• No results found

University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Coupled adhesion of bacteria to surfaces

Skogvold, Rebecca van der Westen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Skogvold, R. V. D. W. (2018). Coupled adhesion of bacteria to surfaces. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

C H A P T E R

4

Floating- and Tether- coupled Adhesion of

Bacteria to Hydrophobic and Hydrophilic

Surfaces

This chapter is published with permission from American chemical society:

Rebecca van der Westen, Jelmer Sjollema, Robert Molenaar, Prashant K. Sharma, Henny C. van der Mei and Henk J. Busscher

(3)
(4)

ABSTRACT Modelsforbacterialadhesiontosubstratumsurfacesallincludeuncertaintywithrespectto the(ir)reversibilityofadhesion.Inamodel,basedonvibrationsexhibitedbyadheringbacteriaparallel toasurface,adhesionwasdescribedasaresultofreversiblebindingofmultiplebacterialtethersthat detachfromandsuccessivelyreͲattachtoasurface,eventuallymakingbacterialadhesionirreversible. Here,weuseTotalInternalReflectionMicroscopytodeterminewhetheradheringbacteriaalsoexhibit variationsovertimeintheirperpendiculardistanceabovesurfaces.Streptococciwithfibrillarsurface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity.Adhering,nonͲfibrillatedstreptococcivibratedwithamplitudesaround20nmabove ahydrophobicsurface.Amplitudesdidnotdependonionicstrengthforeitherstrain.Calculationsof bacterialenergiesfromtheirdistancesabovethesurfacesusingtheBoltzmanequationshowedthat bacteriawithfibrillartethersvibratedasaharmonicoscillator.Theenergyofbacteriawithoutfibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey and Overbeek)Ͳinteractionenergy.Distancevariationsabovethesurfaceovertimeofbacteriawithfibrillar tethersaresuggestedtobegovernedbytheharmonicoscillations,allowedbyelasticityofthetethers, piercingthroughthepotentialenergybarrier.Bacteriawithoutfibrillartethers“float”aboveasurface inthesecondaryenergyminimum,withtheirperpendiculardisplacementrestrictedbytheirthermal energy and the width of the secondary minimum. The distinction between “tetherͲcoupled” and “floating”adhesionisnew,andmayhaveimplicationsforbacterialdetachmentstrategies.

 

(5)

INTRODUCTION Bacterialadhesionoccurstomanydifferentsurfacesinawidevarietyofenvironments,andis eitherdesirablesuchasinmanybioreactorsystems,soilremediationortointestinalsurfacesinthe humanbodyoris,amongstothers,thecauseofsevereinfections,foodspoilageormicrobiallyͲinduced corrosion.1Accordingly,thereisanongoingquesttomodelbacterialadhesion.Thisquestisontheone handledbybiochemiststryingtodiscovermoreandmorespecificligandͲreceptorsystemsfacilitating bacterialadhesiontosurfaces,whileontheotherhandphysicoͲchemistsattempttodesigngenerally validmodelsthatexplainandpredictadhesionofbacteriatosurfacesbytreatinglivingorganismsas (bio)colloidalparticles.2,3

 The twomostcommonphysicoͲchemicalapproachesused to modelbacterialadhesionare surfacethermodynamic4,5and(extended)DLVO(Derjaguin,Landau,VerweyandOverbeek)Ͳtypesof analyses.6,7Applicationofsurfacethermodynamicsinvolvesthemeasurementofcontactangleswith differentliquids,followedbycalculationandcomparisonofthefreeenergiesofthesubstratumand bacterialcellsurfacestoyieldaninterfacialfreeenergyofadhesion.Negativevaluesfortheinterfacial freeenergyofadhesionareassumedtobepredictiveforbacterialadhesiontooccur,butthishasnever becomeagenerallyvalidobservation,possiblybecausethesurfacethermodynamicrequirementof reversibilityisseldomornevermetandtheinterfacebetweenabacteriumandasubstratumsurface is a dynamic one, changing over time.8,9 DLVOͲtypes of analyses calculate the interaction energy

between a (bio)colloidal particle and a substratum surface as a function of distance between the particle and the substratum surface. Under most relevant conditions, electrostatic interactions in bacterial adhesion are repulsive, that together with attractive LifshitzͲVan der Waals forces yield a secondaryinteractionminimumatadistanceofaround20–50nm10fromthesubstratumsurface,a

potential energy barrier that impedes close approach and a deep primary minimum close to the surfacethatcanonlybereachedonceaparticlehasovercomethepotentialenergybarrier.AlsoDLVOͲ typeapproacheshaveneveracquiredageneralvalidityacrossdifferentbacterialstrainsandspecies. An important reason for this is, that bacterial cell surfaces can possess a wide variety of surface appendagesofdifferentlength,width,compositionandsurfacedensitythathavebeensuggestedto be able to pierce the potential energy barrier and tether a bacterium to a surface. Moreover, possessionoftetherswithlengthsthatmayrangeuptoseveralmicrometers,9makesitimpossibleto adequatelydefinetheinteractiondistanceinDLVOͲtypeanalysesofbacterialadhesionasitcreatesa multiscaleroughnessonthebacterialcellsurface.11Severalofthetroublesomeissuesinvolvedinthe applicationofsurfacethermodynamicandDLVOͲtypesofanalysesofbacterialadhesionhavebeen addressedinanewmodelofbacterialadhesiondescribingirreversibleadhesionofbacteriaasaresult ofthereversiblebindingofmultipletethersthatdetachfromandsuccessivelyreͲattachtoasurface,

(6)

withtheirreversibleadsorptionofhighͲmolecularͲweightproteinstosurfaces,mediatedbymultiple, reversiblyͲbinding molecular segments and was confirmed by in silico modeling of the keyͲ observations underlying the model: 1) forceͲdistance curves in single probe bacterial atomic force microscopy showing detachment events indicative of multiple binding tethers, 2) nanoscopic displacementsofbacteriawithrelativelylongautocorrelationtimesuptoseveralseconds,inabsence ofmacroscopicdisplacement,3)nanoscopicvibrationalamplitudesofadheringbacteriaparalleltoa surfacedecreasingwithincreasingadhesionͲforces,and4)increasesinmeanͲsquaredͲdisplacements overprolongedtimeperiodsaccordingtotɲwith0<ɲ<<1,indicativeofconfineddisplacement.9 Theroleofadhesionforcesactingperpendiculartoasubstratumsurfacemayseempuzzling inamodelthatisbasedonparalleldisplacementsofadheringbacteriaoverthesurface.However,in

silico modeling suggested that tether adhesion forces merely dictate the frequency with which individualtethersdetach.Thisleavesthequestionopenastowhetherthedistanceofanadhering bacteriumaboveasubstratumsurfacealsovariesovertime,similarasitspositiononasubstratum surface,andwhethertetherͲbindingplaysaroleheretoo.

