• No results found

atomic layer deposition and hydrothermal growth electrospun nanofibers: polymeric on A combinationof Enhanced photocatalytic of homoassembled activity ZnOnanostructures Applied Catalysis B: Environmental

N/A
N/A
Protected

Academic year: 2022

Share "atomic layer deposition and hydrothermal growth electrospun nanofibers: polymeric on A combinationof Enhanced photocatalytic of homoassembled activity ZnOnanostructures Applied Catalysis B: Environmental"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Catalysis B: Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Enhanced photocatalytic activity of homoassembled ZnO

nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth

Fatma Kayaci

a,b

, Sesha Vempati

a,∗

, Cagla Ozgit-Akgun

a,b

, Necmi Biyikli

a,b

, Tamer Uyar

a,b,∗∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara,06800,Turkey

bInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received10December2013

Receivedinrevisedform24February2014 Accepted4March2014

Availableonline14March2014

Keywords:

Photocatalysis ZnO

Electrospinning Atomiclayerdeposition Hydrothermal

a b s t r a c t

Wereportonthesynthesisandphotocatalyticactivity(PCA)ofelectrospunpoly(acrylonitrile)(PAN) nanofibrousmatdecoratedwithnanoneedlesofzincoxide(ZnO).Apartfromadetailedmorphologi- calandstructuralcharacterization,thePCAhasbeencarefullymonitoredandtheresultsarediscussed elaboratelywhen juxtaposedwiththe photoluminescence.Thepresenthierarchal homoassembled nanostructuresareacombinationoftwotypesofZnOwithdiverseopticalqualities,i.e.(a)controlled depositionofZnOcoatingonnanofiberswithdominantoxygenvacanciesandsignificantgrainbound- ariesbyatomiclayerdeposition(ALD),and(b)growthofsinglecrystallineZnOnanoneedleswithhigh opticalqualityontheALDseedsviahydrothermalprocess.Theneedlestructure(∼25nmindiameter withanaspectratioof∼24)alsosupportsthevectorialtransportofphoto-chargecarriers,whichiscrucial forhighcatalyticactivity.Furthermore,itisshownthatenhancedPCAisbecauseofthecatalyticactiv- ityatsurfacedefects(onALDseed),valenceband,andconductionband(ofZnOnanoneedles).PCAand durabilityofthePAN/ZnOnanofibrousmathavealsobeentestedwithaqueoussolutionofmethylene blueandtheresultsshowedalmostnodecayinthecatalyticactivityofthismaterialwhenreused.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Photocatalysisis one ofthewidely researched[1–11]topics becauseofitsimportanceinwaterandenvironmentalpurification inthebackground ofunavoidable andever increasingindustri- alization[12].Photocatalysts(PCs) aregenerallynanostructured semiconductors which are employed either directly [1,2,5,10], dopedformat[7],defect-induced [3,4,13–15]orcombined with another material to yield a synergy effect. Such combinations exploitplasmoniceffect[6]orpropertiesofothersemiconductors [7–9,11]depictingrelativelyhigherphotocatalyticactivity(PCA) thantheirpristinecounterparts.DespitethehigherPCAthosecom- binationsalsoincreasethecomplexityoftheprocessandattheend theyshouldbecompatiblewiththeenvironment[10].Metal-doped semiconductorscanbeunstableandcorrodeafterlongtermusage

∗ Correspondingauthor.Tel.:+903122903533.

∗∗ Correspondingauthor.Tel.:+903122903571.

E-mailaddresses:svempati01@qub.ac.uk(S.Vempati), tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

causingagradualdecayinthePCA[12],apartfromthedifficulties intheirpreparationandcharacterization[16].Ofcoursethisdoes notapplytonoblemetals[17]whicharestableinthecontextof photo-oxidation;ontheotherhand,ifAunanoparticlesarelarger thanacriticalsize,thentheymayactase/hrecombinationcenters whichreducethePCA[17].Inanycase,themainaimistoengineer aPCpossessingenhancedPCAaswellasstability overadecent periodoftime.

Among alist ofsemiconductors employedin photocatalysis, ZnOnanostructureshaveattractedalotofattention[1,2,4–6,15,18]

duetotheireasyprocessabilityviaavarietyofmethods[5,19–21], versatilityinnanostructuring[5,19–21],non-toxicity,abundance, low cost, etc. Having listed the properties which make the nanostructured-ZnOahighlysuitablecandidateasaPC,weshould agreewiththefactthatideallydefect-free-ZnOcanuseonlyUV region(3–4%)ofthesolarspectrumbecauseofitswiderbandgap andtherefore44–47%ofvisiblelightisleftunused.Hence,itobvi- ouslyisawisechoicetoharnessthevisibleaswellasUVregion ofsolarenergytoachievesignificantlyhigherPCA.Wealsonote that themorphology and crystal structure of ZnO at nanoscale aredetrimentalonvariouspropertiesincludingoptical[15,19–21], http://dx.doi.org/10.1016/j.apcatb.2014.03.004

0926-3373/©2014ElsevierB.V.Allrightsreserved.

(2)

photostability[22,23]and PCA[14,15,24].Inordertoinitiateor improvethelightabsorptioninthevisibleregiononecanengage thenativedefectsofZnO[13,15],whichformsub-bandgapstates [21].Forexample,oxygenvacancies(VOs)areinducedinZnOand recentlyshowntoimprovePCA[3,4,25],alongsideofothersimilar studies[13–15]. On the otherhand, VOsnot only create inter- mediatebands,butalsoactasself-dopantsandinducedbandgap reduction[25].Therefore,byconsideringthevariouspropertiesof nanostructured-ZnO,itisconvincingandlogicaltodesignasmart andefficientZnOcatalystdepictinghighPCAisoffundamentalas wellastechnologicalimportance.Herewedemonstrateanovel hybridapproach,in which wecombinechemical vapordeposi- tion(CVD)andliquidphasedeposition(LPD)techniques.Atomic layerdeposition(ALD)and hydrothermalgrowth arecombined to fabricate a hierarchy of nanostructured-ZnO onelectrospun poly(acrylonitrile)(PAN)nanofibers.TheresultingZnOnanostruc- turesdepictsynergyeffectandshowenhancedPCA.PANnanofibers arewelladoptableinwaterfiltrationwheretheiruniqueproperties suchashighsurfacearea,nanoporousstructure,lowbasisweight, easypermeability,goodstabilityandchemicalresistanceareworth mentioning[26–29].Inourpreviousstudy[2]electrospunpoly- mericnanofibersweresubjectedtovaryingALDparameterswhere wehavestudiedhow thePCAisinfluencedwhennanoparticles transformintocontinuousfilm.Wehadinferredthathighlydense nanoparticlesshowrelativelyhigherPCAduetotheincreasedsur- faceareaconsistingofoxygenvacancyandotherrelateddefects.

Webelievethathavingpolycrystallinefilmaloneisnotadequate toyieldhighPCA,henceinthisstudy,wehavegrownsinglecrys- tallineZnOnanoneedlesontheALD-seedcoating.Notethatthe singlecrystallineZnOnanoneedlescandepictthelowestpossible defectdensity.Furthermore,previousstudies[3,4,13–15,25]have introducedVOsthroughoutthecatalyst,however,incontrastwe havecombinedtwomaterialsoneofwhichisdominantinoxygen relateddefects,whiletheotherisvirtuallydefect-freesinglecrystal.

WealsoshowthatthepresentcombinationyieldsenhancedPCAin thepresenceofhighaspectratioZnOnanoneedleswithanaverage diameterandlengthof∼25nmand∼600nm,respectively.Wenote thatsurfaceareatovolumeratiocannotequivalentlyimprovethe PCA[10]whereasonedimensionalsemiconductorshavealready showntodepictvectorialtransportofphotogeneratedchargecar- riersandhelpingtoimprovethePCA[30,31].Whilemaintaining adelicatebalancebetweentheadvantages[13–15,25]andlimi- tations[10]ofthenanostructureswehaveachievedasignificant PCAwiththepresentcombination.Sincenanoneedlesweregrown onthethinfilmwhichisonthepolymericfibrousmat,theymay notbeeasilydislodgedwithoutasignificantmechanicalfatigue.

