• No results found

system cellulose hydroxypropyl as drugdelivery nanofibers Sulfisoxazole/cyclodextrin inclusion incorporated complex inelectrospun Colloids and Surfaces B: Biointerfaces

N/A
N/A
Protected

Academic year: 2022

Share "system cellulose hydroxypropyl as drugdelivery nanofibers Sulfisoxazole/cyclodextrin inclusion incorporated complex inelectrospun Colloids and Surfaces B: Biointerfaces"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

delivery system

Zeynep Aytac

a,b

, Huseyin Sener Sen

b

, Engin Durgun

a,b

, Tamer Uyar

a,b,∗

aInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey

bUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received21October2014

Receivedinrevisedform9February2015 Accepted10February2015

Availableonline17February2015

Keywords:

Electrospinning Nanofibers

Hydroxypropylcellulose Cyclodextrin

Sulfisoxazole Molecularmodeling

a b s t r a c t

Herein,hydroxypropyl-beta-cyclodextrin(HP␤CD)inclusioncomplex(IC)ofahydrophobicdrug,sul- fisoxazole(SFS)wasincorporatedinhydroxypropylcellulose(HPC)nanofibers(HPC/SFS/HP␤CD-IC-NF) viaelectrospinning.SFS/HP␤CD-ICwascharacterizedbyDSCtoinvestigatetheformationofinclusion complexandthestoichiometryofthecomplexwasdeterminedbyJob’splot.Modelingstudieswere alsoperformedonSFS/HP␤CD-ICusingabinitiotechnique.SEMimagesdepictedthedefectfreeuniform fibersandconfirmedtheincorporationofSFS/HP␤CD-ICinnanofibersdidnotalterthefibermorphol- ogy.XRDanalysesshowedamorphousdistributionofSFS/HP␤CD-ICinthefibermat.Releasestudies wereperformedinphosphatebufferedsaline(PBS).TheresultssuggesthigheramountofSFSreleased from HPC/SFS/HP␤CD-IC-NF when comparedtofree SFS containing HPC nanofibers(HPC/SFS-NF).

ThiswasattributedtotheincreasedsolubilityofSFSbyinclusioncomplexation.Sandwichconfigu- rationswerepreparedbyplacingHPC/SFS/HP␤CD-IC-NFbetweenelectrospunPCLnanofibrousmat (PCL-HPC/SFS/HP␤CD-IC-NF).Consequently,PCL-HPC/SFS/HP␤CD-IC-NFexhibitedslowerreleaseofSFS ascomparedwithHPC/SFS/HP␤CD-IC-NF.Thisstudymayprovidemoreefficientfuturestrategiesfor developingdeliverysystemsofhydrophobicdrugs.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Electrospinningisawellrecognizedandversatiletechniquefor producing nanofibersfrompolymersolutions or polymermelts with the help of a very strong electric field [1]. Electrospun nanofibersandtheirnanofibrousmatsareverygoodcandidatesfor useinbiotechnology,textiles,membranes/filters,scaffolds,com- posites,sensorsduetotheirveryhighsurfaceareatovolumeratio, nanoporousstructureanddesignflexibilityforfurtherfunctional- ization[1,2].Additionally,bygiventhemorphologicalsimilarities betweenelectrospunnanofibersandextracellularmatrix,bioma- terialsforwoundhealing,drugdeliverysystemsandscaffoldsfor tissueengineeringcouldbedevelopedthroughtheelectrospinning [1,2].

Certain hydroxyl groups of cellulose are substituted with anotherfunctionalgroupyieldsitsderivates.Forexample,hydrox- ypropylcellulose(HPC)isanon-ioniccellulosederivativewhich

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

can be synthesized by substituting with hydroxypropyl ether groups[3].HPCcouldbeusedinthefieldofbiomedicalengineer- ingfor drugdeliveryapplications[4,5].Hence,electrospunHPC nanofibersalsocouldbequiteapplicableintheareaofbiotech- nologyduetotheirdistinctivecharacteristicsasmentionedearlier.

However,asfaraswecanascertain,intheliteraturethereareonly fewstudiesrelatedtoelectrospinningofHPC[6–8].Shuklaetal.

haveproducedelectrospunHPCnanofibersfromethanoland2- propanolsolventsystem[6].Inanotherstudy,Francisetal.have obtainedHPCnanofibersinaqueoussolutionusingpolyethylene oxideascarriermatrix [7].InthestudyofPeriasamyetal.two typesofenzymeswereimmobilizedinHPCnanofibers[8].

Cyclodextrins(CDs)areaclassofcyclicoligosaccharides(Fig.1b) withseverald-glucopyranoseslinkedby ␣-1,4-glycosidicbonds [9].ThemostcommonnativeCDshave6,7,or8glucoseunitswhich arecalledas␣-CD,␤-CDand␥-CD,respectively[10].Therearealso chemically modified CDs like hydroxypropyl-beta-cyclodextrin (HP␤CD)inwhichsomeofthehydroxylgroupsaresubstitutedwith hydroxypropylgroups.CDsarewater-solublemoleculeswithrigid andwelldefinedmolecularstructures.CDstaketheshapeofatrun- catedconeasshowninFig.1c[9].Asoutstandingsupramolecules http://dx.doi.org/10.1016/j.colsurfb.2015.02.019

0927-7765/©2015ElsevierB.V.Allrightsreserved.