In order to answer this question, this paper aims to determine whether adhering bacteria exhibitvariationsovertimeintheirdistanceperpendiculartosubstratumsurfaces,andifso,whether thesevariationsdifferfortwostreptococcalstrainswithandwithout91nmlongfibrillar,tethers.Total InternalReflectionMicroscopy(TIRM)12–14willbeusedtodeterminethevariationsindistanceabove

different substratum surfaces over time, employing hydrophobic and hydrophilic glass surfaces as substrata.Distancevariationswillberelatedwiththeshapeandwidthofthesecondaryinteraction minimumanditsdistancefromthesubstratumsurfaceinaDLVOͲtypeofanalysis.

EXPERIMENTALSECTION 

BacterialStrains,CultureConditionsandHarvesting.StreptococcussalivariusHB7,possessing

91 nm long fibrillar tethers and its isogenic mutant HBC12, considered bald without demonstrable surfacetethers,15wereemployedinthisstudy(seeFigure1).BothS.salivariusstrainsarenegatively charged,yetdifferinsurfacehydrophobicitywithS.salivariusHBC12,beingslightlymorehydrophilic thanS.salivariusHB7.16BothS.salivariusstrainswerepreͲculturedin10mLofToddHewittBroth (THB,OXOID,Basingstoke,UK),understaticconditions.PreͲculturesweregrownfor24hat37°C.After 24h,preͲcultureswereinoculatedinto200mLofTHB,andmaintainedunderidenticalconditionsfor another16h.Streptococciwereharvestedbycentrifugationat5000gfor5minat10°C,subsequently washedthreetimesin100mLadhesionbufferhavinganionicstrengthof57mM(50mMpotassium chloride,2mMpotassiumphosphate,and1mMcalciumchloride,pH6.8)orionicstrengthof0.57 mM(10timesdilutedadhesionbuffer).Followingthis,bacteriaweresonicatedonice3timesfor10s at30W(VibraCellModel375;SonicsandMaterialsInc.,Danbury,CT)tobreakbacterialchainsand

4

(7)

obtainsinglebacteria.Finally,bacteriawerereͲsuspendedinadhesionbuffertoafinalconcentration of3x108bacteriapermL,asdeterminedusingaBürkerͲTürkcountingchamber.   Figure1Transmissionelectronmicrographsofnegativelystained(1%methylaminetungstate)sections ofS.salivariusHB7(a)andS.salivariusHBC12(b).Thebardenotes100nm.AdaptedfromVanderMei etal.withpermissionfromthepublisher,SpringerNature.15 

Preparation of Substratum Surfaces. Glass microscope slides (15 mm x 15 mm; Thermo

Scientific, 38116 Braunschweig, Germany) were used as substrata. Prior to each experiment, glass surfaces were cleaned by 10 min sonication at 100 W (Bransonic 2510E, Danbury, USA) in 2% Hellmanex (Hellma GmbH & CO., Müllheim, Germany), 99% ethanol and finally in ultrapure water (specific resistance > 18 Mɏ cm). Next, glass surfaces were treated with UV/ozone, yielding a hydrophilicsurfacewhileforthepreparationofhydrophobicsurfaces,glassslideswerethoroughly dried after waterͲwashing in an oven at 80°C, followed by silanization in 0.05% (w/v) dimethyldichlorosilane(DDSSigmaAldrich)in99%ethanolforapproximately15min.

Total Internal Reflection Microscopy. Adhesion of streptococci onto uncoated and  DDSͲ

coatedglasssurfaceswasestablishedfromadhesionbuffer(0.57mMor57mM)atroomtemperature. Tothisend,astreptococcalsuspensionwasintroducedintothecircularlyͲshapedflowchamber(14 mmdiameterand0.35mminheight)oftheinstrumentusingaperistalticpumpataflowrateof300 ʅLperminduring60min.Nextthechamberwasperfusedwithbuffer,afterwhichTIRMlightscattering wasmeasured.TIRMwasperformedonanobjectiveͲbasedtotalinternalreflectionfluorescence(TIRF) microscope (Nikon, Eclipse Ti with TIRF module, Tokyo, Japan), equipped with a high numerical aperture objective (Olympus, PLANOͲAPO 100×, 1.45, Tokyo, Japan) illuminated by a 488 nm laser (MellesGriot,DynamicLaser,SaltLakeCity,Utah,U.S.A.)laterallyfocusedonthebackfocalplane.To avoidoverͲexposurebythereflectedlaserbeam,aspatialfilterwasemployedtoblockthereflected beaminthebackfocalplanewithoutimageinterference.Thefiltercubecontainedonlya488dichroic mirror. Scattering light was captured on an electron multiplying, chargeͲcoupled device camera (Andor,ixonDUͲ885BVAndor,Dublin,Ireland).Imagesizewascroppedto512x512pixelresolutions toachieveaframerateof33framessͲ1over2000frames.Priortoeachexperiment,theTIRMangle

(8)

was observed as 2 diffraction limited spots, separated by the bacterial diameter, recognized as a cometͲorbitshape.17 Foreachadheringsinglebacterium,therelativezͲdisplacement,zt,attimetwithrespecttotheclosest distanceencountered,wascalculatedaccordingto  ݖ௧ൌ െ݈݊ ቀ ூ೟ ூ೘ೌೣቁ ݀௣[1] 

withIttheintensityofthescatteredlightintheevanescentfieldattimet,Imaxthemaximumintensity

belongingtothedistanceofclosestbacterialapproachanddpthepenetrationdepthoftheevanescent

wave(185nm).Absolutedistancescouldnotbeobtained,becausetheevanescentwaveintensitywas notconstantovertheentirefieldofview.AsaresultthemaximumintensityImaxwasdifferentforeach

bacteriumoverthefieldofview.Thevibrationalamplitudeȴzwascalculatedasthestandarddeviation ofallztͲdisplacementsovertheexperimentaltime.AllTIRMexperimentswerecarriedoutintriplicates

onuncoatedandDDSͲcoatedglasssurfacesusingdifferentbacterialculturesforeachexperiment.

