcellulosenanocomposites.Car- bohydratePolymers,94(1),655–662.

Percec,V.,Guliashvili,T.,Lasislaw,J.S.,Wistrand,A.,Stjerndahl,A.,Sienkowska,M.J., etal.,&Sahoo,S.(2006).Ultrafastsynthesisofultrahighmolarmasspolymersby metal-catalyzedlivingradicalpolymerizationofacrylates,methacrylates,and vinylchloridemediatedbySETat25C.JournaloftheAmericanChemicalSociety, 128(43),14156–14165.

Pyun,J.,&Matyjaszewski,K.(2001).Synthesisofnanocompositeorganic/inorganic hybridmaterialsusingcontrolled/livingradicalpolymerization.Chemistryof Materials,13(10),3436–3448.

Rahman,Md.M.,&Alaissari,A.(2011).Temperatureandmagneticdualresponsive microparticlesforDNAseparation.SeparationandPurificationTechnology,81(3), 286–294.

Sahay,R.,Kumar,P.S.,Sridhar,R.,Sundaramurthy,J.,Venugopal,J.,Mhaisalkar, S.G.,etal.(2012).Electrospuncompositenanofibersandtheirmultifaceted applications.JournalofMaterialsChemistry,22(26),12953–12971.

Smith,D.D.,Holley,A.C.,&McCormick,C.L.(2011).RAFT-synthesizedcopolymers andconjugatesdesignedfortherapeuticdeliveryofsiRNA.PolymerChemistry, 2(7),1428–1441.

Tao, Y., Lin, Y., Huang, Z., Ren, J., & Qu, X. (2012). DNA-templated silver nanoclusters–grapheneoxidenanohybridmaterials:Aplatformforlabel-free andsensitivefluorescenceturn-ondetectionofmultiplenucleicacidtargets.

Analyst,137(11),2588–2592.

Turan,E.,Demirci,S.,&Caykara,T.(2010).Synthesisofthermoresponsivepoly(N- isopropylacrylamide)brushonsiliconwafersurfaceviaatomtransferradical polymerization.ThinSolidFilms,518(21),5950–5954.

Uyar, T., Havelund, R., Hacaloglu,J., Besenbacher, F., & Kingshott, P. (2010).

Functionalelectrospunpolystyrenenanofibersincorporating␣-,␤-,and␥- cyclodextrins:Comparisonofmolecularfilterperformance.ACSNano,4(9), 5121–5130.

Wan,Y.,Xu,H.,Su,Y.,Zhu,X.,Song,S.,&Fan,C.(2013).Asurface-initiatedenzy- maticpolymerizationstrategyforelectrochemicalDNAsensors.Biosensorsand Bioelectronics,41,526–531.

Wang,S.,Zheng,F.,Huang,Y.,Fang,Y.,Shen,M.,Zhu,M.,etal.(2012).Encapsulation ofamoxicillinwithinlaponite-dopedpoly(lactic-co-glycolicacid)nanofibers:

Preparation,characterization,andantibacterialactivity.ACSAppliedMaterials&

Interfaces,4(11),6393–6401.

Wang,X.,Min,M.,Liu,Z.,Yang,Y.,Zhou,Z.,Zhu,M.,etal.(2011).Poly(ethyleneimine) nanofibrousaffinitymembranefabricatedviaonestepwet-electrospinning frompoly(vinylalcohol)-dopedpoly(ethyleneimine)solutionsystemandits application.JournalofMembraneScience,379(1–2),191–200.

Wendorff,J.H.,Agarwal,S.,&Greiner,A.(2012).Electrospinning:materials,processing, andapplications.Germany:JohnWiley&Sons.

Yao,F.,Xu,L.,Lin,B.,&Fu,G.D.(2010).Preparationandapplicationsoffunctional nanofibersbasedonthecombinationofelectrospinning,controlledradicalpoly- merizationand‘ClickChemistry’.Nanoscale,2(8),1348–1357.

Zhang,H.,Nie,H.,Yu,D.,Wu,C.,Zhang,Y.,White,C.J.B.,etal.(2010).Surface modificationofelectrospunpolyacrylonitrilenanofibertowardsdevelopingan affinitymembraneforbromelainadsorption.Desalination,256,141–147.

Zhu,J.,Yang,J.,&Sun,G.(2011).CibacronBlueF3GAfunctionalizedpoly(vinyl alcohol-co-ethylene) (PVA-co-PE)nanofibrousmembranesashigh efficient affinityadsorptionmaterials.JournalofMembraneScience,385–386,269–276.

Referenties

GERELATEERDE DOCUMENTEN

exhibited diffraction peaks of hexagonal wurtzite structure of ZnO (ICDD 01-074-9940) revealing the successful deposition of ZnO seed as well as nanoneedles on electrospun PAN

Our preliminary findings suggested that ␤-CD-functionalized CA nanofibers have potentials to be used as molecular filters for the purpose of water purifica- tion and/or waste

In brief, the addition of CDs to zein solutions significantly affected the electrospinning, and bead-free nanofibers were obtained from lower zein concentrations for zein/CD systems

We compared the release profiles of NAP from PCL/NAP and PCL/NAP- ␤CD-IC nanofibers and we examined the effect of inclusion complexation on the release behavior of NAP from

As an aim toward producing PVA nanofibers (NF) encapsu- lating AITC, free AITC and inclusion complex of AITC with ␤-CD (AITC/ ␤-CD-IC) was incorporated into PVA nanofibers (PVA/AITC-

It was observed that, the average pore diameter and cumulative pore volume determined by density functional theory (DFT) also decreased after surface modification of the PET

Representative SEM images of (a and b) electrospun nylon 6,6 nanofibers having 330 and 70 nm fiber diameters, respectively, (c and d) same electrospun nanofibers coated with 600

Hereby, an e fficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nano fibers or 4% (w/w) multiwalled