Thismakesthemeasiertohandleandrecycleinaqueousenviron- mentunlikethecasewithnanosizedparticles[6,14,15,25,32].Of courseonecanemploytheexpensiveindiumtinoxide/fluorinetin oxidesubstratebasedcatalysts[10,33].Asanadditionaladvantage, nanoneedlesareboundtothesurfaceoftheZnOfilmonthepoly- mericfiberandtheyarewellseparatedfromeachotherduringand aftertheprocessincontrasttonanoparticle-basedcatalystswitha significantdrawbackofagglomeration.

2. Experimental 2.1. Materials

PAN(Mw:∼150,000)waspurchased fromScientificPolymer Products,Inc.N,N-dimethylformamide(DMF,Pestanal,Riedel)was usedasasolvent.ALD ofZnOwasperformedusingdiethylzinc (DEZn,Sigma–Aldrich)and HPLCgradewater (H2O) asthezinc precursorandoxidant,respectively.Forhydrothermalprocesszinc acetatedihydrate(ZAD,≥98%,Sigma–Aldrich)andhexamethylene tetramine(HMTA,≥99%,AlfaAesar)wereused.Methyleneblue

(MB,Sigma–Aldrich,certifiedbytheBiologicalStainCommission) wasusedasamodelorganicdyetotestPCAofthePANnanofibers andPAN/ZnOnanofibrousmats.Allmaterialswereusedwithout anypurification.De-ionized(DI)waterisobtainedfromMillipore Milli-Qsystem.

2.2. ElectrospinningofPANnanofibers

Inbrief,wehaveoptimizedthePANconcentration(12%(w/v) inDMF)toyielduniformandbead-freenanofibers.Priortoelec- trospinning,PANsolutionwasstirredfor3hatroomtemperature (RT)toobtainhomogeneousandclearsolution.Well-stirredsolu- tionwastakenina5mLsyringefittedwithametallicneedleof

∼0.8mmofinnerdiameter.Thesyringewasfixedhorizontallyon thesyringepump(KDScientific,KDS101)withafeedratesetto 1mL/h.Ahighvoltageof15kVisapplied(Matsusada,AUSeries) betweenthesyringeneedleandastationarycylindricalmetalcol- lector(wrappedwithacleanaluminumfoil)locatedat12cmfrom theendofthetip.Theelectrospinningprocesswascarriedoutat

∼25Cand22%relativehumidityinanenclosedchamber.

2.3. PreparationofZnOseedstructurebyALD

ZnO deposition on electrospun PAN nanofibers was carried outat∼200CinaSavannahS100ALDreactor(CambridgeNan- otech Inc.). N2 was used as a carrier gas at a flow rate of

∼20sccm.400cycleswereappliedviaexposuremode(atrade- mark of Ultratech/CambridgeNanotech Inc.) in which dynamic vacuum was switched to static vacuum before each precursor pulse.This is achieved by closing the valve betweenthe reac- tion chamber and the pump. After a predetermined exposure time,thevacuumwasswitchedbacktodynamicmodeforpurg- ing excess precursor molecules and gaseous byproducts. One ALD cycle consists of the following steps: valve OFF/N2 flow setto 10sccm/H2O pulse (0.015s)/exposure (10s)/valveON/N2 purge(20sccm,10s)/valveOFF/N2flowsetto10sccm/DEZnpulse (0.015s)/exposure(10s)/valveON/N2purge(20sccm,10s).

2.4. GrowthofZnOnanoneedlesbyhydrothermalmethod

ZnOcoatedPANnanofibers(PAN/ZnOseed)wereusedasaseed substrateforthegrowthofZnOnanoneedles.∼3.6mgofPAN/ZnO seednanofibrousmatwasimmersedinto∼33mLaqueoussolution ofequimolarZAD,HMTA(0.02M)andmildlystirredovernightat RT.Thissolutionisthenheatedto90Candkeptfor5h. When thecruciblecooleddowntoRT,thenanofibrousmatwasthor- oughlyrinsedwithDIwatertoremoveanyresidualsaltsanddried invacuumovenat∼40Cfor12h.

2.5. Characterizationtechniques

Themorphologyofthesampleswasstudiedusingascanning electronmicroscope(SEM,FEI–Quanta200FEG)withanominal 5nm of Au/Pd sputter coating. These images are used to esti- matetheaveragefiberdiameter(AFD).Fortransmissionelectron microscopy(TEM)imaging,samplesweresonicatedinethanolfor 5minandthedispersioniscollectedonholeycarboncoatedTEM grid.TEM(FEI–TecnaiG2F30)andelementalanalysis(energydis- persiveX-rayspectroscopy,EDX)wasperformedonthePAN/ZnO seed nanofibers. Selected area electron diffraction (SAED) pat- ternsofthePAN/ZnOseednanofiberswerealsoobtained.X-ray diffraction(XRD)patternsfromthepristinePAN,PAN/ZnOseed andPAN/ZnOneedlesampleswerecollected(2=10–100)using PANalyticalX’PertProMPDX-rayDiffractometerusingCuK␣radi- ation(=1.5418 ˚A).Forsurfaceanalysis,samplesweresubjected toX-rayphotoelectronspectroscopy(Thermoscientific,k-Alpha)

(3)

underAlK␣(h=1486.6eV)linewithachargeneutralizer.Pass energy, stepsize and spotsizewere 30eV,0.1eV and 400␮m, respectively.Peak deconvolution wasperformedwithAvantage softwarewhere thenumber ofpeaks waschosenbased onthe physicsofthematerialwhilethespectrallocationandfullwidth athalfmaximum(FWHM)wereallowedtovary.Photolumines- cence(PL)measurementswereperformedusingHoribaScientific FL-1057TCSPCatanexcitationwavelengthof360nm.

2.6. Photocatalyticactivityofthenanofibers

ThePCAsofthePANnanofibers,PAN/ZnOseedandPAN/ZnO needlesampleswereanalyzedthroughphotoinduceddegrada- tionofMBinaqueousmedium(18.8␮M).Thenanofibrousmats (weight: 3.6mg) were immersed in quartz cuvettes containing theMBsolution.ThecuvetteswereexposedtoUVlight(300W, Osram,Ultra-Vitalux,sunlightsimulation)placedatadistanceof

∼15cm.Dyeconcentrationsinthecuvettesweremeasuredusinga UV–Vis-NIRspectrophotometer(VarianCary5000)atregulartime intervals.Thenanofibrousmatswerepushedtothebottomofthe cuvettesduringtheUV–Visspectroscopy.TheweightofPAN/ZnO seedsamplebeforeandaftertheneedlegrowthwas∼3.6mgand

∼3.9mgrespectivelywhichisequivalenttoanincreaseof∼8wt%.

ThentheweightofPAN/ZnOneedlesamplewascorrectedtoequate PAN/ZnOseedsample(3.6mg).Hencethe3.6mgofPAN/ZnOnee- dlewasfoundtocontain3.32mgofseedand0.28mgofneedles.

Therateofdyedegradationwasquantifiedviafirstorderexponen- tialfit(y=y0+Ae-x/t)foreachdataset.Thisfitwasperformedunder automatedroutinewithOrigin6.1,wherealltheparametersareset asfreeuntilconvergence.WehavealsorepeatedthePCAexperi- menttwice(i.e.2ndand3rdcycles)forPAN/ZnOneedlesample (∼3.3mg)todeterminethereusabilityversusperformance.

3. Resultsanddiscussion

ZnO nanoneedles were hydrothermally grown on the ZnO seed-coatedpolymericnanofiberswhichwerefabricatedthrough combiningelectrospinning and ALD.Theprocess for fabricating thehierarchicalpolymer/ZnOnanofiberisillustratedinFig.1and variousstepsareannotatedontheimage.

Therepresentative SEM imagesofPAN nanofibersare given in Fig. 2(a1 and 2). The nanofiber morphology was optimized against several PAN concentrations (results not shown here).