Contact Angle Measurements. Contact angles were measured on the uncoated and DDSͲ

coated glass surfaces with water, formamide, and methyleneiodide. Three 0.5 μL droplets of each liquidwererandomlypositionedonone microscopeslide,employingthreeslidesforoneseriesof measurementswitheachoftheabovethreeliquids.Imagesofthedropletswererecordedbyacamera about5safterplacingadropletonacoverslipssurfaceandthedropletcontourdigitizedaftergreyͲ valuethresholding,afterwhichcontactangleswerecalculatedfromthedigitizedcontoursusinghomeͲ madesoftware.Contactanglesonbacteriaweremeasuredbypreparingmacroscopicbacteriallawns onmembranefilters.Bacteriallawnsweremadebysuspendingbacteriatoaconcentrationof3x108 mLͲ1inwater,followedbydepositiononacelluloseacetatemembranefilter(porediameter0.45μm) placedonafrittedglasssupportbyfiltrationofthesuspension.Atleastthreeseparatefilters,from three different cultures were used for each bacterial strain tested. Strains deposited similarly in a smoothandevenlayer.Thefilterswiththeirdepositedbacteriallawn,wereplacedonametalsample discandallowedtoairdryfor30to90min,18inordertoobtainrelativelystable,soͲcalled“plateau” contactangles,indicativeofbacteriainahydratedstatebutwithoutfreewaterinbetween.Contact anglesweresubsequentlymeasuredasdescribedabove.Thecontactangelspresented,representthe averagesfromthreeexperimentswithseparatepreparedsurfacesaswellasbacterialcultures. Next,contactanglesoneachsurfacewereconvertedtoaLifshitzͲVanderWaals(ɶLW)andacidͲ

base (ɶAB) surface free energy component, while the acidͲbase component was split up into an

electronͲdonating(ɶͲ)andanelectronͲaccepting(ɶ+)parameteraccordingto



(9)

[2]



in which ɶ denotes the surface free energy and/or its components and parameters of the various liquidsusedorthesolidsurfacetobeanalyzed,whileɽrepresentsthecontactangleofthedifferent liquids.19 Surface free energy components and parameters of the liquids used can be found in

SupportingInformationTableS1.

 Bacterial and Substratum Zeta Potentials. To determine the zeta potentials of the two

bacterial strains, particulate microelectrophoresis (Zetasizer nanoͲZS, Malvern Instruments, Worcestershire,UK)wascarriedoutatlowandhighionicstrength(0.57mMand57mM,respectively) atpH6.8.20Streamingpotentialmeasurementswereemployedtodeterminethezetapotentialsof

uncoatedandDDSͲcoatedglasssurfaces.Tothisend,glassslideswithandwithoutDDSͲcoatingwere mounted in a homemade parallel plate flow chamber, separated by a 100 μm Teflon spacer.21 A

platinumelectrodewaslocatedoneachsideofthechamber.Thestreamingpotentialsweremeasured atpressuresrangingfrom50to400mbar,andeachpressurewasappliedfor10sinbothdirections. Followingthis,thezetapotentialswerecalculatedbylinearregression,i.e.linearleastsquaresfitting ofthestreamingpotentials.

DLVO Theory. The DLVO theory, describes (bio)colloidal particle adhesion as a result of

attractive LifshitzͲVan der Waals and attractive or repulsive electrostatic forces. Accordingly, the interactionenergybetweenacolloidalparticleandasubstratumcanbeexpressedasafunctionof theirseparationdistance(d)as



ܩ்ை்ሺ݀ሻ ൌ  ܩ௅ௐሺ݀ሻ ൅  ܩா௅ሺ݀ሻ[3]



inwhichGTOT,GLW,andGELrepresentthetotal,LifshitzͲVanderWaals,andelectrostaticinteraction

energies,respectively.TheLifshitzͲVanderWaalsinteractionbetweenasphericalcolloidalparticleand aplanarsurfaceisgivenby  ܩ௅ௐሺ݀ሻ ൌ  െ஺ ଺ቂ ௔ ௗ൅ ௔ ௗାଶ௔൅ ݈݊ ቀ ௗ ௗାଶ௔ቁቃ[4] 

»» » » » ¼ º « « « « « ¬ ª    » » » » ¼ º « « « « ¬ ª » » » » ¼ º « « « « ¬ ª         2 . cos 1 2 . cos 1 2 . cos 1 RGLGH PHWK\OHQHL RGLGH PHWK\OHQHL IRUPDPLGH IRUPDPLGH ZDWHU ZDWHU /: RGLGH PHWK\OHQHL RGLGH PHWK\OHQHL /: RGLGH PHWK\OHQHL IRUPDPLGH IRUPDPLGH /: IRUPDPLGH ZDWHU ZDWHU /: ZDWHU J T J T J T J J J J J J J J J J J J

(10)

inwhichAistheHamakerconstant,aistheradiusofthecolloidalparticle.19TheHamakerconstant

was derived from the LifshitzͲVan der Waals component of interfacial free energy of adhesion accordingto



ܣ ൌ  െͳʹߨ݀଴ଶ߂ܩ஺ௗ௛௅ௐ       [5]



in which d0 is the distance of closest approach (0.157 nm).22–24 Analogously, the electrostatic

interactioncanbecalculatedusingmeasuredzetapotentialsaccordingto  ܩா௅ሺ݀ሻ ൌ ߨߝܽ൫ߞ ௕ଶ൅ ߞ௦ଶ൯ ൜ଶ఍್ା఍ೞ ್మା఍ೞమŽ ଵାୣ୶୮ሺି఑ௗሻ ଵିୣ୶୮ሺି఑ௗሻ൅ ݈݊ሾͳ െ ‡š’ሺെߢ݀ሻሿሽ[6] 

inwhichɸreferstothedielectricpermittivityofthemediumɺbandɺsreferstothezetapotentialsof

thebacteriumandsubstratumsurface,respectively.1/ʃistheDebyeͲHückellength,givenby  ߢ ൌ  ቂ ௘మ ఌ௞ಳ்σ ݖ௜ ௜݊௜ቃ ½        [7] 

in which e corresponds to the electron charge and kB is the Boltzman constant, T is the absolute

temperature,ziisthevalenceofionspresentandniisthenumberofionsperunitvolume.