(2)

Fig.1. Chemicalstructureof(a)sulfisoxazole,(b)HP␤CD;schematicrepresentationof(c)HP␤CD,(d)SFS/HP␤CD-IC,(e)electrospinningofnanofibersfromHPC/SFS/HP␤CD-IC solution,(f)thereleaseofSFSfromHPC/SFS/HP␤CD-IC-NF.

withhydrophobiccavity,CDsarecapableofformingnon-covalent complexeswithvariouscompoundsincludingpoorlysolubledrugs, antibiotics,andvolatilecompounds[9,10].Theinclusioncomplex (IC)formation in theCD systems is favored by substitution of thehigh-enthalpywatermoleculeswithintheCDcavity,withan appropriateguestmoleculeoflowpolarity[9].Here,eachguest moleculeisenclosedwithinthehydrophobiccavityoftheCD.CDs findapplicationsinvariousfieldssuchaspharmaceutical,cosmetic, food,chemicalindustriesandagriculture[10].Forexample,infood industrytheycansuppressunpleasantodorsand tastes.Onthe otherhandtheycanimprovethesolubilityandprovideprotection againstlightoroxygenforguestcompounds.FurthermoreCDscan delaythedegradationorevaporationofguestmoleculesthatare highlyvolatile[10].Inthecontextofpharmaceuticalindustry,the solubilityrelatedproblemsofsomedrugsremainamongthemost challengingissuesofthedrugformulation,whereCDscanenhance solubility,dissolutionrate,chemicalstability andbioavailability.

Interestinglycontrolledreleaseofpoorlysolubledrugsbymeans ofCD-IC[9,10] isworth mentioning.In particular,a chemically modifiedCDlikeHP␤CDismoresuitableforthesolubilizationof hydrophobicdrugs,becauseofitsbetteraqueoussolubilitycom- paredtonativeCDs[11].IthasbeenshownthatCDsandCD-ICs canbeusedinfunctionalizationofelectrospunnanofibersfordif- ferentapplicationslikebiomedical[12–17],filtration[18–20]and foodpackaging[21–26].

Thesulfonamidedrugshaveabasicchemicalstructurecompris- ingasulfanilamidegroupandfiveorsix-memberedheterocyclic ring.Sulfisoxazole(SFS)(Fig.1a)is asulfonamidedrugwithan oxazolesubstituent.Itisaweaklyacidicinnaturewithantibiotic activityandpoorlysolubleinwater[27].ThelowsolubilityofSFS preventsitsfastdissolutionand leadstopooravailabilityatthe targetsite.Henceinthisstudy,SFSwasselectedasamodeldrug forreleaseexperiments.Therehavebeenreportsintheliterature regardingCD-ICofSFStoevaluatechemicalstability,thermalsta- bilityandsolubilitybeforeandaftercomplexation[28].Another studydealswiththecharacterizationofICviasolubility,thermal anddissolutionstudies[29].Ontheotherhand,absorptionandflu- orescencespectraofsulphadrugswereanalyzedinthepresence ofCD-ICtodeterminethestoichiometryofsulphadrugsand␤CD [27].

In this study, HPC nanofibers incorporating SFS (HPC/SFS- NF)and ICofSFSwithHP␤CD(Fig.1d)(HPC/SFS/HP␤CD-IC-NF) wereobtainedvia electrospinningfor ourdrugdeliverysystem (Fig.1e).SinceHPCnanofibersarewatersoluble,HPC/SFS-NFand

HPC/SFS/HP␤CD-IC-NF matsweresandwiched betweenelectro- spunpolycaprolactone(PCL)nanofibrousmats (PCL-HPC/SFS-NF and PCL-HPC/SFS/HP␤CD-IC-NF). PCL is a semi crystalline and hydrophobicpolymerthatiscommonlyusedforbiomedicalappli- cationssuchastissue engineeringscaffold [30]wounddressing [31] and drug delivery system [32], thanks to its biocompati- bilityand biodegradability. SFS/HP␤CD-ICwascharacterizedby DSCand continuousvariation technique(Job’s plot)in orderto investigatethestoichiometryoftheIC.Inaddition,inclusioncom- plexationhasbeeninvestigatedbymolecularmodelingusingab initio techniques. HPC/SFS-NF and HPC/SFS/HP␤CD-IC-NF were characterizedbySEM,XRDandUV-Visspectroscopy.Releasestud- ieswereperformedinphosphatebufferedsaline(PBS)(Fig.1f)and quantifiedthroughHPLC.Inaddition,SFS(powder),HPC/SFSfilm, HPC/SFS/HP␤CD-ICfilm;HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NF werealsousedascontrolsamplesforreleasestudies.

2. Materialsandmethods

2.1. Materials

Hydroxypropyl cellulose (HPC, Mw∼300,000g/mol, Scien- tific Polymer Products), polycaprolactone (PCL, Mn∼70,000–

90000g/mol,SigmaAldrich),sulfisoxazole(SFS,min.99%,Sigma Aldrich),hydroxypropyl-beta-cyclodextrin(HP␤CD,averagesub- stitution degree per anhydroglucose unit 0.6, Wacker Chemie AG,Germany),ethanol (99.8%,Sigma Aldrich),dichloromethane (DCM,extrapure, SigmaAldrich), N,N-dimethylformamidepes- tanal(DMF,Riedel),acetonitrile(ACN,chromasol,SigmaAldrich), methanol (extra pure, Sigma Aldrich), potassium phosphate monobasic(RiedeldeHaen),disodiumhydrogenphosphatedodec- ahydrate(RiedeldeHaen),sodiumchloride(SigmaAldrich)were purchasedandusedasreceivedwithoutanyfurtherpurification.

Thewaterusedinexperimentswasdistilled–deionizedfroma MilliporeMilli-Qultrapurewatersystem.

2.2. Preparationofsolutions

TwotypesofSFScontainingHPCnanofibers(HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NF) wereprepared by incorporating 9% SFS (w/w,withrespecttopolymer).For producingHPC/SFS/HP␤CD- IC-NF,theamountofSFSwasdeterminedas1:1molarratiowith HP␤CD,and thesame amountof SFSwasusedforHPC/SFS-NF.