About 12% (w/v) was found to be the optimum for the cho- senparameters yielding bead-free morphology withan AFD of

∼655±135nm.Inelectrospinning,itisverytypicaltoobtainfibers inarangeofdiametersasreportedbyus[34,35]andmanyoth- ers[36,37].Acloseinspectionofthemorphologyrevealsatexture likestructure,which issometimesobservedfor certainelectro- spunpolymericnanofibersduetothetypeofsolventused[36–38].

Thesenanofiberswereemployedforthesecondstepofseeding withALD[39–41]byapplying400cyclesat200Cusingexposure mode(Section2.3).AftertheALDprocess,wehaverecordedthe SEMimageswhichareshowninFig.2(b1and2)wheretheAFD is∼715±125nm.ThismeasurementsuggestedanincreaseinAFD becauseofALDcoating.Thefiberstructurewasnotdestroyeddur- ingtheALDprocesswhereawelldefinedandstablefiberstructure suggeststhesuitabilityofthechosenparameters.Itisimportant topointouttheneedofcompatibilitybetweentheprecursorand polymerastheformercandegradethelatterbychemicallyreact- ingwithit;seethecasewithALDprocessingofAl2O3 [42].On theotherhand,inthecaseofpoly(propylene)fibersAl2O3base layerisemployedtodepositZnO,wheretheformerprotectsthe diffusion of DEZn into the polymer [43]. Despite these limita- tions,ALDcoatingcanyieldcoral[44],core–shell[45]likecomplex nanostructures. Such structures are potentialfor photocatalytic

applications[46].Inthepresentcasethemorphologicalchanges aresimilartoourearlierobservation[1,2].Itisclearfromtheimage (Fig.2(b2))thatthesurfaceroughnessisincreasedafterALDpro- cess,whichismostprobablyduetothegrainystructureofZnO[1,2].

Inourearlierinvestigation[2],wehaveshownthegrainformation underALDfordifferentstagesofprocessingcycles.Thecloselyand uniformlypackedgrainsactedastheseedlayerforthesubsequent growthofnanoneedlesofZnOinhydrothermalprocess.Notethat thisgrainystructureisnotundesired,ontheotherhandithelpsto enhancethePCA,wherewecanexpecttheformationofdepletion layerwithinthegrainboundaries[47,48].Such depletionlayers areextremelyhelpfulandwewilladdresstheminthecontextof PCAlatterinthisarticle.Subsequently,thehydrothermalmethod wasemployedtogrowZnOnanoneedlesontheZnOseed-coated polymericnanofibers.Fig.2(c1and 2)shows therepresentative SEMimagesoftheresultingnanoneedleassemblies(PAN/ZnOnee- dle).ItcanbeseenthatnanoneedlescoverthesurfaceoftheZnO seed-coatedPANnanofibers.Thenanoneedleswerestraightandno branchingwasobserved.Branchinggenerallyoccursbecauseofthe irregularityintheseedwhereitcanpromotethegrowthofmore thanoneneedle.Notably,inthepresentcontexttheseedsgrown throughALD-processwereuniformanddidnotinitiateorsupport multi-needlegrowth.SEMimagesofPAN/ZnOneedlesatdifferent magnificationsaregiveninFig.S1ofSupportingInformation.By analyzingtheSEMimageswehaveestimatedtheaveragediam- eterandlengthofthenanoneedlestobe∼25nmand ∼600nm, respectively(Fig.2(c2)).Detaileddiscussiononthemechanismof thegrowthofZnOnanoneedlescanbefoundintheliterature[15].

SeedingofZnOwithALDprocessandsubsequenthydrothermally grownnanorodsof∼50nmdiameterwithalengthof∼0.5–1␮m canbeseenintheliterature[49,50].

ThemorphologiesofthePAN/ZnOseednanofiberswerefur- therinvestigatedbyTEMandshowninFig.3(a1).Theconformal coatingofZnOcanbeevidencedfromtheimagewithauniform thickness(∼50nm)inspiteoftherelativelylargesurfaceareaofthe nanofibers.Notablythissupportstheearlierargumentonunifor- mityofthegrainswhicharenotfavorableformulti-needlegrowth.

ALDiswellsuitableforthehighsurfaceareasubstratessuchasa non-wovennanofibersmatasshownbyusearlier[1,2].Growthof ZnOonthePANnanofiberswascalculatedtobe∼1.25 ˚A/cycleinthe presentALDconditions.Inourpreviousstudy[1]weobservedthat ALDofZnOwith0.015spulsesand10spurgesunderthedynamic vacuumconditionsresultsinuniformcoatingsonlyaftera cer- tainnumber ofALDcycles.In contrast,herewehaveemployed exposuremode(seeSection2.3)whichalsoresultedinacontinu- ousanduniformZnOcoatingwithouttheneedofhighnumberof ALDcycles.Exposuremodekeepstheprecursormoleculesinside thereactionchamberfor acertainperiod oftime whichallows themtodiffuseintothesubstrate.Thelocalcrystalstructureof theALD-ZnOisinvestigatedthroughSAEDpattern,andshownin Fig.3(a2).ThepatternrevealsthepolycrystallinenatureofZnO seed.Moreover,thebrightspotsonthepolycrystallinediffraction ringsindicatethepresenceofwellcrystallinegrains[2].Various diffractedplanesareannotatedontheimageandareconsistent withtheliterature[20,21].EDXanalysis(Fig.S2ofSupportingInfor- mation,leftpanel)onthePAN/ZnOseednanofibershasshownzinc, oxygen,carbon,nitrogenandcopper(fromTEMgrid)elements.Zn andOoriginatefromZnOseed,whereasCandNareduetothe polymericcorestructureofPAN.Alsothequantification(Fig.S2of SupportingInformation,rightpanel)ofZnandOatomicpercent- agessuggeststhatthematerialisnominallyoxygenrich,within thedetectionlimitofEDX.Thisisbecauseoftheveryhighsurface areayieldingdefectivesites(oxygenvacancies)wheremolecular oxygencanbeadsorbed.Itisnotablethatoxygenvacanciesare typicalforZnOinotherprocessingtechniquesaswell,whichwere determinedthroughanindirectmethod[19–21,48].Wewillsee

(4)

Fig.1.Schematicrepresentationsof(a)electrospinningofPANsolution,(b)ALDofZnOseedontoPANnanofiber,and(c)fabricationprocessforhierarchicalPAN/ZnOneedle nanofiber.

thattheoxygendeficiencyisconsistentwiththePLofZnO.Fur- thermore,HRTEMimagedemonstratedasinglecrystallinenature ofZnOnanoneedles(Fig.3(b1)).Thelatticespacingwasmeasured tobe∼0.525nmcorrespondingtothec-axisofZnO,whichisthe preferentialgrowthdirectionofthenanoneedles.Itisimportant todeterminethegrowthdirectionwherethepolarplanesofZnO haveshowntodepictrelativelyhigherPCA[13].ThefastFourier transform(FFT)imageisshowninFig.3(b2)alsodemonstratesthe singlephase[32]structure.

TheXRDpatternsofpristinePAN,PAN/ZnOseedandPAN/ZnO needlenanofibersareshowninFig.4.TheXRDpatternofpurePAN nanofibersshowsapeakat∼16.93correspondingtoorthorhom- bicPAN (110) reflection[51] withan FWHM of∼2.282.Also abroad andless intensepeak-like structurecanbeseen inthe range of 20–30 which corresponds to the (002) reflection of PAN [52]. Afterthe ALD process the(110) planehasshown a significantreduction in the FWHM (to ∼0.761)and the broad peak(2=20–30 indicatedwith‘*’ontheimage)hasstabilized at ∼29.69 and became more sharp (FWHM ∼0.776). This is becauseofthereorganizationofthepolymericchainsat∼200C (ALDprocessingtemperature)equivalenttotypicalannealing.Fur- thermore,sincethenanoneedlesweregrownatslightlyelevated temperature (∼90C) for substantial period of time, there is a nominalincreaseintheFWHMofthePANdiffractionpeaks((110) and(002))becauseoftheincompatibleprocessingtemperature.