StatisticalAnalysis.Allexperimentswerecarriedoutintriplicateswithseparatelyprepared

bacterial cultures as well as different surfaces, and all data are presented as means ± standard deviations.ResultswerecomparedpairͲwiseforthetwodifferentstrainsofbacteriafortheeffectsof ionicstrengthbyusingaStudent’stͲtest.p<0.05wasconsideredtobestatisticallysignificant.  RESULTS  Table1summarizesthecontactanglesmeasuredwithdifferentliquidsonbothsubstratum surfacesandbacterialstrains.Onthebasisofthewatercontactangles,uncoatedandDDSͲcoatedglass surfacescanbeclassifiedashydrophilicandhydrophobic,respectively.AlthoughS.salivariusHB7was morehydrophobicthanS.salivariusHBC12,bothbacterialstrainscanbeclassifiedashydrophilic.   

4

(11)

Table1ContactangleswithdifferentliquidsforuncoatedandDDSͲcoatedglasssurfacesaswellasfor

S.salivariusHB7andS.salivariusHBC12.Datarepresentaverageswithstandarddeviationsoverthree

droplets on three different glass surfaces of each type and bacterial lawns prepared from three differentbacterialcultures.  Surface/ Bacterialstrain ɽǁĂƚĞƌ (degrees) ɽĨŽƌŵĂŵŝĚĞ (degrees) ɽŵĞƚŚLJůĞŶĞŝŽĚŝĚĞ (degrees) Glass 23.3±1.5 19.3±2.3 52.3±6.4 DDSͲcoatedglass 97.0±1.7 74.3±6.7 63.3±3.8 ^͘ƐĂůŝǀĂƌŝƵƐHB7 34.3±4.6 12.3±2.5 24.0±6.0 ^͘ƐĂůŝǀĂƌŝƵƐHBC12 21.6±3.6 24.7±4.9 38.0±16.2  

Surface free energy components and parameters, calculated from contact angles with the threedifferentliquidsweresubsequentlycompiledinTable2,mostnotablyshowingasmallacidͲbase component for hydrophobic DDSͲcoated glass, due to both small electronͲdonating and accepting parameters. In addition, the ratio of electronͲdonating over electronͲaccepting parameters varied betweenthetwosubstratumsurfaces,indicativeofdifferentstructuringofwatermoleculesnearby thesurface.19,25BothstreptococcalstrainshadsimilaracidͲbasecomponents,butS.salivariusHBC12 hadamuchhigherelectronͲdonatingsurfacefreeenergyparameterthanS.salivariusHB7,resulting indifferentratiosbetweentheirelectronͲdonatingandelectronͲacceptingparameters.Zetapotentials ofthedifferentsurfaces,alsocompiledinTable2,werenegativeforallsurfacesatbothlowandhigh ionicstrength,whilebeingsignificantlymorenegativeinthelowionicthaninthehighionicstrength buffer.   

(12)

Table2Surfacefreeenergycomponentsandparameterstogetherwithzetapotentialsforuncoated

andDDSͲcoatedglasssurfacesaswellasforS.salivariusHBC12andS.salivariusHB7,respectively. Data regarding surface energetics represent averages with standard deviations over three measurementsonthreedifferentglasssurfacesofeachtypeandbacteriallawnspreparedfromthree differentbacterialcultures.Bacterialzetapotentialsareaverageswithstandarddeviationsoverthree experiments with different bacterial cultures, while substratum zeta potentials are averages with standarddeviationsoverthreestreamingpotentialmeasurementswithdifferentuncoatedandDDSͲ coatedsurfaces.  Surfacefreeenergy componentsandparameters (mJmͲ2) Glass DDSͲcoated glass ^͘ƐĂůŝǀĂƌŝƵƐ HBC12 ^͘ƐĂůŝǀĂƌŝƵƐ HB7 ɶ 54.9±1.1 27.7±1.0 51.5±2.6 57.0±1.2 ɶLW 34.0±3.0 26.8±1.3 40.1±7.9 46.3±2.1 ɶAB 21.1±3.8 0.4±0.4 11.5±8.8 10.6±3.2 ɶͲ 48.0±0.8 2.1±1.8 51.8±4.9 35.1±10.2 ɶ+ 2.3±0.9 0.4±0.7 0.9±0.9 1.0±0.8 ɶͲ/ɶ+ 20.6±0.9 4.1±3.2 59.7±5.5 35.1±13.5 Zetapotentials (mV) Glass DDSͲcoated glass ^͘ƐĂůŝǀĂƌŝƵƐ HBC12 ^͘ƐĂůŝǀĂƌŝƵƐ HB7 0.57mM Ͳ84.9±0.4 Ͳ55.2±1.4 Ͳ20.0±0.4 Ͳ16.9±2.4 57mM Ͳ39.5±0.6 Ͳ27.8±0.0 Ͳ8.2±0.2 Ͳ9.1±2.5  ThesurfacefreeenergycomponentsfromTable2canbeusedtogetherwiththeircounterparts forwater(seeSupportinginformationTableS1)tocalculatetheLifshitzͲVanderWaalsinterfacialfree energy of adhesion (Eq. 4) and subsequently using Eq. 5, to calculate the Hamaker constant for bacterialinteractionwithuncoatedorDDSͲcoatedglassinanaqueoussuspension.Sincetheconcept of interaction distance in the DLVO approach loses its meaning when the bacterial cell surface possessesamultiscaleroughness,11suchasduetofibrillarsurfacetethersinS.salivariusHB7,these

calculationswereonlymadeforS.salivariusHBC12,yieldingHamakerconstantsof3.8x10Ͳ21Jand1.6

x10Ͳ21JagainstglassandDDSͲcoatedglass,respectively.DLVOinteractionenergiesversusdistancefor S. salivarius HBC12 for glass and DDSͲcoated glass were subsequently calculated inserting these

HamakerconstantsandthezetapotentialsfromTable2,intoEqs.3,4and6,assumingabacterial radiusof500nm,26andaDebyeͲHückellength1/ʃforthetwoionicstrengths(0.57mMand57mM)

of1.3x10Ͳ8mand1.3x10Ͳ9m,respectively.



(13)

Figure2InteractionenergiesbetweenS.salivariusHBC12anduncoatedorDDSͲcoatedglasssurfaces

indifferentionicstrengthsuspensions,asafunctionoftheirsurfaceͲtoͲsurfaceseparationdistance. Insets represent part of the interaction energy curve at a different scale to better visualize the secondaryminimum.