In order to prepare HPC/SFS-NF, SFS and 3% (w/v) HPC were

(3)

solution),SFS wasdissolvedinethanol atRT.Then50% HP␤CD (w/w,withrespecttopolymer)wasaddedintothesolutionand stirredovernightatRT.Finally,3%(w/v)HPCwasaddedintothe system,and dissolved for the electrospinning. For comparison, wehavealsoelectrospunHPCinethanol(3%,w/v)withoutSFSor SFS/HP␤CD-IC.Table1summarizesthecompositionsofthesolu- tionsusedfortheelectrospinning ofthenanofibers.Toproduce PCLnanofibers,10%(w/v)PCLwasdissolvedinthebinarysolvent systemcontainingDMF:DCM(v/v)(3:1).

2.3. Electrospinningofnanofibersandpreparationoffilms

HPC,HPC/SFS,HPC/SFS/HP␤CD-ICandPCLsolutionswereindi- viduallyloadedintoa3mLplasticsyringewithneedlediameter of0.8mmplacedhorizontallyonthesyringepump(KDScientific, KDS101).Theflowratesofthepolymersolutionswerecontrolled bysyringepumptoensurehomogeneousflowandfixedat1mL/h.

Thecylindricalmetalcollectorwasplacedatadistanceof11cm fromtheneedletipandcoveredbyaluminumfoil.Thegroundand thepositiveelectrodesofthehighvoltagepowersupply(AUSeries, MatsusadaPrecisionInc.)wereclampedtothecollectorandthe needlerespectively.Theelectrospinningapparatuswasenclosed inaPlexiglasbox,andelectrospinningwascarriedoutat16kV, 22Cand20%relativehumidity.

SFScontainingHPCfilms(HPC/SFSfilmandHPC/SFS/HP␤CD- ICfilm)werepreparedbysolutioncastingmethodusingthesame amountsofSFS,HPCandHP␤CD.Notethattheearlierdescribed procedurewasemployedtopreparethevarioussolutionsforcast- ing.

2.4. Characterizationandmeasurements

InordertoinvestigatethethermalpropertiesofSFS-HP␤CD-IC, powderofSFS-HP␤CD-ICwasobtainedbyevaporatingthesolvent.

Inaddition,physicalmixtureofSFSandHP␤CD(SFS-HP␤CD-PM) wasalsoprepared ascontrol.ThepowdersofSFS,HP␤CD,SFS- HP␤CD-PM and SFS-HP␤CD-IC were analyzed with differential scanningcalorimetry(DSC)(Netzsch,DSC204FI).ForDSCmeasure- ment,SFS,HP␤CD,SFS-HP␤CD-PMwerepreparedinanaluminum pan,heldisothermallyat25Cfor3minandheatedfrom25Cto 250Catarateof20C/minundernitrogenpurge.SFS-HP␤CD-IC wassubjectedtoheatingand coolingcyclesconsistingof:hold- ingisothermallyat25Cfor3min,rampingfrom25Cto250C at20C/min,coolingatarateof20C/mindownto25C.Itwas subjectedtoasecondcycletoinvestigatethechangeinthermal behaviorfollowingthefirstheatatarateof20C/min.

The stoichiometryof IC was investigated by thecontinuous variationtechnique(Job’splot)[33].Equimolar(10−4M)solutions ofSFSandHP␤CDpreparedinethanolweremixedtoastandard volumevaryingthemolarratio(r,[SFS]/[SFS]+[HP␤CD])from0to 1whilekeepingthetotalconcentrationofeachsolutionconstant.

Afterstirring thesolutions for1h atRT,theabsorbance ofthe

theviscosityofHPC,HPC/SFS,HPC/SFS/HP␤CD-ICandPCLsolutions atRT.Therheometerwasequippedwitha cone/plateaccessory (spindletypeCP40-2)ataconstantshearrateof100sec−1.Thecon- ductivityofsolutionwasdeterminedbyInolab®Multi720-WTW atRT.

Scanningelectronmicroscopy(SEM,FEI–Quanta200FEG)was usedtoexaminethemorphologiesoftheelectrospunnanofibers.

Thesamplesweremountedonmetalstubsusingadouble-sided adhesivetapeandcoatedwithAu/Pdlayer(∼6nm)(PECS-682)to minimizethecharging.Nearly100fiberswereanalyzedtocalculate averagefiberdiameter(AFD).

Thecrystallinestructureofthematerialswasexaminedwith X-ray diffraction (XRD). XRD data for the powder of SFS and HP␤CD;HPCNF,HPC/SFS-NFandHPC/SFS-HP␤CD-ICNFmatswere recordedusingaPANalyticalX’Pertpowderdiffractometerapply- ingCuK␣radiationinthe2rangeof5–30.

Since HPC is water-soluble,thesandwich configuration was prepared by placing the HPC/SFS/HP␤CD-IC-NF between PCL nanofibrousmatforachievingthecontrollablereleaserate(PCL- HPC/SFS/HP␤CD-IC-NF). The facile pressure is given by thumb forcepsatopenfaceofthemembranetowrapthestructure.The sameprocedurewasappliedtopreparesandwichconfiguration of HPC/SFS-NF (PCL-HPC/SFS-NF).Ascontrol, therelease of SFS (powder),HPC/SFSfilm,HPC/SFS/HP␤CD-ICfilm,HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NFwerealsotested.Atotalimmersionmethod was used tostudy the cumulative release profiles of SFS from thecomposite matsandcontrolsampleswherethethicknessof composite mats is ∼400␮m (determined byZeiss AxioImager A2mopticalmicroscope).Inthistechnique,eachofthecomposite matsincluding24mgHPC/SFS-NFor 37mgHPC/SFS/HP␤CD-IC- NFand30mgPCLnanofibersandthecontrolsampleswithsame amountof SFS wereimmersed in 30mLof phosphate buffered saline(PBS)mediumat37Cat 50rpm.Atpredeterminedtime intervalsbetween0and720min,0.5mLofthetestmediumwas withdrawnandanequalamountofthefreshmediumwasrefilled.