However the relative intensity of this peak was considerably subduedbecauseoftheZnOnanoneedles.

MovingontothepeakscorrespondingtotheZnO,wehaveanno- tatedthereflectionsontheimageforthesamplesPAN/ZnOseed, andPAN/ZnOneedle(Fig.4a).PAN/ZnOseedandneedlesamples

exhibiteddiffractionpeaksofhexagonalwurtzitestructureofZnO (ICDD01-074-9940)revealing thesuccessful depositionof ZnO seedas wellasnanoneedles onelectrospunPAN nanofibersby ALDandhydrothermaltechnique,respectively.TheXRDpatterns ofPAN/ZnOseedandPAN/ZnOneedlematchwiththereference patternintermsofpeakpositions.Alsothesepeakpositionsmatch withtheliterature,whenZnOispreparedthroughdifferentmeth- ods[19–21,48].However,acloseobservationof(100),(002)and (101)reflections(Fig.4b)revealvitalinformation.Ifwecompare theFWHMvaluesofthesepeaksacrossseedandneedlesamples, wecanseethattheformerislesscrystallinethanthelatter.There isalsoashiftinthepositionofthepeakstowardshigher2value uponneedleformation.ForthediffractionpatternofPAN/ZnOnee- dle,wecanseeashoulder-likestructure(denotedwithsinFig.4b) whichcorrespondstothePAN/ZnOseed,whileamoreintensepeak correspondingtothehighlycrystallineZnOnanoneedle.Peakshift isgenerallyassociatedwiththeresidualstress(defect-induced)in thematerial.Thestressmightbeoriginatedfromtheoxygenvacan- ciesinthelattice[25]orthesubstrate(PANnanofibers)[53].Since thepeakshiftisnoticedfor(100),(002)and(101)reflectionswe canexpectthatthesampleisundercompressivestraininthesaid crystaldirections[53].Notably,theXRDpatternofPAN/ZnOseed isconsistentwithSAEDpattern.Furthermore,theintensityratios of(002)polarplaneto(100)nonpolarplaneisestimatedandit turnsouttobethecasethatseed(∼0.78)samplehaslargefraction ofpolarplanesthanneedle(∼0.65)sample,wherelargerfraction indicatespossiblyhigherPCA[15].Inthiscontext,itisnotablethat theXRDisastatisticalaverageofplanesfromsurfaceaswellassub- surfaceregions.Hence,thereisapossibilitythatthepolarplanes maybeexposedtothesurfacetoenhancethePCA.

(5)

Fig.2.RepresentativeSEMimagesof(a1and2)pristinePAN,(b1and2)PAN/ZnOseed,and(c1and2)PAN/ZnOneedlenanofibersatdifferentmagnifications.

The ionic state of oxygen generally determines the optical emission properties in visible region [19–21] (associated with oxygenrelated defects)andhencethephotocatalyticproperties [3,4,13–15].TheO1sXPSspectrumcanbedeconvolutedintotwo peaksasshowninFig.5,withthepeakpositionsannotated on theimage.Thepeak at∼530.5eVcorrespondstotheoxygenin ZnO,whichisnominallyatthesamespectralpositionforboththe samples.Theotherpeakseenat∼531.8eVand∼532.2eVforseed andneedlesamplerespectivelycorrespondstothechemisorbed oxygenoftwodifferentchemicalorigins.Thepeaksat531eVand 531.5eVareattributedtoO-xions(O-andO-2ions)intheoxygen deficientregions,whilepeaksat532.3eVand532.7eVaregener- allyascribedtothepresenceofoxygenrelatedspeciessuchas–OH, –CO,adsorbedH2OorO2onthesurfaceofZnO[25,54,55].Dur- ingthehydrothermalgrowthoftheneedles,grainboundariesand oxygendeficientregionsareexposedtohydroxylions.Theseions perhapsoccupysomeoftheoxygendeficientregionsasreflected withapeakat∼532.2eV.Apartfromthedifferenceinthespectral

location,thenumberdensityofsuchoccupanciesisseenin the areaofthepeakwhereforPAN/ZnOseedthearearatiois(∼49%) significantlyhigherthanneedlecase(∼22%).Itisnotablethatthe signalfromPAN/ZnOseedsamplecanbeattributedtothesample directlywithoutanyambiguity, however,forthePAN/ZnOnee- dlecase,itcanbeanintegralspectrumofseedaswellasneedle.

Despitethelatterambiguity,theabovegiveninterpretationisstill wellapplicableandwewillseethatitisinlinewithopticaland PCAmeasurements.Finally,alargeoxygen-deficientstateofthe surfacelayer[25,54]canbeseenforPAN/ZnOseed,whileincon- trast,PAN/ZnOneedlesamplehasshownsignificantlylessoxygen vacancies.NeedlesresultedinamorestableZnOenrichmenton PANnanofiberswhencomparedtoPAN/ZnOseed[54].

ThevalencebandspectraforPAN/ZnOseedaswellneedleis showninFig.S3ofSupportingInformation,wheretheintensity axisisnormalizedagainstthemaximumcountsandplottedwith referencetothebindingenergyineV.Inzincoxide,theconduction band(CB)andthevalenceband(VB)areformedfromO1sandZn2p

(6)

Fig.3. Representative(a1)TEMimageand(a2)SAEDpatternofPAN/ZnOseednanofibers;(b1)HRTEMimageand(b2)FFTimageofZnOneedle.

orbitals,respectively.Asawhole,both thesampleshaveshown thedensityofstateswhicharetypicaltozincoxide[25].Alsothe featuresandtheirspectrallocationforboththesamplesareexactly retraced(Fig.S3ofSupportingInformation).Thisisincontrasttoan earlierobservation[25]inwhichVOshaveshowntoinduceaband gapnarrowingbyexpandingtheminimumofCB.However,here theVOsdidnotinduceanysuchtailingofCBthoughevidencedin O1sXPSanalysis.Theenergeticlocationofoxygenvacancydefects withinthebandgapwillbediscussedinthecontextofPL.

Asmentionedearlier,thesurfacedefectsplayacrucialrolein determiningthePCA; we caninfer theinformation aboutsuch defectsthroughPLspectroscopy.ThePLspectraofPAN/ZnOseed andPAN/ZnOneedlenanofibersshowninFig.6awereobtainedat RT.Asshowninearlierinvestigations[19,21,48],thevisibleemis- sionfromZnOcanbedecomposed(fittingsnotshown)intovarious plausibletransitionswhichwillbediscussedaswegoalong.Itis knownthatthetypicalexcitionemissionbandliesintheUVregion forZnO, whilethedefect related emissionin thevisibleregion [19–21,47,48,56].Basedontheliteraturethepossibletransitions andthecorrespondingemissionwavelengthsareschematizedin Fig.6b,whicharecross-annotatedonFig.6awitharrowsonthe wavelengthaxis.

Westartwiththepeakscorrespondingtotheinterbandtran- sition(excitonicrecombination)whichistheleastcontroversial emission.Asexpected,relativelybettercrystallinePAN/ZnOneedle hasshownaclearpeakat∼3.25eV,whileincontrast,onlyasig- natureofsuchemissionisnoticedforPAN/ZnOseedsample.This emissionpeakisconsistentwiththeliteratureintermsofspectral location[21],yieldingabandgapof3.31eV[21]whenanexcition bindingenergyof60meVisassumed.Therelativeintensityofthis