Atlowionicstrength(Figure2),thesecondaryminimumwasextremelyshallowwithadepth of0.5and0.25kTforuncoatedandDDSͲcoatedglass,respectivelyandlocatedapproximately140to 150nmawayfromthesubstratumsurface,respectively.Duetothedecreaseofelectrostaticrepulsion, the secondary minimum at 57 mM ionic strength was much deeper than in 0.57 mM suspensions (Figure2)andamountedaround5kTand3kTforglassandDDSͲcoatedglass,respectively,whilebeing locatedapproximately15nmfromthesurface.Thepotentialenergybarrieratcloseapproachmaybe consideredtoohighforabacteriumtoovercomeandadhereintheprimaryminimumasawholeinall cases.27DuetotherelativelystrongelectronͲdonatingandelectronͲacceptingparametersofglassas comparedwithDDSͲcoatedglass,bothstrainswillalsoexperiencelargemonoͲpolarrepulsionatclose approach,thatwillbefarlessorabsentonhydrophobic,DDSͲcoatedglassthanonhydrophilicglass (seealsoTable2).ForS.salivariusHBC12onglassmonoͲpolarrepulsionȴGAB(d 0)amounts+30.4mJ

mͲ2,turningintoattraction (Ͳ10.6 mJ mͲ2)onDDSͲcoatedglass, butsince thisisat thedistanceof

closestapproachd0,itisnotreflectedintheinteractionenergiespresentedinFigure2accordingto Ͳ10 Ͳ8 Ͳ6 Ͳ4 Ͳ2 0 2 4 6 8 10 0 50 100 150 200 250 G (k T) Distance(nm) Ͳ6 Ͳ4 Ͳ2 0 2 0 50 100 150 G (kT) Distance(nm) Ͳ10 Ͳ8 Ͳ6 Ͳ4 Ͳ2 0 2 4 6 8 10 0 50 100 150 200 250 Distance(nm) Ͳ4 Ͳ2 0 2 0 50 100 G (k T) Distance(nm) 57mM 57mM Glass DDScoatedglass Ͳ10 Ͳ8 Ͳ6 Ͳ4 Ͳ2 0 2 4 6 8 10 0 50 100 150 200 250 G (k T) Ͳ1 0 1 110 160 210 G (k T) Distance(nm) 0.57mM Ͳ10 Ͳ8 Ͳ6 Ͳ4 Ͳ2 0 2 4 6 8 10 0 50 100 150 200 250 Ͳ1 0 1 110 160 210 G (k T) Distance(nm) 0.57mM

(14)

As a first step in the TIRM measurements, the chamber was perfused with a bacterial suspensionandthenumberofadheringstreptococcienumerated,assummarizedinFigure3.

S.salivariusHB7withitsfibrillartethersadheredinapproximatelyequalnumberstouncoatedand

DDSͲcoatedglass,regardlessofionicstrength(11x106cmͲ2and13x106cmͲ2).S.salivariusHBC12

demonstratednomicroscopicallyenumerable numberstothe uncoatedglasssurface,but onDDSͲ coatedglassenumerablenumberswereobserved,amounting2x106cmͲ2and4x106cmͲ2forthelow

andhighionicstrengthsuspension,respectively. 



Figure3NumbersofadheringS.salivariusHB7andS.salivariusHBC12onglassandDDSͲcoatedglass

surfaces at ionic strengths of 0.57 mM and 57 mM. Note that on uncoated glass, the number of adheringS.salivariusHBC12wastoolowformicroscopicenumeration.



 Vibrational amplitudes, ȴz, of S. salivarius HB7 adhering on a hydrophilic, uncoated glass surface(Figure4)wererelativelysmall,around5nmirrespectiveofionicstrength,whileS.salivarius HBC12adheredintoolownumbersforTIRMexperiments.S.salivariusHB7alsoexhibitedarelatively small vibrational amplitude ȴz of around 5 nm on hydrophobic, DDSͲcoated glass, albeit here the vibrationalamplitudewasslightlyhigheratlowionicstrength(notstatisticallysignificant;p>0.05, Student’stͲtest)thanathighionicstrength.Strikingly,S.salivariusHBC12demonstratedmuchhigher vibrationalamplitudesȴzonhydrophobic,DDSͲcoatedglassthanasobservedforS.salivariusHBC7. In addition, these vibrational amplitudes decreased slightly towards high ionic strength (not statisticallysignificant;p>0.05,Student’stͲtest).  0 5 10 15 20 0.57 57 Number of ba ct er ia (10 6cm Ͳ2) Ionicstrength(mM) Glass DDScoatedglass 0 5 10 15 20 0.57 57 Ionicstrength(mM) ^͘ƐĂůŝǀĂƌŝƵƐ HB7 ^͘ƐĂůŝǀĂƌŝƵƐ HBC12

4

(15)

Figure4VibrationalamplitudesȴzaboveglassorDDSͲcoatedglasssurfacesforS.salivariusHB7and

S. salivarius HBC12 in low and high ionic strength buffers, obtained using TIRM. Note that on

hydrophilicglass,thenumberofadheringS.salivariusHBC12wastoolowforTIRMmeasurements. Data represent averages over three separate experiments with error bars indicating the standard deviationsoverthreedifferentbacterialcultures.



DISCUSSION

Using TIRM, the variations in distance over time from a substratum surface to which they adhered,weremeasuredfortwostrainsofS.salivariuswithandwithoutfibrillarsurfacetethers.The strainwithfibrillartethersshowedvibrationalamplitudesofaround5nm,regardlessofionicstrength orsubstratumhydrophobicity.Thestrainwithoutfibrillartethersdidnotadhereinsufficientnumbers toderivevibrationalamplitudesonhydrophilic,uncoatedglass,duetounfavorablethermodynamic conditions(interfacialfreeenergyofadhesion27,28calculatedfromthedatainTable2:+26.5mJmͲ2 duetostrongmonoͲpolarrepulsion).Oppositely,onhydrophobic,DDSͲcoatedglass(interfacialfree energyofadhesion:Ͳ12.3mJmͲ2inabsenceofstrongmonopolarrepulsion)thenonͲfibrillatedstrain

adhered reasonably well and vibrated perpendicularly above the surface with a fivefoldͲhigher amplitudearound25nm,regardlessofionicstrength.Previously,TIRMhasbeenusedtoanalyzethe changeinseparationdistanceofthesestreptococcalstrainsadheringforonly5mintoasubstratum surfaceuponreducingionicstrength.29Whentheionicstrengthwasreducedfrom57mMto5.7mM,

thedistancebetweenthebacterialcellofS.salivariusHB7andthesubstratumincreasedfrom45nm to 90 nm, which suggests that fibrils change from a compressed, sideͲon conformation to a fully stretched state. This conclusion was later confirmed by QCMͲD (Quartz Crystal Microbalance with Dissipation)experiments30suggestingcollapseofstreptococcalfibrillartetherswithinseveralminutes

aftercontactwithasubstratumsurface.Thevibrationalamplitudeofthefibrillatedstrainobserved here(5nm)isnotonlymuchsmallerthanthedistanceatwhichabacteriumadheresabovethesurface andunaffectedbyionicstrength,butalsomuchsmallerthanthefibrillarlengthorthedistanceabove the surface measured before, probably because in our measurements 60 min of adhesion were