ThereleasedamountofSFSwasdeterminedbyhighperformance liquidchromatography(HPLC,Agilient,1200series)equippedwith VWD UVdetector.The columnwas2.1mm×50mm, contained 3␮mpacking(ACE, C8)and thedetection wasaccomplishedat 270nm.Mobilephase,flowrate,injectionvolumeandthetotalrun timewere100%ACN,0.1mL/min,20␮Land4min,respectively.The calibrationsampleswerepreparedinethanol.Accordingtopre- determinedcalibrationcurveforSFS,thedatawerecalculatedto determinethecumulativeamountofSFSreleasedfromthesamples foreachspecifiedimmersionperiod.Theexperimentswerecarried outintriplicateandtheresultswerereportedasaverage±standard deviation.

Inordertodeterminetheactualloading(%)ofSFSinnanofibers, aknownweightofthesamplewasdissolvedinethanolandthe amountof SFS inthe sample wasmeasured byHPLC in tripli- cate.Accordingtocalibrationcurvepreparedinethanol,thetotal amountofSFSinthesampleandactualloading(%)wascalculated.

(4)

Fig.2. DSCthermogramsoffirstheatingscan ofSFS,HP␤CD,SFS/HP␤CD-PM, SFS/HP␤CD-ICandsecondheatingscanofSFS/HP␤CD-IC.

Theexperimentswerecarriedoutintriplicateandtheresultswere reportedasaverage±standarddeviation.

Todeterminethesolubilityof SFSineach fiber,certaincon- centrationofSFS(powder) (0.094mM)andthesameamountof SFScontainingHPC/SFS/HP␤CD-IC-NFweredissolvedinwater.For comparison,HPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFwerescaledto thesameweight.Lastly,UVabsorbanceofSFSinthesampleswas measuredat270nmviaUV–Vis–NIRspectroscopy(Varian,Cary 5000).

2.5. Computationalmethod

Thestructures of SFS, pristine ␤-CD [34], HP␤CD, and their ICswereoptimizedbyusingabinitiomethodsbasedondensity functionaltheory(DFT)[35,36]implementedintheViennaAbini- tiosimulationpackage[37,38].Theinitialgeometryof␤-CDwas obtainedfromCambridgeStructuralDatabase[39].HP␤CDiscon- structedmanuallybyaddingfour2-hydroxypropylgroupsonthe primarygroupsof ␤-CDcorrespondingtoa substitutiondegree peranhydroglucoseunit of0.6 which wascompatiblewiththe experiments[40].The exchange-correlation wastreated within Perdew-Burke-Ernzerhofparametrizationofthegeneralizedgradi- entapproximation(GGA-PBE)[41]withinclusionofVanderWaals correction[42].Theelementpotentialsweredescribedbyprojector augmented-wavemethod(PAW)[43]usingaplane-wavebasisset withakineticenergycutoffof400eV.TheBrillouinzoneintegration wasperformedatthe-point.Allstructureswereconsideredas isolatedmoleculesinvacuumandwererelaxedusingtheblocked- Davidsonalgorithmwithsimultaneousminimizationofthetotal energyandinteratomicforces.Theconvergenceonthetotalenergy andforcewastestedandthensetto10−5eVand10−2eV/Å,respec- tively.

3. Resultsanddiscussion

3.1. ThermalpropertiesofSFS/HPˇCD-IC

DSCthermogramsofthepowderofSFS,HP␤CD,SFS-HP␤CD-PM andSFS-HP␤CD-ICaredisplayedinFig.2.TheDSCcurveofpure SFSexhibitedasharpendothermicpeakat203C(H=115.4J/g) corresponding to the melting point of SFS [29]. The thermal transitionofHP␤CDrangedfrom40Cto170Ccorrespondingto dehydrationofHP␤CD-ringcavity,andappearsasanendothermic transitionwithanenthalpyof184.1J/g.Theendothermictransition ofSFSwasretainedinSFS-HP␤CD-PM(between170Cand205C), andabroadendothermictransitioncorrespondingtodehydration ofHP␤CDappearedintherangeof40Cto160C.Theenthalpies

Fig.3. Continuousvariationplot(Job’splot)forthecomplexationofSFSwithHP␤CD obtainedfromabsorptionmeasurements.

oftheabove-mentionedtransitionswere12.97J/gand 169.2J/g, respectively. These transitions observed in DSC thermogram of SFS-HP␤CD-PM might be attributed to the presence of less or nointeractionbetweenSFSand HP␤CD.Whencrystallineguest molecules formIC with CDs,the melting point either shifts or disappearsintheDSCthermogram[29].Notably,inDSCthermo- gramofSFS/HP␤CD-ICthemeltingofSFSisnotobserved,however endothermictransitions between 40–80C and 80–190C were observedduringthefirstheatingscan.Thedisappearanceofan endothermicpeak of a guestmolecule can beattributed toan amorphousstate and/ortoaninclusion complexationin which guest molecules being completely included into the cavity of CD by replacing water molecules. Moreover,no transition was observedinthesecondheatingscanofSFS/HP␤CD-IC.Inthefirst heatingscanofSFS/HP␤CD-IC,theenthalpiesoftheendothermic transitionswere1.91J/gand58.78J/g,respectively.Therefore,the enthalpiesoftransitionsofSFS/HP␤CD-ICweremuchsmallerthan thoseofSFS/HP␤CD-PM.Theenthalpyreductionalsoshowsthe interactionbetweenSFSandCDinSFS/HP␤CD-IC[44].