interbandtransitionisenhancedupon needleformationonALD seedlayer,whichsuggestsanimprovementintheoveralloptical qualityofthematerial.Intheliterature[18,64,65],wecanseenee- dle/rodlikestructure,however,thesamplesdepictedbroadnear UVemissionandalmostnegligiblevisibleemission.However,in contrast,wehavecomparativelysharpUVemissionandsignifi- cantvisibleemission,whereweareaimedtoharnessthedefect relatedPCA.NotethattheemissionfromPAN/ZnOneedleisthe integralresponseoftwocomponents,oneofwhichisfromthenee- dleitself,whiletheotherisfromPAN/ZnOseed.AsPAN/ZnOseed didnotshowanyclearexcitionemission,thepeakseeninneedle samplearisesfromtheZnO-nanoneedle.InthecaseofPAN/ZnO seedbecauseofthelargegrainboundariesfromthefilmlikestruc- tureonthecylindricalperipheral,asignificantamountofsurface recombinationtakesplacegivingthepredominantvisibleemis- sion.VariousplausibleemissionsareschematizedinFig.6band shownwithnumerals(1)though(7)wheretheenergeticlocations ofthedefectshavebeenobtainedfromthecorrespondingrefer- ences;(1)[57],(2)[58],(3)[59,60],(4)[61],(5)[47,48],(6)[62]and (7)[63].Violetemissionscenteredatabout410nmarebroader, andnotasprominentasgreenemissioncenteredaround520nm, whichwereinterpretedtoberelatedtothedefectssuchaszinc interstitials(Zni)andVOs,respectively.Violetemissioncanresult fromanintegralresponseofthreetransitions[57–60]asdenoted onFig.6bwithAthroughE.Inthevisibleregionofthespectrum, boththesampleshaveexhibitedabroademissionwhichisagain anintegralresponseofthedefectsoftwodifferentorigins.Also,a slightthoughnoticeableblueshiftcanbenoticedinthecenterof thepeak(peakpositionsareannotatedontheimage)forPAN/ZnO needlefromitsseedcounterpart.Althoughthevariationisnominal

(7)

Fig.4. (a)XRDpatternsofnanofibersofPAN,PAN/ZnOseedandPAN/ZnOneedle,and(b)magnifiedXRDpatternsintherangeof31–37.5.

(∼0.02eV),whenitcomestothedensityofthedefects,itplaysa crucialroleindeterminingthePCAofthematerial.Theopticalqual- ityofthesemiconductorcanbeestimatedbytakingtheintensity ratiosofUVtovisibleemission[19–21].Itisworthnotingthatthe ratiooftheintensityofbandtobandtransition(∼381nm)tothe intensityofthedefectlevelemission(∼520nm)istentimeshigher forthePAN/ZnOneedlethanPAN/ZnOseed.Thishighratioindi- cateshigheropticalqualityofthePAN/ZnOneedlesample.Unlike thevioletemission,greenemissionisslightlycomplex[47,48].In thebulkgrainregion(BGR)singlypositivelychargedVOcaptures anelectronfromCBandformsaneutralVO(i.e.VO+→VO*).Inthe depletionregion(DR)ifthesinglypositivelychargedVOcaptures aholefromtheVB,itformsdoublypositiveVO(i.e.VO+→VO++).

Hence,thegreenemissionisacombinationoftransitionsfromVO* totheVBandCBtoVO++emittingFandGwavelengths,respec- tively (Fig. 6b)[47,48]. Also, relatively lowerintense interband emissionsuggeststhatthephoto-generatedelectronsandholesare capturedbyVO+emittingphotonsinthevisibleregionofthespec- trum.ThisinterpretationwillbeemployedtoexplainthePCAofthe samples.

WehavecomparativelyinvestigatedthePCAofPANnanofibers, PAN/ZnOseedandPAN/ZnOneedlebyanalyzingthetimedepen- dentdecompositionofMBinaqueousmediumunderillumination.

ToevaluatethedegradationrateofMB,itscharacteristicabsorption

peak(∼665nm)ismonitoredagainstUV-exposuretime.Therate ofdegradationisdefinedasC/CowhereCoandCrepresenttheini- tialconcentrationofMBbeforeandafterirradiationatagiventime respectively.ThepristinePANnanofibersareporoustoadsorb(not degrade)thedyeuptoanoticeablelevel(resultsnotshown)until equilibriumbetweenadsorptionanddesorptionisattained.Hence wehavetakenthesurfaceadsorptionasreferenceandanalyzed thePANnanofiberseffectondyedegradation,wherenoeffectis seen(Fig.7a).Thisisconsistentwiththeliterature[66].On the otherhand,itis notablethatALD unveilsconformalcoatingon electrospunnanofibersandhencetheexposureofPANnanofibers directlytothedyecanbeveryunlikely.InthecaseofPAN/ZnO seedandneedlecaseswehaveobservedanonlinearbehavior,and theelectrontransferbetweendonorstatesandthedyegoverns thedegradationratio[67,68].Hencewehaveaddressedthenature ofdegradationinthecontextofeachsampleindependently.When thecatalystsareimmersedintheMBsolution,thePCAwithrespect toUVirradiationtimeisdepictedinFig.7aalongwiththepris- tineMBsolutionwhichwassubjectedtothesameUVtreatment.

AccordingtotheLangmuir–Hinshelwoodmodeltheexponential relationshipof(C/Co)againsttimeindicatesthatMBdegradation followspseudo-first-orderkinetics.Wehaveperformedexponen- tialfittotheeachdatasetandthedecayconstantsaregivenonthe figure.

(8)

Fig.5.Peakdeconvolutionofcore-levelXPSspectraofO1sfromPAN/ZnOseedandPAN/ZnOneedlesamples.Thespectrallocationsofthepeaksareannotatedontheimage.

Inthecase ofUV exposuretopristinesolutionthedatahas showndecayconstantof∼157min.Notablythoughtothenaked eye,thedegradationoftheMB(withoutnanofibers)isnotclearly observeduponexposuretoUVradiationfor210min(seeFig.S4 ofSupportingInformationfordigitalphotographs).ForPAN/ZnO seed,∼47%ofMBdecomposedinnominal60minyieldingadegra- dationrateof∼113min.Animprovementof∼28%isnoticedwhen

comparedtothedegradationrateinthecaseofnocatalyst.Even- tually,thebluesolutionwasalmostdecolorizedafter∼210minof UVirradiation(Fig.S4ofSupportingInformation).Inthecaseof PAN/ZnOneedle,thedecompositionofMBwas∼93%in∼60min.

Interestingly,in thecase ofPAN/ZnO needles,at a degradation rateof∼15minhasshownimprovementof∼91%and∼87%for no catalyst and PAN/ZnO seed samples, respectively. PCA was

Fig.6.(a)PLspectraofPAN/ZnOseedandneedlecounterpart,and(b)depictsvariouscrystaldefectsandpossibletransitions[21].Theenergeticlocationofeachdefectlevel (denotedbynumerals)isobtainedfromthecorrespondingreferences(1)[57],(2)[58],(3)[59,60],(4)[61],(5)[47,48],(6)[62]and(7)[63].Thealphabetsstandforemission energiesinnanometer,whereA=395,B=437,C=405,D=440,E=455,F=∼500,andG=564.VZnislocated0.30eVabovetheVB,whileZniisat0.22eVbelowtheCB.Inthe bulkgrainregion(BGR)andinthedepletionregion(DR)VO+VO*andVO+VO++processestakeplace,respectively.

(9)

Fig.7.(a)DegradationrateofMBinaqueousenvironmenttestedforpristine,inthepresenceofPANnanofibers,PAN/ZnOseedandPAN/ZnOneedle(1stcycle)cases,(b) plausiblemechanismofphotocatalysisinvolvingoxygenvacancies,where(i)and(ii)standforprocessesacceptoracceptoranddonordonor+respectively,and(c)PCA ofPAN/ZnOneedlenanofibersfor1st,2ndand3rdcycles.

relativelyhigherforthePAN/ZnOneedlethanPAN/ZnOseed,which isbecauseofnotonlyrelativelyhighersurfaceareabut alsoits highercrystalqualityoftheneedle-morphology.AspointedinSec- tion2.6,ZnO-seedcontentinPAN/ZnOneedlesampleislessthan PAN/ZnOseed,wheretheneedlescompensatetheremainderof theweight.Althoughtheneedlesareabout0.02mginPAN/ZnO needletheyshowsignificanteffectonPCA.Asanasidetheimprove- mentinthesurfaceareaisabout30times,where∼1200–1500 needlesareapproximatedonfiber(∼800nmand715nmoflength anddiameterrespectively).Inourpreviousstudy[2]highdensity nanoparticleshaveshown∼1.2timeshigherPCAthannanocoat- ing case. It needs tobe emphasizedthat within this study we haveachievedanimprovementofdyedegradationrateofnearly8 timesforneedlecasewhencomparedtoseedcase.Inthefollow- ing,weestablishtheargumentforPCAandlattercorrelatewith eachofthesamples.Undersuitableilluminationelectronscanbe excitedfromtheVBtoreachtheCB,leavingbehindholesintheVB [21,48].Iftheseseparatedchargescanmigratetothesurfaceofthe semiconductorbeforetheyrecombine,thentheyhaveachanceto participateintheredoxreactions[69].Formationofhydroxylrad- ical(˙OH)is thekey forthePCA,inwhich holes[70] aswellas electrons(whichmaybecapturedbymolecularoxygenforming superoxideanions[71],˙O2-)areinvolvedatVBandCB,respec- tively.Becauseofthepresenceofhighlyoxidativeholeaswellas

˙OHradicalstheorganicdyecanbedecomposedeitherpartiallyor completely.Wehaveshownthepossiblemechanism[10,70,71]in Fig.S5ofSupportingInformation.Intheliterature[10,72],itisdis- cussedthatPCAtakesplaceattheVBandthedefectstate(formed eitherbydoping[72]orintrinsic[10]e.g.VOs),wherethelatter capturesafreeelectronfromtheCB.However,underillumination, O2cancaptureanelectronfromCBpromotingthePCA.Thebasis forthisargumentistheinterbandtransitionseeninthePLspec- trumfromPAN/ZnOneedle samplewhichsuggestsapossibility ofphoto-electrons recombiningwithholesin CB,bypassingthe defectstate.Hence,atagiventime,underilluminationelectrons arepopulatedinCBtobecapturedbyO2.Ontheotherhand,the photo-electronscanalsobecapturedbyO2atVOsproducingsuper- oxideradicalanions.ItisalsoshownearlierthattheVOscanactas activesitesforPCAinZnOnanostructures[13,25,73].SincetheVOs arelocatedonthesurface(interfacesofthegrainsanddepletion regions)[47,48]theydirectlyinvolveinPCA[74].Notably,VOis treatedaselectronacceptors[74]bycapturinganelectronfromCB [21,47,48]andhencetherecombinationprocessisdelayed[10].In thePCAatheterojunction(e.g.ZnO/ZnSe[32],ZnO/Cu2O[33])(i) acceptor→acceptor and(ii)donor→donor+ processesoccurat

CBofZnOandVBofZnSe(orCu2O),respectively,wherethecharge migrationacrosstheheterojunctiondelaystherecombinationpro- cess.InthecontextofPt–ZnOnanocomposite[74],awelldefined emissionfrominterbandtransitioninPLisnotseenbecauseofthe lowrecombinationrateofe/hpairswhichisinducedbyPt.

Inthebackgroundoftheabovediscussion,forahypothetical caseofvirtuallydefectfreenanoneedle(i.e.highopticalquality, Fig.7b,needleonly),PCAisbecauseof(i)and(ii)processestaking placeatCBandVBofZnOnanoneedlerespectively.Inthecaseof PAN/ZnOseed,thereisjustasignatureofinterbandtransitioninPL, hencethePCAthattakesplaceatCBandVBisnotdominant,which isdenotedwith(i)*and(ii)*,respectively(Fig.7b,seed).Thedefect siteVO+islocatedinthebulkofthegrain[19,21,47,48](Fig.6b) andhenceitisnotaccessibleforPCA,unlessthecapturedelectron migratestothesurface.Thismaybeaveryunlikelycaseasthese statesarehighlylocalized.Furthermore,thePCAassociatedwith VO+ isrelativelyweakandisdenotedwith(i)**.Incontrast,the defectsiteVO++,whichislocatedinthedepletionregion(e.g.grain boundaries[19,21,47,48],Fig.6b),iswellaccessibleforPCAandis denotedwith(ii).Inprinciple,thepresentALDgrownZnOfilmis evidencedtobegrainywithlargeportionsofgrainboundaries.For PAN/ZnOneedlecase,thePCAisanintegraleffectofVOs((ii),from PAN/ZnOseedsample)aswellasthecatalysistakingplaceatCB(i) andVB(ii)ofneedle(Fig.7b,seed/needle).Thecombinedeffectof alltheseprocessesyieldedsignificantlyhigherPCA.Wehavealso seenthattheseedsamplehaslargefractionofpolarplanesthan needlesample(analysisfromXRD),henceitisexpected[15]that seedsampleshouldhaveshownbetterPCA.Althoughitappearsto benotthecasehere,acarefulunderstandingofthebothmaterials revealsthatthepresentresultsareinlinewithRef.[15].Itiswell agreedthatthesamplewithlargerfractionofpolarplanesyield higherPCA(owingtotheirVOs)whatweseeisasynergyeffectof theneedleandtheseed,hencetheseresultsarenotincontrastto anearlierobservation[15].

The structuraldurability of thePAN/ZnO seedand PAN/ZnO needle nanofibers was also examined through SEM after the photocatalysis(Fig.S6ofSupportingInformation).Wenotethat the stability as well as durability plays a vital role because of their potential application in water purification of the organic pollutants. Asoutlinedin theintroduction,we characterize the materialintermsoftheircatalyticefficiencyanddurabilitywith reference to recycling. We have repeated the PCA experiment twiceforthePAN/ZnOneedle(Fig.7c).Thereisaslightdecreasein theefficiencyofPCAfrom1stcycletothefollowingcycles,where the1stcyclehasshown∼93%in∼60minofUVirradiation(Fig.7c).

(10)

Thedeteriorationcouldhaveoccurredfromvariousfactors.Firstly, asmallquantity(∼0.3mg)ofnanofibrousmatwasusedforSEM analysisafterthe1stcycle,leavingbehindlessamountofcatalytic materialforthe2ndand3rdcycles.Secondly,byconsideringthe SEM imagesof thelatter cycles(after 1st cycle, Fig.S6b; after 3rdcycle,Fig.S6cofSupportingInformation),itisclearthatthe densityofnanoneedles isdecreased toa certaindegree.Thisis becauseofthemechanicalfatiguewhileinsertingthenanofibrous matthroughatinyholeofthecuvetteandUV–Visspectroscopy.

Ifthenanofibrousmathasbeenhandledcarefullythenwebelieve thattheperformanceofcatalystafterthe2ndcyclewillbeasgood asoratleastcomparablewiththatofafreshsample.

4. Conclusions

HerewehavereportedtheresultsofaninvestigationonZnO- basedphotocatalystsynthesizedonelectrospunPANnanofibers.

ThiscatalystharnessesPCAatthreedifferentenergeticlocations withintheband gapof ZnO, namely, oxygenvacancy sites,VB and CB. In order toachieve this, morphologically well defined PAN nanofibersareproduced via electronspinning,followed by ALDtodepositZnOin awellcontrolledmanneryieldinga thin andconformalcoatingonthenanofibers.Thelaststepconsistsof hydrothermalgrowthofZnOsinglecrystalneedlelikestructures ontheALDseedcoating.Thepresentinvestigationalsore-iterates theflexibilityofvarioustechniquesandacombinationofALDand hydrothermalgrowth.TheALDparametersareoptimizedinsuch awaythattheseedsdonotinitiatemulti-needlegrowthwhichin turnimprovesthesubsequentprocessingofhydrothermalgrowth asinthepresentcaseorothermethodssuchassol–gel.Thestruc- turalinvestigation(XRD)revealedthestressrelatedinformationof thewurtzitestructuredPAN/ZnOseedaswellasPAN/ZnOneedle.

Thestressinthematerialmighthavebeenoriginatedduetothe polymericnanofibroussubstrateandtheassociatedhighsurface area.Investigationonlocalcrystalstructure(TEM)alsosupported thewurtzitestructureandhintedoxygendeficiencyinALD-ZnO.

However,asexpectedhydrothermallygrownZnOhappenedtobe insinglecrystallinestateandnomultiplephaseswereobservedin theFFTimage.Theoriginofthedefectandtheoxygendeficiency canbeidentifiedwithXPSratherprecisely,wherewehavenoticed thatPAN/ZnOseedsampleconsistsofO-xtypeions,whilePAN/ZnO needlesampleconsistsof–OH,–CO,H2O,orO2adsorbedatthe defect site. The former furthersupports theexistence of grain boundaries in the PAN/ZnO seed and less defective PAN/ZnO needle.BeingverycrucialforPCA,theresultsfromPLsuggestedan oxygendeficientPAN/ZnOseedwhilethePAN/ZnOneedlesofrel- ativelybetteropticalquality.Wenotetheconsistencybetweenthe PLandXPSmeasurements.Basedontheliterature,variousemis- sionbandshavebeenascribedtotheirplausibleorigin.Wehave suggestedamechanismfortheimprovedPCAofPAN/ZnOneedle sample,whencomparedwithPAN/ZnOseed.Wehaveinterpreted the PCA in conjunction with PL, where we point out the fact thatoxygenvacancycapturesaholefromtheCBandhencethe recombinationprocessisdelayed.Alsothiscapturedholecantake partinPCAasitislocatedwithinthegrainboundaryregion.The improvementisattributedtothecollectiveeffectwhichenabled theactiveparticipationofdefectstateandthecatalysistakingplace atCBaswellasVB.Ifphotocatalysisconsistsofonlydefectrelated activity,orthattakesplaceatCBandVBisnotsufficienttoachieve higherPCA.Ontheotherhand,thediscussiononPCAassumesthat thesurfacedefectsonnanoneedlesarenegligibleatanacceptable levelbygivenitscrystallinity,andtherelativeintensityofvisible emissionhasinfactsubduedwhencomparedtotheUVemission.

Furthermore,thesamplesaresubjectedtorecyclingandnominally thePAN/ZnOneedledepictedacomparableperformancewiththe

freshsample.Since thecatalystis synthesizedonflexiblepoly- mericnanofibers,themembranecanbehandledrathereasily(Fig.

S7ofSupportingInformation).Finallyitisconvincingthatthese ZnOnanostructuresarewellsuitedandpotentialcandidatesfor wastewatertreatmentwithsolarenergywheretheirperformance, structuralstabilityandreusabilityareworthmentioning.

Acknowledgements

S.V.thanksTheScientific&TechnologicalResearchCouncilof Turkey(TUBITAK)(TUBITAK-BIDEB2216,ResearchFellowshipPro- grammeforForeignCitizens)forpostdoctoralfellowship.F.K.and C.O.-A.thanksTUBITAK-BIDEBforaPhDscholarship.N.B.thanks EU FP7-Marie Curie-IRG for funding NEMSmart (PIRG05-GA- 2009-249196).T.U.thanksEU FP7-MarieCurie-IRG(NANOWEB, PIRG06-GA-2009-256428)andTheTurkishAcademyofSciences –OutstandingYoungScientistsAwardProgram(TUBA-GEBIP)for funding. Authorsthank M.Gulerfor technicalsupport for TEM analysis.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/

j.apcatb.2014.03.004.

References

[1]F.Kayaci,C.Ozgit-Akgun,I.Donmez,N.Biyikli,T.Uyar,ACSAppl.Mater.Inter- faces4(2012)6185–6194.

[2]F.Kayaci,C.Ozgit-Akgun,N.Biyikli,T.Uyar,RSCAdv.3(2013)6817–6820.

[3]Z.Pei,L.Ding,J.Hu,S.Weng,Z.Zheng,M.Huang,P.Liu,Appl.Catal.B.143–143 (2013)736–743.

[4]T.-T.Chen,I.-C.Chang,M.-H.Yang,H.-T.Chiu,C.-Y.Lee,Appl.Catal.B.142–143 (2013)442–449.

[5]H.U.Lee,S.Y.Park,S.C.Lee,J.H.Seo,B.Son,H.Kim,H.J.Yun,G.W.Lee,S.M.Lee, B.Nam,J.W.Lee,Y.S.Huh,C.Jeon,H.J.Kim,J.Lee,Appl.Catal.B.144(2014) 83–89.

[6]Y.Zuo,Y.Qin,C.Jin,Y.Li,D.Shi,Q.Wu,J.Yang,Nanoscale5(2013)4388–4394.

[7]M.Pelaez,N.T.Nolan,S.C.Pillai,M.K.Seery,P.Falaras,A.G.Kontos,P.S.M.Dun- lop,J.W.J.Hamilton,J.A.Byrne,K.O’Shea,M.H.Entezari,D.D.Dionysiou,Appl.

Catal.B.125(2012)331–349.

[8]S.Hotchandani,P.V.Kamat,J.Phys.Chem.96(1992)6834–6839.

[9]N.Chouhan,C.L.Yeh,S.-F.Hu,R.-S.Liu,W.-S.Chang,K.-H.Chen,Chem.Commun.

47(2011)3493–3495.

[10]F.Xu,Y.Shen,L.Sun,H.Zeng,Y.Lu,Nanoscale3(2011)5020–5025.

[11]D.-X.Xu,Z.-W.Lian,M.-L.Fu,B.Yuan,J.-W.Shi,H.-J.Cui,Appl.Catal.B.142–143 (2013)377–386.

[12]M.R.Hoffmann,S.T.Martin,W.Choi,D.Bahnemann,Chem.Rev.95(1995) 69–96.

[13]J.Wang,P.Liu,X.Fu,Z.Li,W.Han,X.Wang,Langmuir25(2009)1218–1223.

[14]Y.Zheng,C.Chen,Y.Zhan,X.Lin,Q.Zheng,K.Wei,J.Zhu,Y.Zhu,Inorg.Chem.

46(2007)6675–6682.

[15]G.R.Li,T.Hu,G.L.Pan,T.Y.Yan,X.P.Gao,H.Y.Zhu,J.Phys.Chem.C112(2008) 11859–11864.

[16]X.Liu,L.Pan,T.Lv,Z.Sun,C.Sun,RSCAdv.2(2012)3823–3827.

[17]V.Subramanian,E.E.Wolf,P.V.Kamat,Langmuir19(2003)469–474.

[18]T.J. Athauda, U. Butt, R.R. Ozer, RSC Adv. (2013), http://dx.doi.org/

10.1039/c1033ra43672a.

[19]S.Vempati,A.Shetty,P.Dawson,K.Nanda,S.B.Krupanidhi,J.Cryst.Growth343 (2012)7–12.

[20]S.Vempati,A.Shetty,P.Dawson,K.K.Nanda,S.B.Krupanidhi,ThinSolidFilms 524(2012)137–143.

[21]S.Vempati,J.Mitra,P.Dawson,NanoscaleRes.Lett.7(2012)470.

[22]D.Chu,Y.Masuda,T.Ohji,K.Kato,Langmuir26(2010)2811–2815.

[23]N.Kislov,J.Lahiri,H.Verma,D.Y.Goswami,E.Stefanakos,M.Batzill,Langmuir 25(2009)3310–3315.

[24]T.J.Sun,J.S.Qiu,C.H.Liang,J.Phys.Chem.C112(2008)715–721.

[25]S.A.Ansari,M.M.Khan,S.Kalathil,A.N.Khan,J.Lee,M.H.Cho,Nanoscale5 (2013)9238–9246.

[26]N.Scharnagl,H.Buschatz,Desalination139(2001)191–198.

[27]S.Yang,Z.Liu,J.Membr.Sci.222(2003)87–98.

[28]L.Zhang,J.Luo,T.J.Menkhaus,H.Varadaraju,Y.Sun,H.Fong,J.Membr.Sci.369 (2011)499–505.

[29]Y.Mei,C.Yao,K.Fan,X.Li,J.Membr.Sci.417(2012)20–27.

[30]X.Zhang,V.Thavasi,S.G.Mhaisalkar,S.Ramakrishna,Nanoscale4(2012) 1707–1716.

(11)

[31]H.Tong,S.Ouyang,Y.Bi,N.Umezawa,M.Oshikiri,J.Ye,Adv.Mater.24(2012) 229–251.

[32]S.Cho,J.-W.Jang,J.S.Lee,K.-H.Lee,Nanoscale4(2012)2066–2071.

[33]T.Jiang,T.Xie,L.Chen,Z.Fu,D.Wang,Nanoscale5(2013)2938–2944.

[34]T.Uyar,R.Havelund,J.Hacaloglu,X.Zhou,F.Besenbacher,P.Kingshott,Nano- technology20(2009)125605.

[35]S.Vempati,J.B.Veluru,R.G.Karunakaran,D.Raghavachari,T.S.Natarajan,J.

Appl.Phys.110(2011)113718.

[36]S.Ramakrishna,K.Fujihara,W.Teo,T.Lim,Z.Ma,AnIntroductiontoElec- trospinningandNanofibers,WorldScientificPublishingCompany,Singapore, 2005.

[37]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,Wiley-VCH,Germany,2012.

[38]J.V. Nygaard,T.Uyar, M.Chen,P.Cloetens,P.Kingshott,F. Besenbacher, Nanoscale3(2011)3594–3597.

[39]S.M.George,Chem.Rev.110(2009)111–131.

[40]M.Leskelä,M.Ritala,Angew.Chem.Int.Ed.42(2003)5548–5554.

[41]C.Detavernier,J.Dendooven,S.P.Sree,K.F.Ludwig,J.A.Martens,Chem.Soc.

Rev.40(2011)5242–5253.

[42]C.J.Oldham,B.Gong,J.C.Spagnola,J.S.Jur,K.J.Senecal,T.A.Godfrey,G.N.Par- sons,J.Electrochem.Soc.158(2011)D549–D556.

[43]W.J.Sweet,J.S.Jur,G.N.Parsons,J.Appl.Phys.113(2013)194303.

[44]P.Heikkilä,T.Hirvikorpi,H.Hilden,J.Sievänen,L.Hyvärinen,A.Harlin,M.Vähä- Nissi,J.Mater.Sci.47(2012)3607–3612.

[45]E.Santala,M.Kemmel,M.Leskela,M.Ritala,Nanotechnology20(2009)035602.

[46]I.M.Szilagyi,E.Santala,M.Heikkila,V.Pore,M.Kemmel,T.Nikitin,G.Teucher,T.

Firkala,L.Khriachtchev,M.Rsanen,M.Ritala,M.Leskala,Chem.Vap.Deposition 19(2013)149–155.

[47]J.D.Ye,S.L.Gu,F.Qin,S.M.Zhu,S.M.Liu,X.Zhou,W.Liu,L.Q.Hu,R.Zhang,Y.

Shi,Y.D.Zheng,Appl.Phys.A:Mater.Sci.Process.81(2005)759–762.

[48]S.Vempati,S.Chirakkara,J.Mitra,P.Dawson,K.K.Nanda,S.B.Krupanidhi,Appl.

Phys.Lett.100(2012)162104.

[49]B.Gong,Q.Peng,J.-S.Na,G.N.Parsons,Appl.Catal.A407(2011)211–216.

[50]A.Sugunan,V.K.Guduru,A.Uheida,M.S.Toprak,M.Muhammed,J.Am.Ceram.

Soc.93(2010)3740–3744.

[51]P.Liu,Y.Zhu,J.Ma,S.Yang,J.Gong,J.Xu,Colloid.Surf.A436(2013)489–494.

[52]Z.Zhang,L.Zhang,S.Wang,W.Chen,Y.Lei,Polymer42(2001)8315–8318.

[53]B.D.Cullity,S.R.Stock,ElementsofX-rayDiffraction,3rded.,PrenticeHall, 2001.

[54]M.Chen,X.Wang,Y.Yu,Z.Pei,X.Bai,C.Sun,R.Huang,L.Wen,Appl.Surf.Sci.

158(2000)134–140.

[55]A.St˘anoiu,C.E.Simion,S.Som˘acescu,Sens.ActuatorsB:Chem.186(2013) 687–694.

[56]A.Djuriˇsi ´c,W.C.Choy,V.A.L.Roy,Y.H.Leung,C.Y.Kwong,K.W.Cheah,T.Gundu Rao,W.K.Chan,H.FeiLui,C.Surya,Adv.Funct.Mater.14(2004)856–864.

[57]C.H.Ahn,Y.Y.Kim,D.C.Kim,S.K.Mohanta,H.K.Cho,J.Appl.Phys.105(2009) 013502.

[58]E.G.Bylander,J.Appl.Phys.49(1978)1188.

[59]B.Lin,Z.Fu,Y.Jia,Appl.Phys.Lett.79(2001)943.

[60]P.S.Xu,Y.M.Sun,C.S.Shi,F.Q.Xu,H.B.Pan,Nucl.Instrum.Meth.B199(2003) 286–290.

[61]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Adv.Funct.Mater.20(2010)561.

[62]K.Vanheusden,W.L.Warren,C.H.Seager,D.R.Tallant,J.A.Voigt,B.E.Gnade,J.

Appl.Phys.79(1996)7983.

[63]A.V.Dijken,E.A.Meulenkamp,D.Vanmaekelbergh,A.Meijerink,J.Lumin.90 (2000)123–128.

[64]T.J.Athauda,P.Hari,R.R.Ozer,ACSAppl.Mater.Interfaces5(2013)6237–6246.

[65]T.J.Athauda,R.R.Ozer,Cryst.GrowthDesign13(2013)2680–2686.

[66]C.Prahsarn,W.Klinsukhon,N.Roungpaisan,Mater.Lett.65(2011)2498–2501.

[67]S.Baruah,S.S.Sinha,B.Ghosh,S.K.Pal,A.K.Raychaudhuri,J.Dutta,J.Appl.Phys.

105(2009)074308.

[68]S.S.Warule,N.S.Chaudhari,B.B.Kale,M.A.More,Cryst.Eng.Commun.11(2009) 2776–2783.

[69]N.Daneshvar,D.Salari,A.R.Khataee,J.Photochem.Photobiol.A162(2004) 317–322.

[70]R.W.Matthews,J.Catal.97(1986)565–568.

[71]I.Izumi,W.W.Dunn,K.O.Wilbourn,F.R.F.Fan,A.J.Bard,J.Phys.Chem.84(1980) 3207–3210.

[72]Y.Yang,Y.Li,L.Zhu,H.He,L.Hu,J.Huang,F.Hu,B.Hec,Z.Ye,Nanoscale5 (2013)10461–10471.

[73]J.Wang,Z.Wang,B.Huang,Y.Ma,Y.Liu,X.Qin,X.Zhang,Y.Dai,ACSAppl.

Mater.Interfaces4(2012)4024–4030.

[74]C.Yu,K.Yang,Y.Xie,Q.Fan,J.C.Yu,Q.Shu,C.Wang,Nanoscale5(2013) 2142–2151.

Referenties

GERELATEERDE DOCUMENTEN

Our preliminary findings suggested that ␤-CD-functionalized CA nanofibers have potentials to be used as molecular filters for the purpose of water purifica- tion and/or waste

For a better understanding of the commutative multiplicity theorem for an n-set of self-adjoint commuting operators, we introduce the notion of.. (generalized)

In verscheidene sporen werd handgevormd aardewerk aangetroffen dat op basis van het uiterlijk vermoedelijk in de vroege ijzertijd tot midden ijzertijd,

De tweede zone die zonder twijfel in aanmerking dient te komen voor verder onderzoek is het areaal ter hoogte van sleuf 014 en 015, in het uiterst zuidelijke gedeelte

The influence of the Pd layers on the magnetization curves was described in a separate paper.6, In this paper we present additional measurements on new sam- ples ofPd./Co, prepared

Elke IC patiënt kan in de gaten worden gehouden door camera toezicht, in principe alleen als de toestand van de patiënt dit

Na 4 uur, als er geen bijzonderheden zijn, kunt u rustig aan uit bed komen en als u niet voor verdere behandelingen bent opgenomen, gaat u weer naar huis.. Als de verdoving

Here, we show that robust PSAM based channel estimation can be obtained by combining the optimal MMSE interpolation based channel estimation with the BEM considering an