0 10 20 30 40 50 0.57 57 ȴ z (nm ) Ionicstrength(mM) Glass DDScoatedglass 0 10 20 30 40 50 0.57 57 Ionicstrength(mM) ^͘ƐĂůŝǀĂƌŝƵƐ HB7 ^͘ƐĂůŝǀĂƌŝƵƐ HBC12 HB7 HBC12 Strain Fibrillength(nm) 91 < 5

(16)

allowed before measurements, causing tether collapse over time under influence of the adhesion forcesarisingfromthesubstratumsurface.

The perpendicular, vibrational amplitudes of adhering S. salivarius HBC12 without fibrillar surfacetetherscanberelatedwiththeDLVOinteractionfreeenergycurvesbutduetolownumbers of adhering bacteria resulting from combined monoͲpolar and low ionic strength electrostatic repulsionsonlyathighionicstrength.Underhighionicstrengthconditions,thereisaclearsecondary minimum (Figure 2). Accounting for a thermal energy of 1.5 kT for a bacterium,30 this allows a

bacterium adhering in the secondary minimum to float and move away from and towards the substratum surface. This floating behavior is constrained by the width of the secondary minimum, whilebacteriaremaintoadhereatanaveragedistanceabovethesurfacedictatedbytheabsolute secondaryinteractionminimum.Thewidthofthesecondaryinteractionminimumat1.5kTabovethe absoluteminimumamountsaround15to20nm,whichcoincideswiththevariationsindistance(ȴz) abovethesurfaceobservedusingTIRM(Figure4).Perpendicular,vibrationalamplitudesofS.salivarius HBC12, adhering in a “floating” mode are much larger than of strain S. salivarius HB7, possessing fibrillartethers(Figure4).Tethercouplingtothesurfaceclearlyrestrictsthevibrationalamplitudes.

InordertoobtainfurtherevidenceforafloatingortetherͲcoupledmodeofbacterialadhesion, the energy of adhering bacteria as a function of their distance above a substratum surface can be compared with the distantͲdependent DLVO interaction energy (see Figure 2). The probability of a bacteriumbeinglocatedatacertainpositionzaboveasurfacefollowsfromthefrequencyhistogram of bacterial positions around its equilibrium, P(ztͲ<zt>), which was related to the Boltzmann

distribution32accordingto  ܲሺݖ௧െ ۃݖ௧ۄሻ ൌ ܣ כ ݁ݔ݌ ቀെீሺ௭೟ିۃ௭೟ ۄሻ ௞ಳ் ቁ[8]  inwhichAisanormalizationconstant,G(ztͲ<zt>)theinteractionenergyatapositionrelativetothe equilibriumzͲposition,<zt>,ofabacteriumǤ TheinteractionenergycannowreadilybecalculatedexpressedinkTunitsaccordingto  ீሺ௭೟ିۃ௭೟ۄሻ ௞ಳ் ൌ െ Ž‘‰ሺܲሺݖ௧െ ۃݖ௧ۄሻሻ ൅ Ž‘‰ሺܣሻ[9] 

Neglecting log (A) as a constant that merely defines the absolute energy level, the distance dependenceoftheinteractionenergyfollowsdirectlyfromthevibrationamplitudesandassociated probabilitiesthatapositionabovethesurfaceisoccupied.ShapeͲwise,theinteractionenergiesofS.

(17)

salivariusHB7(Figure5)arehighlysymmetricalandparabolicatbothionicstrengthsandcanbewell fittedtoaharmonicoscillatormodel32accordingto  ܩሺݖ௧െ ۃݖ௧ۄሻ ൌ ଵ ଶ݇ כ ሺݖ௧െ ۃݖ௧ۄሻ ଶ    [10]        inwhichkisthespringconstantofthetether,thatcanonaveragebecalculatedtobe2.5x10Ͳ5NmͲ1 regardlessofionicstrengths.Thusitcanbeconcludedthatstreptococciwithfibrillarsurfacetethers coupledirectlytoasubstratumsurface,whichrequirespiercingoftheDLVOpotentialenergybarrier bythetethers,whichhasbeensuggestedbefore33butneverbackedͲupwithexperimentalevidence.  

Figure 5 Comparison of the distance dependence of the interaction energy (calculated from

perpendicularvibrationamplitudesabovethesurface)betweenadheringS.salivariusHB7withfibrillar surfacetethersandhydrophobic,DDSͲcoatedglasssurfaceattwoionicstrengths(0.57mMand57 mM)withthedistancedependencecalculatedaccordingtoaharmonicoscillatormodel.Blacklines representthecalculatedinteractionenergyasafunctionoftherelativedisplacement(ztͲ<zt>),and

the red dotted lines represent their fitting to a harmonic oscillator model. The figure refers to 15 individualbacteria,eachrepresentedbyonepairofblackandreddottedlines,i.e.fits.

  

 ThedistancedependenceoftheinteractionenergycalculatedfromvibrationamplitudesforS.

salivariusHBC12iscompletelydifferentthanforS.salivariusHB7(compareFigures5and6).Most notably,itsdistancedependenceisnotsymmetricalaroundanequilibriumdistanceandtherewithnot according to a harmonic oscillator model but resembling the asymmetry of the DLVO secondary potentialenergyminimum(compareFigures2and6).ThisconfirmsabsenceoftetherͲcouplinganda modeofadhesionthatweproposetocall“floatingͲadhesion”abovethesurface.