3.2. Stoichiometrydeterminationbythecontinuousvariation method(Job’splot)

Thecontinuousvariationmethod(Job’splot)wasusedtodeter- minethestoichiometryofSFS/HP␤CD-IC.Accordingtothismethod, maximumpointofthemolarratio(r)correspondstothecomplexa- tionstoichiometry.TheplotinFig.3showsthemaximumatamolar ratioofabout0.5,indicatingthatthecomplexeswereformedwith 1:1stoichiometry.

3.3. MolecularmodelingofSFS/HPˇCD-IC

ThestabilityofCD-ICswhenSFSincludedinHP␤CDisexam- ined by first-principles modeling techniques. Firstly, HP␤CD is manually built by adding four 2-hydroxypropyl groups onthe primary groups of pristine ␤-CD corresponding toa degree of substitutionof0.6.Variousdecorationpatternsofsubstituentsare considered(e.g.1-2-3-4,1-2-5-6,1-3-5-7wherenumbersindicate therelative positionofsubstitution glucoses)[40,45].Theopti- mizationresultsdonotindicateanysignificantenergydifferences onthesubstituentpattern.OntheothersidetheO-Hinteraction betweensubstituents reducestheenergytosomeextent(upto 10kcal/mol), thus hydroxypropyl (HP) arms may prefer to get closerasshowninFig.4b.Accordinglyweconsider1-3-5-7pattern asprototypeandexaminethepossibilityofICformation.Inorder toformacomplex,singleSFSmoleculeisintroducedintoHP␤CD at various positions. In addition, two different orientationsare

(5)

Fig.4.SideandtopviewofoptimizedstructuresofSFS/HP␤CD-ICwhenHParmsare(a)openand(b)close.Gray,red,andyellowspheresrepresentcarbon,oxygen,and sulfuratoms,respectively.O HbondingbetweenHPgroupsareindicatedbydashedlines.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

considered where NH2- or CH3-end points toward cavity. For eachcase thewholesystemisoptimized withoutimposingany constraints.ThelowestenergyconfigurationsareshowninFig.4.

Thecomplexationenergy(Ecomp)iscalculatedby Ecomp=EHP␤CD+ESFS−EHP␤CD+SFS

whereEHP␤CD,ESFS,EHP␤CD+SFSisthetotalenergy(includingvander Waalsinteraction)ofHP␤CD,SFS,andSFS/HP␤CD-IC,respectively.

Ecompiscalculatedas35.05and32.49kcal/molforopenandclose HParms,respectively. WhenHP armsgetclosernarrowingthe rim,Ecompslightlyreduces.Ourresultsareinagreementwiththe Job’splotandsupporttheformationofstableICofSFSandHP␤CD with1:1molarratio.

3.4. Morphologyofthenanofibers

Based on our preliminary experiments, ethanol was chosen asasolventfordissolvingboth HPCandSFS. Theconcentration ofHPCwasdeterminedas3%(w/v)inethanoltoyieldbead-free nanofibers.TheamountofSFS(9%,w/w,withrespecttoHPC)was setata1:1ratiowithHP␤CDinSFS/HP␤CD-IC.Fig.5displaysSEM imagesandAFD along withfiberdiameterdistributions ofHPC NF, HPC/SFS-NF and HPC/SFS-HP␤CD-IC NF. By optimizing the electrospinningparameters,wewereabletoobtainbead-freeand uniformnanofibers from HPC, HPC/SFSand HPC/SFS-HP␤CD-IC systems.TheAFDofHPCNFwas125±50nm,whereasAFDofelec- trospunHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFwere90±40nm and60±25nm,respectively.TheslightdecreaseinAFDcouldbe explainedbydifferencesinconductivityandviscosityofHPC/SFS and HPC/SFS/HP␤CD-IC solutions compared to HPC solution (Table 1). Stable jet formation usually depends on sufficiently high surface charge densities which are influenced by applied voltageandtheelectricalconductivityofthepolymersolution.As

theconductivityofasolutionincreases,thestretchingincreases due to the higher number of charges formed in the solution whichthinsthediameterofthefiber[46].Inaddition,viscosityis importantforthecontinuityofjetduringelectrospinningwhile lowerviscosityleadstolowerdiameternanofibers[47].HPC/SFS andHPC/SFS/HP␤CD-ICsolutionshavemuchhigherconductivity and slightlyhigher viscositythanHPCsolution;thereby AFDof HPC/SFS-NF and HPC/SFS/HP␤CD-IC-NF were lower than HPC nanofibers. Moreover, HPC/SFS/HP␤CD-IC-NF was thinner than HPC/SFS-NFpossiblyduetothehigherconductivityandslightly lowerviscosityoftheparentsolution.

Furthermore,weinvestigatedtheeffectofSFSincorporationin theformoffreeSFSandSFS/HP␤CD-IConnanofibermorphology.

IncorporationofSFSinHPCnanofibersdidnotdeterioratetheshape anduniformity.Moreoverrelativelythinnerfiberswereobtained duetothehigherconductivityofHPC/SFSandHPC/SFS/HP␤CD-IC solutions.Ontheotherhand,neitherdrugcrystalsnoraggregates wereobservedonthesurfacesofnanofibers.Phaseseparationis not likely to occuras SFS is highly soluble in the HPC/ethanol system, while the solvent (ethanol) evaporates rapidly during electrospinning.Forreleaseexperiments,sandwich-likecompos- itematswerepreparedinwhichtheinnerlayerwasHPC/SFS-NF orHPC/SFS/HP␤CD-IC-NFmatandouterlayerswereelectrospun PCLnanofibrousmat.SEMimageandAFD(260±110nm)along with fiberdiameter distributions of bead-free and smooth PCL nanofibersisshowninFig.5d.

3.5. Crystallinestructureofnanofibers

XRD was performed to investigate the crystallinity of the samples. Fig. 6 represents the XRD patterns of the powder of SFS and HP␤CD; HPC NF, HPC/SFS-NF and HPC/SFS-HP␤CD-IC NF mats.XRDpatternofasreceivedSFSindicated thatSFS isa

(6)

Fig.5.SEMimagesandfiberdiameterdistributionswithaveragefiberdiameter(AFD)oftheelectrospunnanofibersobtainedfromsolutionsof(a)HPC,(b)HPC/SFS,(c) HPC/SFS/HP␤CD-ICand(d)PCL.

crystallinematerialwithcharacteristicdiffractionpeaks.TheHPC NF diffraction exhibits a diffused pattern with two diffraction haloswhichshowthatthepolymerisamorphous.InHPC/SFS-NF, thecharacteristicpeaksofSFSwereabsentandonlyahumpofthe amorphousformisnoticed.ThissuggeststhatSFSwasnolongerin crystallinestate;apparentlyitwasconvertedintoanamorphous state. In HPC/SFSethanol solution, SFS is well solubilized and homogeneouslydistributedwithinthepolymersolution,soduring the electrospinning process, drug mobility is restricted due to therapidevaporationofthesolventandtheSFSmoleculescould notformcrystallineaggregates.Theabsenceofanyintenseand sharppeakinthepatternofHP␤CDrevealsthatitpossessesan amorphous structure. In the XRD pattern of HPC/SFS/HP␤CD- IC-NF, the crystalline diffraction peak of SFS was also absent.

That means SFS was in amorphous state in the HPC/SFS/HP␤ CD-IC-NF[48].

3.6. Invitroreleasestudy

Thecumulativerelease(%)ofSFSfromdifferentsamplesisgiven inFig.7asafunctionofimmersiontime.Allsamplesdepictedsus- tainedreleasebehaviorofSFSoveraperiodof720min(Fig.7a).

SFS followeda typicaldual-stagerelease profilefromallofthe samples,aninitialrelativelyfastreleasefollowedbya constant release.HPC/SFS/HP␤CD-IC-NFreleasedmuchmoreamountofSFS intotalthanSFS(powder)andHPC/SFS/HP␤CD-ICfilm.Thiscould beduetothehighsurfaceareaofHPC/SFS/HP␤CD-IC-NFcompared toSFS(powder)andHPC/SFS/HP␤CD-ICfilm.Theactualloading (%)ofSFSinHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFweredeter- minedas76±1%and73±1%,respectively.However,totalamount ofreleasedSFSwasmuchhigherfromHPC/SFS/HP␤CD-IC-NFthan HPC/SFS-NF.Possiblereasonforthiscouldbethehighersurface areaofHPC/SFS/HP␤CD-IC-NFduetothelowerfiberdiameteras

(7)

Fig.6. XRDpatternsofSFS,HP␤CD,HPCNFandHPCnanofiberscontainingSFS.

Fig. 7.The cumulative release of SFS from SFS (powder), HPC/SFS film, HPC/SFS/HP␤CD-ICfilm,HPC/SFS-NFwithoutPCL,HPC/SFS/HP␤CD-IC-NFwithout PCL,PCL-HPC/SFS-NFandPCL-HPC/SFS/HP␤CD-IC-NFfor(a)720min,(b)120min (n=3,theerrorbarsinthefigurerepresentthestandarddeviation(SD)),and(c)the solubilityofSFSaspowder,inHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFinaqueous solution.

mat can facilitate the dissolution of the drug in the medium and promote a rapid drugrelease [49]. In order toextend the releasetimeofSFSfromHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NF, wehavepreparedPCL-HPC/SFS-NFand PCL-HPC/SFS/HP␤CD-IC- NF. SFS release from PCL-HPC/SFS-NFwas slowercompared to HPC/SFS-NFwithoutPCLandPCL-HPC/SFS/HP␤CD-IC-NFreleased SFSslowerthanHPC/SFS/HP␤CD-IC-NFwithoutPCLbecauseofthe presenceofanextralayerforreleaseofSFS.Asaconsequence,PCL- HPC/SFS/HP␤CD-IC-NFexhibitedarapidreleaseattheinitialstage andthensustainedrelease atthefinalstage.Thismightbecru- cialformanyapplicationsthatarerelatedwiththepreventionof bacteriaproliferation.Bringingtothecontext,higherreleaseatthe initialstageisofgreatimportancewhichlimitstheproliferationof bacteriainthebeginningwhilesustainedreleaseinhibitsthefew bacteriawhichmanagedtoproliferate[50].

HPC/SFS/HP␤CD-IC-NFreleasedhigheramountofSFSintheini- tialstageand ineach time period givenonthegraph;and the maximumamountofreleasedSFSwasalmost14%higherascom- paredtoHPC/SFS-NF.Aswementionedbefore,thissituationmight berelatedwiththeexistenceofHP␤CDinthematrix[51].CDs haveabilitytoenhancedrugreleasefrompolymericsystems,since theyincrease theconcentrationof diffusiblespecieswithin the matrix[52].WhenahydrophobicdrugmakescomplexwithCD itssolubilityincreasesconsiderablywhereCD-ICisusuallymore hydrophilicthanthefreedrug.ThenanofiberscontainingCD-IC weteasierandthestructuredisintegratesdissolvingthesubstance quickly [51,53]. The enhancement in thesolubility of SFS with HPC/SFS/HP␤CD-IC-NFwasverifiedbysolubilitytest.TheUV–Vis spectroscopyofSFS(powder),HPC/SFS-NFandHPC/SFS/HP␤CD- IC-NFdissolvedinwaterisshowninFig.7c.HPC/SFS-NFallowsthe SFSdrugtobedispersedinthemediumwhichfacilitatesitsdisso- lution.AlthoughsameamountofSFSwasusedforeachsamplethe solubilityofSFShasincreasedmuchmoreinHPC/SFS/HP␤CD-IC- NF.Additionally,thepresenceofCDmaylowertherequireddose ofanactivemoleculebyimprovingitssolubility.Consequently, HPC/SFS/HP␤CD-IC-NFcouldbeusedasanefficientdrugdelivery systemforwounddressingpurpose.

4. Conclusion

The concept of employing electrospunnanofibers as matrix andimprovingthesolubilityofhydrophobiccompoundsbyCD- ICs are well-known approaches those have been investigated.

Therefore, we have anticipated that combination ofdrug/CD-IC andversatileelectrospinningprocesscouldenableHPCnanofibers to be used for the deliveryof a variety of hydrophobic drugs.

Here, SFS wasusedasa model drugtostudyitsrelease kinet- icsfromelectrospunHPCnanofibersincorporatingSFS/HP␤CD-IC.

ThestoichiometryofthecomplexbetweenSFSand HP␤CDwas determinedtobe1:1byJob’splot.Furthermore,modelingstud- ies performedusing ab initiotechniques alsorevealed that the

(8)

stoichiometryoftheSFS/HP␤CD-ICwas1:1(SFS:HP␤CD).There- fore,theresultsofmolecularmodelingareingoodagreementwith theexperimentaldata.SFSreleasefromPCL-HPC/SFS/HP␤CD-IC- NFthatwaspreparedbyplacingHPC/SFS/HP␤CD-IC-NFbetween PCLnanofibrousmatswasslowercomparedtoHPC/SFS/HP␤CD- IC-NFwithoutPCL.Controlledrelease ofSFS wasattainedfrom HPC/SFS-NFandHPC/SFS-HP␤CD-ICNFforaperiodof720min,yet weobservedthathigheramountofSFSwasreleasedfromHPC/SFS- HP␤CD-IC-NFwhencomparedtoHPC/SFS-NF.Thisispossiblydue tothepropertyofCD-ICtoenhancethesolubilityofhydrophobic SFSmoleculesviainclusioncomplexationwithHP␤CDandhigher surfaceareaofHPC/SFS/HP␤CD-IC-NFcomparedtoHPC/SFS-NF.

Asaresult,PCL-HPC/SFS/HP␤CD-IC-NFdepictedslowreleaseand highestamountoftotalSFSrelease.Thisstudycontributestothe existingliteratureforimprovingCD-ICfunctionalizedelectrospun nanofibersthatmightbeusedaswounddressingwithcharacter- isticsofbothCDandelectrospunnanofibersfordeliveryofpoorly solubledrugs.

Acknowledgments

Dr. Uyar acknowledges The Scientific and Technologi- cal Research Council of Turkey (TUBITAK) -Turkey (Project no. 111M459) and EU FP7-PEOPLE-2009-RG Marie Curie-IRG (NANOWEB,PIRG06-GA-2009-256428)andTheTurkishAcademy ofSciences–OutstandingYoungScientistsAwardProgram(TUBA- GEBIP)-Turkeyforpartialfundingoftheresearch.Z.Aytacthanks to TUBITAK (Project no. 111M459 and 213M185) for the PhD scholarship.

References

[1]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,JohnWiley&SonsPublishing,Weinheim,2012.

[2]A.Greiner,J.H.Wendorff,Angew.Chem.Int.Ed.46(2007)5670.

[3]J.H.Guo,G.W.Skinner,W.W.Harcum,P.E.Barnum,Pharm.Sci.Technol.Today 1(1998)254.

[4]A.Abdelbary,A.H.Elshafeey,G.Zidan,Carbohydr.Polym.77(2009)799.

[5]Y.Bai,Z.Zhang,A.Zhang,L.Chen,C.He,X.Zhuang,X.Chen,Carbohydr.Polym.

89(2012)1207.

[6]S.Shukla,E.Brinley,H.J.Cho,S.Seal,Polymer46(2005)12130.

[7]L.Francis,A.Balakrishnan,K.Sanosh,E.Marsano,Mat.Lett.64(2010)1806.

[8]V.Periasamy,K.Devarayan,M.Hachisu,J.FiberBioeng.Inform.5(2012)191.

[9]J.Szejtli,Chem.Rev.98(1998)1743.

[10]E.M.M.DelValle,ProcessBiochem.39(2004)1033.

[11]L.Szente,J.Szejtli,Adv.DrugDeliv.Rev.36(1999)17.

[12]M.F.Canbolat,A.Celebioglu,T.Uyar,ColloidsSurf.B:Biointerfaces115(2014) 15.

[13]A.Celebioglu,O.C.O.Umu,T.Tekinay,T.Uyar,ColloidsSurf.B:Biointerfaces116 (2014)612.

[14]X.Z.Sun,G.R.Williams,X.X.Hou,L.M.Zhu,Carbohydr.Polym.94(2013)147.

[15]T.Vigh,T.Horváthová,A.Balogh,P.L.Sóti,G.Drávavölgyi,Z.K.Nagy,G.Marosi, Eur.J.Pharm.Sci.49(2013)595.

[16]X.Luo,C.Xie,H.Wang,C.Liu,S.Yan,X.Li,Int.J.Pharm.425(2012)19.

[17]J.L.Manasco,C.Tang,N.A.Burns,C.D.Saquing,S.A.Khan,RSCAdv.4(2014) 13274.

[18]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,ACSNano4 (2010)5121.

[19]T.Uyar,R.Havelund,Y.Nur,A.Balan,J.Hacaloglu,L.Toppare,F.Besenbacher, P.Kingshott,J.Membr.Sci.365(2010)409.

[20]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besenbacher,P.Kingshott,J.Membr.

Sci.332(2009)129.

[21]F.Kayaci,Y.Ertas,T.Uyar,J.Agric.FoodChem.61(2013)8156.

[22]F.Kayaci,O.C.O.Umu,T.Tekinay,T.Uyar,J.Agric.FoodChem.61(2013)3901.

[23]F.Kayaci,T.Uyar,Carbohydr.Polym.90(2012)558.

[24]F.Kayaci,T.Uyar,FoodChem.133(2012)641.

[25]E.Mascheroni,C.A.Fuenmayor,M.S.Cosio,G.D.Silvestro,L.Piergiovanni,S.

Mannino,A.Schiraldi,Carbohydr.Polym.98(2013)17.

[26]Z.Aytac,S.Y.Dogan,T.Tekinay,T.Uyar,ColloidsSurf.B:Biointerfaces120(2014) 125.

[27]A.A.M.Prabhu,G.Venkatesh,N.Rajendiran,J.Solut.Chem.39(2010)1061.

[28]B.Szafran,J.Pawlaczyk,J.Incl.Phenom.Mol.Recognit.Chem.23(1996)277.

[29]G.Gladys,G.Claudia,L.Marcela,Eur.J.Pharm.Sci.20(2003)285.

[30]L.G.Mobarakeh,M.P.Prabhakaran,M.Morshed,M.H.Nasr-Esfahani,S.Rama- krishna,Biomaterials29(2008)4532.

[31]E.J.Chong,T.T.Phan,I.J.Lim,Y.Z.Zhang,B.H.Bay,S.Ramakrishna,C.T.Lim,Acta Biomat.3(2007)321.

[32]M.Zamani,M.Morshed,J.Varshosaz,M.Jannesari,Eur.J.Pharm.Biopharm.75 (2010)179.

[33]P.Job,Ann.diChim.Appl.9(1928)113.

[34]K.Lindner,W.Saenger,Carbohydr.Res.99(1982)103.

[35]W.Kohn,L.J.Sham,Phys.Rev.140(1965)A1133.

[36]P.Hohenberg,W.Kohn,Phys.Rev.136(1964)B864.

[37]G.Kresse,J.Furthmüller,Phys.Rev.B54(1996)11169.

[38]G.Kresse,J.Furthmüller,Comput.Mat.Sci.6(1996)15.

[39]F.H.Allen,ActaCrystallogr.Sect.B:Struct.Sci.58(2002)380.

[40]P.Mura,G.Bettinetti,F.Melani,A.Manderioli,Eur.J.Pharm.Sci.3(1995)347.

[41]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,Phys.Rev.B46(1992)6671.

[42]S.Grimme,J.Comput.Chem.27(2006)1787.

[43]P.E.Blöchl,Phys.Rev.B50(1994)17953.

[44]M.O.Ahmed,I.El-Gibaly,S.M.Ahmed,Int.J.Pharm.171(1998)111.

[45]T.Irie,K.Fukunaga,A.Yoshida,K.Uekama,H.M.Fales,J.Pitha,Pharm.Res.5 (1988)713.

[46]T.Uyar,F.Besenbacher,Polymer49(2008)5336.

[47]S.Ramakrishna,AnIntroductiontoElectrospinningandNanofibers,WorldSci- entificPublishingCompanyIncorporated,Singapore,2005.

[48]E.E.M.Eid,A.B.Abdul,F.E.O.Suliman,M.A.Sukari,A.Rasedee,S.S.Fatah,Carbo- hydr.Polym.83(2011)1707.

[49]X.Li,M.A.Kanjwal,L.Lin,I.S.Chronakis,ColloidsSurf.B:Biointerfaces103 (2013)182.

[50]K.Kim,Y.K.Luu,C.Chang,D.Fang,B.S.Hsiao,B.Chu,M.Hadjiargyrou,J.Control.

Release98(2004)47.

[51]J.Szejtli,CyclodextrinTechnology,Kluweracademic,Dordrecht,1988.

[52]D.C.Bibby,N.M.Davies,I.G.Tucker,Int.J.Pharm.197(2000)1.

[53]J.Panichpakdee,P.Supaphol,Carbohydr.Polym.85(2011)251.

Referenties

GERELATEERDE DOCUMENTEN

Schoneker, 2003). We observed that PVA NF could not preserve geraniol without the CD-IC, yet incorporation of geraniol/ γ-CD-IC in PVA NF suc- cessfully yielded geraniol with

The absence of a vanillin di ffraction peak in vanillin/CD-IC NFs strongly suggested the inclusion complexation between vanillin and CD molecules (HP βCD, HPγCD and MβCD), as

Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HP βCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF)

Antioxidant (AO) activity of geraniol, HPbCD-NF, MbCD-NF, HPgCD-NF, HPbCD/geraniol–IC-NF, MbCD/geraniol–IC-NF, and HPgCD/geraniol–IC-NF were tested according to

Antioxidant test results showed that PCL/ a -TC/b-CD-IC-NF had higher antioxidant activity as compared to PCL/ a -TC-NF in methanol:water (1:1) system due to the stabilization

After the con firmation of CD-IC formation by computational modeling and ex- perimental studies including phase solubility, 1 H-NMR, FTIR, XRD, and TGA, CIP/HPβCD-IC were

La commission était composée de cinq membres et nous ne sommes plus que deux pour défendre le rapport émanant de la majorité, je.. Dans nos

Het advies gaat in op de mogelijkheden om recreatie te combineren met andere grote opgaven, zoals natuur, energietransitie, binnenstedelijk bouwen en cultuurhistorie.. Om input op