Ͳ Ͳ Ͳ Ͳ

(18)

 Figure6Thedistancedependenceoftheinteractionenergy(calculatedfromperpendicularvibration

amplitudesabovethesurface)betweenadheringS.salivariusHBC12withoutfibrillarsurfacetethers and hydrophobic, DDSͲcoated glass surface at two ionic strengths (0.57 and 57 mM), showing an asymmetrical distribution around their equilibrium position. Black lines represent the calculated interactionenergyasafunctionoftherelativedisplacement(ztͲ<zt>).Thefigurerefersto15individual

bacteria,eachrepresentedbyoneline. 

 In summary, we have provided experimental evidence for the existence of two modes of bacterial adhesion, as schematically summarized in Figure 7. Bacteria with fibrillar surface tethers adheretoasubstratumsurfaceinanirreversiblefashionbytetherͲcouplingtothesurface,i.e.piercing ofthetetherthroughthepotentialenergybarrier(Figure7a).Distancevariationsabovethesurface overtimearegovernedbytheharmonicoscillationsallowedbythespring.Bacteriawithoutfibrillar surfacetethersadhereinthesecondaryenergyminimumwiththeirperpendiculardisplacementover timerestrictedbythewidthofthesecondaryminimumat1.5kTabovetheminimumitself(Figure7b). Thedistinctionbetween“tetherͲcoupled”and“floating”adhesionisnew,andmayhaveimplications for bacterial detachment strategies, since detachment of tetherͲcoupled bacteria may involve disruptingthebondofmultipletetherswithasurfacewhile“floating”adhesionwillbedisruptedby decreasingthedepthofthesecondaryinteractionminimum,whichisrelativelyeasye.g.bychanging prevailingionicstrengthconditionsorslightͲrinsingofthesubstratawithadheringbacteria(datanot shown).(FordetailsondetachmentforcesinvolvedinslightͲrinsingseeGomezͲSuarezetal.34) 

0.57mM

Ͳ

Ͳ

Ͳ

Ͳ

57mM

4

(19)

  Figure7SchematicsoftetherͲcoupledadhesionofabacterium(a)andfloatingadhesion(b).Notethat tetherͲcoupledadhesionrequirespiercingoftheelastictether(indicatedasaredspring)throughthe DLVOͲpotentialenergybarrier.   SupportingInformation Surfacefreeenergyparametersandcomponentsofwater,formamide,methyleneiodideused forcontactanglemeasurements.  ACKNOWLEDGEMENTS ThisstudywasentirelyfundedbyUMCG,Groningen,TheNetherlands.HJBisalsodirectorof aconsultingcompanySASABV.Theauthorsdeclarenopotentialconflictsofinterestwithrespectto authorshipand/orpublicationofthisarticle.Opinionsandassertionscontainedhereinarethoseofthe authorsandarenotconstruedasnecessarilyrepresentingviewsofthefundingorganizationortheir respectiveemployer(s).    

(20)

REFERENCES (1) HallͲStoodley,L.;Costerton,J.W.;Stoodley,P.BacterialBiofilms:FromtheNatural EnvironmenttoInfectiousDiseases.Nat.Rev.Microbiol.2004,2,95–108. (2) Rijnaarts,H.H.M,Norde,W.,Bouwers,E.J.,Lyklema,J.ResearchBacterialDepositionin PorousMediaRelatedtotheCleanBedCollisionEfficiencyandtoSubstratumBlockingby AttachedCells.Environ.Sci.Technol.1996,30,2869–2876. (3) Strevett,K.A.;Chen,G.MicrobialSurfaceThermodynamicsandApplications.Res.Microbiol. 2003,154,329–335. (4) Absolom,D.R.;Lamberti,F.V.;Policova,Z.;Zingg,W.;VanOss,C.J.;Neumann,A.W.Surface ThermodynamicsofBacterialAdhesion.Appl.Environ.Microbiol.1983,46,90–97. (5) Fletcher,M.;Marshall,K.C.BubbleContactAngleMethodforEvaluatingSubstratum InterfacialCharacteristicsandItsRelevancetoBacterialAttachment.Appl.Environ.Microbiol. 1982,44,184–192. (6) Rijnaarts,H.H.M.;Norde,W.;Bouwer,E.J.;Lyklema,J.;Zehnder,A.J.B.Reversibilityand MechanismofBacterialAdhesion.ColloidsSurf.BBiointerfaces1995,4,5–22. (7) An,Y.H.;Friedman,R.J.ConciseReviewofMechanismsofBacterialAdhesiontoBiomaterial Surfaces.JBiomed.Mater.Res.1998,43,338–348. (8) Busscher,H.J.;Uyen,M.H.M.J.C.;Weerkamp,A.H.;Postma,W.J.;Arends,J.Reversibilityof AdhesionofOralStreptococcitoSolids.FEMSMicrobiol.Lett.1986,35,303–306. (9) Sjollema,J.;VanderMei,H.C.;Hall,C.L.;Peterson,B.W.;DeVries,J.;Song,L.;DeJong,E.D; Busscher,H.J.;Swartjes,J.J.T.M.DetachmentandSuccessiveReͲAttachmentofMultiple, ReversiblyͲBindingTethersResultinIrreversibleBacterialAdhesiontoSurfaces.Sci.Rep.2017, 7,4369. (10) Hermansson,M.TheDLVOTheoryinMicrobialAdhesion.ColloidsSurf.BBiointerfaces1999, 14,105–119. (11) Ostvar,S.;Wood,B.D.MultiscaleModelDescribingBacterialAdhesionandDetachment. Langmuir2016,32,5213Ͳ5222. (12) Prieve,D.C.MeasurementofColloidalForceswithTIRM.Adv.ColloidInterfaceSci.1999,82, 93–125. (13) Walz,J.Y.MeasuringParticleInteractionswithTotalInternalReflectionMicroscopy.Curr. Opin.ColloidInterfaceSci.1997,2,600–606. (14) Robertson,S.K.;Bike,S.G.QuantifyingCellͲSurfaceInteractionsUsingModelCellsandTotal InternalReflectionMicroscopy.Langmuir1998,14,928–934. (15) VanderMei,H.C.;Handley,P.S.;Busscher,H.J.DepthProfilingoftheElementalSurface

4

(21)

CompositionoftheOralMicroorganismS.salivariusHBandFibrillarMutantsbyXͲRay PhotoelectronSpectroscopy.CellBiochem.Biophys.1992,20,99–110. (16) VanderMei,H.C.;Weerkamp,A.H.;Busscher,H.J.AComparisonofVariousMethodsto DetermineHydrophobicPropertiesofStreptococcalCellSurfaces.J.Microbiol.Methods1987, 6,277–287. (17) Mattheyses,A.L.;Axelrod,D.DirectMeasurementoftheEvanescentFieldProfileProduced byObjectiveͲBasedTotalInternalReflectionFluorescence.J.Biomed.Opt.2006,11,14006. (18) VanOss,C.J.,Gillman,C.F.PhagocytosisasaSurfacePhenomenon.I.ContactAnglesand PhagocytosisofNonͲOpsonizedBacteria.J.Reticuloendothel.1972,12,283–292. (19) VanOss,C.J.;Giese,R.F.RoleofthePropertiesandStructureofLiquidWaterinColloidaland InterfacialSystems.J.Dispers.Sci.Technol.2004,25,631–655. (20) Wilson,W.W.;Wade,M.M.;Holman,S.C.;Champlin,F.R.StatusofMethodsforAssessing BacterialCellSurfaceChargePropertiesBasedonZetaPotentialMeasurements.J.Microbiol. Methods2001,43,153–164. (21) VanWagenen,R.A.;Andrade,J.D.FlatPlateStreamingPotentialInvestigations: HydrodynamicsandElectrokineticEquivalency.J.ColloidInterfaceSci.1980,76,305–314. (22) VanOss,C.J.ThePropertiesofWaterandTheirRoleinColloidalandBiologicalSystems,First Edit.;ElsevierLtd.,2008. (23) VanOss,C.J.InterfacialForcesinAqueousMedia,SecondEd.;Taylor&FrancisGroup,LLC., 2006. (24) AbuͲLail,N.I.;Camesano,T.A.SpecificandNonspecificInteractionForcesbetween EscherichiaColiandSiliconNitride,DeterminedbyPoissonStatisticalAnalysis.Langmuir2006, 22,7296–7301. (25) VanOss,C.J.DevelopmentandApplicationsoftheInterfacialTensionbetweenWaterand OrganicorBiologicalSurfaces.ColloidsSurf.B:Biointerfaces2007,54,2–9. (26) Marrie,T.J.;Noble,M.A.;Costerton,J.W.ExaminationoftheMorphologyofBacteria AdheringtoPeritonealDialysisCathetersbyScanningandTransmissionElectronMicroscopy. J.Clin.Microbiol.1983,18,1388–1398. (27) Wang,Z.;Jin,Y.;Shen,C.;Li,T.;Huang,Y.;Li,B.SpontaneousDetachmentofColloidsfrom PrimaryEnergyMinimabyBrownianDiffusion.PLoSOne2016,11,e0147368. (28) Krekeler,C.;Ziehr,H.;Klein,J.InfluenceofPhysicochemicalBacterialSurfacePropertieson AdsorptiontoInorganicPorousSupports.Appl.Microbiol.Biotechnol.1991,35,484–490. (29) Bayoudh,S.;Othmane,A.;Bettaieb,F.;Bakhrouf,A.;Ouada,H.Ben;Ponsonnet,L. QuantificationoftheAdhesionFreeEnergybetweenBacteriaandHydrophobicand

(22)

(30) Olsson,A.L.J.;Arun,N.;Kanger,J.S.;Busscher,H.J.;Ivanov,I.E.;Camesano,T.A.;Chen,Y.; Johannsmann,D.;VanderMei,H.C.;Sharma,P.K.TheInfluenceofIonicStrengthonthe AdhesiveBondStiffnessofOralStreptococciPossessingDifferentSurfaceAppendagesas ProbedUsingAFMandQCMͲD.SoftMatter2012,8,9870–9876. (31) VanLoosdrecht,M.C.M.;Lyklema,J.;Norde,W.;Zehnder,A.J.B.BacterialAdhesion:A PhysicochemicalApproach.MicrobialEcology1989,17,1Ͳ15. (32) Dabros,T.;Warszynski,P.;VandeVen,T.G.M.MotionofLatexSpheresTetheredtoa Surface.J.ColloidInterfaceSci.1994,162,254–256. (33) Bendinger,B.;Rijnaarts,H.H.M.;Altendorf,K.;Zehnder,A.J.B.PhysicochemicalCellSurface andAdhesivePropertiesofCoryneformBacteriaRelatedtothePresenceandChainLengthof MycolicAcids.Appl.Environm.Microbiol.1993,59,3973–3977. (34) GomezͲSuarez,C.;Busscher,H.J.;VanderMei,H.C.AnalysisofBacterialDetachmentfrom SubstratumSurfacesbythePassageofAirͲLiquidInterfaces.Appl.Environ.Microbiol.2001, 67,2531Ͳ2537.              

4

(23)

SUPPORTINGINFORMATION

TableS1Surfacefreeenergyparametersandcomponentsofthethreeliquidsusedforcontactangle

measurements.ɶͲandɶ+aretheelectronͲdonatingandelectronͲacceptingparameters,whileɶABand

ɶLWaretheacidͲbaseandLifshitzͲVanderWaalscomponents,respectively.Alldatain(mJmͲ2)and

takenfromVanOssetal.32

Parametersand components

Water Formamide Methyleneiodide

ɶͲ 25.5 39.6 <0.1 ɶ+ 25.5 2.3 <0.1 ɶAB 51.0 19.0 0.0 ɶLW 21.8 39.0 50.8           



(24)
(25)

Referenties

GERELATEERDE DOCUMENTEN

TableofContents Chapter1 ϭϭ Chapter2 Ϯϭ Chapter3 ϰϭ Chapter4 ϲϵ Chapter5 ϵϯ Chapter6 ϭϮϭ ϭϯϱ

dimensionsintheevanescentwavewhentherefractiveindicesofthecolloidsdifferfromthatofthe suspending fluid. The intensity of the scattered wave light

The quartzͲcrystalͲmicrobalanceͲwithͲdissipation (QCMͲD) has become a powerful tool for studying the bond viscoelasticity of biotic and abiotic colloidal

QuartzͲcrystalͲmicrobalance with dissipation (QCMͲD) can measure molecular

constantsanddragcoefficientsthanobtainedwhenadhesionoccursunderanoscillationforceof0.2 pN and regardless of the hydrophobicity of the crystal surface.

voltage and crystal oscillation amplitude in QCM has seldom been explored but offers interesting possibilities to measure (bio)colloidal particle adhesion

Moreover,itisassumedthatthespringanddashpotareindependentfromthefrequencyaccording to the coupled resonance model, which means that the frequency should

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright