• No results found

University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Coupled adhesion of bacteria to surfaces

Skogvold, Rebecca van der Westen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Skogvold, R. V. D. W. (2018). Coupled adhesion of bacteria to surfaces. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

C H A P T E R

1

General Introduction and Aim of the Thesis

(3)

3 





















   

(4)

4



INTRODUCTION

The complexity of microbial adhesion as well as its significance for the surrounding environmenthasbeengreatlystudiedforthepastseveraldecades,includingthephysicoͲchemical mechanisms that govern it. In the medical field microbial adhesion can lead to infectious biofilm

formationonbiomedicalimplantsanddevices,therebycausingamostsevereconditiontopatients.1,2 Inordertopreventbacterialadhesioninthemedicalfield,butalsoinmanyotherapplicationssuchas infoodindustry,drinkingwatersystemsandinthemarineenvironment,itiscrucialtoobtainmore informationonthebondbetweenabioͲcolloid,suchasabacteriumandasurfaceaswellasofthe potentialmechanisticdifferencesbetweencolloidalparticleadhesionandmicrobialadhesion.Initially, particleadhesionisreversibleandledbyaplethoraofdifferentforcesbetweena(bio)colloidanda substratum, including attractive LifshitzͲVan der Waals forces, acidͲbase interactions as well as

repulsiveor attractiveelectrostaticforces. TheDerjaguin,Landau,VerweyandOverbeekͲtheory,3–6

alsoknownastheDLVOtheory,for(bio)colloidalinteractionsexplainsthesumtotaloftheseparticular interactionsfromwhichitispossibletopredicttheoutcomeofparticledepositiontowardsadhesion byanalyzingtheirinteractionenergy.NotethatincaseacidͲbaseinteractionsareincluded,onespeaks abouttheextendedDLVOͲtheory.

Over time a (bio)colloid reaches the point of adhesion to a substratum surface at which adhesion is no longer considered reversible. Irreversible adhesion of colloids develop through progressive removal of interfacial water, conformational changes in cell surface proteins or reͲ

arrangementofbindingtethers7whileincaseofbacteriatheproductionofextracellularpolymeric substances,aidfurtherinmakinganirreversiblebondtothesubstratumsurface. Thebondbetweena(bio)colloidandasubstratumsurfacehaslongbeenconsideredrigid,but itiscurrentlyevidentthatthebondbetweenabacteriumandasubstratumsurfaceisviscoelastic.8,9 Theviscouspartofthebondencompassesthereversibledeformationwhenstressisappliedtothe bond,whichthenreturnsbacktoitsoriginalstateassoonasthestressisrelievedundertheinfluence ofitselasticpart.Theviscosityisusuallyrepresentedinmodelsasapiston,alsoknownasadashpot. Theelasticpartofthebondisusuallyrepresentedasaspring.Thespringanddashpotcaneitherbe

placed in parallel, referred to as the KelvinͲVoigt model,10 or in series, referred to as the Maxwell

model.10 These models are also known from previous studies where the viscoelasticity of entire

biofilms,i.e.notofsinglebonds,hasbeenstudiedinrelationwiththeircompositionandstructure.11

Analysisofthekineticsof(bio)colloidalparticleadhesionmakesitpossibletoobtainspringconstants, aswellasdragcoefficients,therebygaininginsightintowhichfactorsinfluencesadhesionandhow andatwhichforcethecolloidscanberemovedfromasurface.

Several instruments thus far have been used to obtain valuable understanding into bondͲ

substratuminteraction,includingAtomicForceMicroscopy(AFM)12–14andopticaltweezers,15,16which

1

(5)

5



measuretheindividualbacteriaoneͲbyͲone.Albeiteffective,thesemethodsaretimeͲconsumingand

handling the instruments is tedious.17 Moreover, the AFM uses a cantilever to push down a

(bio)colloidal particle to a substratum surface which misrepresents naturally occurring adhesion processes(Figure1a).

 Anotherpopularmethodtostudythedynamicprocessofinitial(bio)colloidalparticleadhesion

istheuseofaparallelplateflowchamberofferingrealͲtimeinsituobservationofadhesionbymeans of a CCD camera (Figure 1b). This type of observation can be extended to include the Brownian

motion18 displayed by (bio)colloids, in which the (bio)colloids are suspended in a flowing fluid and

exposed to random displacements due to collisions with other molecules in their aqueous environment.Analyzingthevibrationsofadheringbacterialedtotheconclusionthattheviscoelastic propertiesofbacteriadependonthetypeofsurfaceappendagestheypossess.Althoughthesetypes ofstudyofferinsightintothebondpropertiesofadhering(bio)colloids,itlackstheabilitytomeasure theseviscoelasticbondpropertiesinthreedimensions,18aswellasquantitativelydeterminationofthe dragforce. ThestudyofBrownianmotionsofadhering(bio)colloidalparticlescanalsobeperformedby usingtotalinternalreflectionmicroscopy(TIRM)(Figure1c).19TIRMemploysanevanescentwavethat isproducedwhenopticalwaves,producedbyalaser,areincidenttoaglassͲwaterinterfaceatanangle

that is larger than the critical angle (ɽ > ɽc) (see Figure 1c).20 (Bio)colloids scatter light in three

dimensionsintheevanescentwavewhentherefractiveindicesofthecolloidsdifferfromthatofthe suspending fluid. The intensity of the scattered wave light emitted from the colloids decays exponentially from the interface, indicating where the particle is located compared to the planar surface.TIRMhasbeenusedinpreviousstudiestomeasurecellͲsurfaceseparationdistances,aswell

asreversibleandirreversibleadhesionpropertiesofmicroorganisms.21,22Thiswayofemployingthe

scatteredlightintensitytomeasureordeterminetheseparationdistance,includingthevibrationsof individual (bio)colloids and an interface offers a fast, high throughput and nonintrusive way of obtaining information of the bond between a (bio)colloid and any type of planar substratum, and quantitativedeterminationofthespringconstantofthebond.



(6)

6



Figure 1.  Schematic representation of different techniques available to determine the viscoelastic

propertiesofthebondbetween (bio)colloidsandsubstratumsurfaces.a)Atomicforce microscopy

(AFM),23 b) Vibration spectroscopy,18 c) Total internal reflection microscopy (TIRM), and d) Quartz

crystalmicrobalancewithdissipation(QCMͲD). 

An additional technique that has been utilized in determining the viscoelastic properties betweenbacteria,orothercolloidsanddifferenttypesofsubstrataisahighfrequencysensingdevice,

calledtheQuartzCrystalMicrobalancewithDissipation(QCMͲD)(Figure1d).24–26UnlikeAFM,QCMͲD

utilizesthenaturallyoccurringadhesionforcesbetween(bio)colloidsandsubstratumsurfaces,buton the other hand operates at nonͲnaturally occurring high frequencies, never encountered by an adheringparticleunlesspurposelyimposed.

QCMͲDhaspreviouslybeenusedinmolecularadsorptionwhereaccordingtotheconventional

mass loading theory,27 the adsorbed mass couples directly to the sensor surface (an ATͲcut quartz

crystal)thusincreasingitseffectivemass,andreducingitsresonancefrequencyleadingtonegative shiftsinresonancefrequency.Massloadingiscommonlyobservedwhenmolecularlayersadheringto thesensorsurfacearethinnerthan250nm.Whenthecrystalisbroughtintooscillationatitsresonance frequency,changesinfrequencyaswelldissipationareobserveduponadhesionof(bio)colloids.In contrasttomolecularadsorption,(bio)colloidalparticlesadheretothesensorsurfaceviaatethered,

nonͲrigid bond, causing positive frequency shifts,28–30 Positive frequency shifts can be explained

accordingtowhatisknownasthecoupledresonatormodel.9,28Inthismodel/theory,itispostulated Bacterial cell Substratumsurface Detectionlaser Photodiode Cantileverdeflection

a

Substratumsurface Bacterial cells Bacterial cells Quartzcrystal Evanescent field Coverglass ɽ >ɽc Bacterial cells

Laserexcitation Reflected light Microscopeobjective

b

c

d

1

13

(7)

7



thatanadhering(bio)colloidalparticlefunctionsasaresonatorofitsowncoupledtotheQCMͲDcrystal surface.Thefrequencyshiftsofthisparticularcoupledresonancesystemisdeterminedbytheratio between the quartz crystal surface's resonance frequency and the colloids resonance frequency, where soft contact points produce positive frequency shifts, and stiff contact points yield negative frequencyshifts. QCMͲDisaextensivelyusedtechniquetoexplorebothmasschangesaswellasinteractions betweensurfacescoatedwithspecific(bio)materialsandligands,aswellasdeterminingtherigidity andsoftnessofsurfaceboundmaterials,suchaspolymers,proteinsetc.  AIMOFTHISTHESIS

The aim of this thesis is to gain insight into how the viscoelasticity of the bond between (bio)colloidsandasubstratumsurfacedependsonenvironmentalconditionslikeionicstrengthofthe surroundingfluid,substratumhydrophobicityorabsenceorpresenceofbindingtethersonabacterial cellsurface.               14

(8)

8



REFERENCES

(1) Gristina,A. G.BiomaterialͲCentered Infection: MicrobialAdhesion versusTissue Integration.

Science1987,237,1588–1595.

(2) HallͲStoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial Biofilms: From the Natural

EnvironmenttoInfectiousDiseases.Nat.Rev.Microbiol.2004,2,95–108.

(3) Hermansson,M.TheDLVOTheoryinMicrobialAdhesion.ColloidsSurf.B1999,14,105–119.

(4) Strevett,K.A.;Chen,G.MicrobialSurfaceThermodynamicsandApplications.Res.Microbiol.

2003,154,329–335.

(5) Israelachvili, J. N. Van der Waals Forces between Particles and Surfaces. Intermolecular and

SurfaceForces.2011,3,253–289. (6) Poortinga,A.T.;Bos,R.;Norde,W.;Busscher,H.J.ElectricDoubleLayerInteractionsinBacterial AdhesiontoSurfaces.Surf.Sci.Rep.2002,47,3–32. (7) Busscher,H.J.;Norde,W.;Sharma,P.K.;VanderMei,H.C.InterfacialReͲArrangementinInitial MicrobialAdhesiontoSurfaces.Curr.Opin.ColloidInterfaceSci.2010,15,510Ͳ517. (8) Johannsmann,D.Viscoelastic,Mechanical,andDielectricMeasurementsonComplexSamples withtheQuartzCrystalMicrobalance.Phys.Chem.Chem.Phys.2008,10,4516–4534.

(9) Olsson, A. L. J.; Van der Mei, H. C.; Johannsmann, D.; Busscher, H. J.; Sharma, P. K. Probing

ColloidͲSubstratumContactStiffnessbyAcousticSensinginaLiquidPhase.Anal.Chem.2012, 84,4504–4512. (10) Flügge,W.ViscoelasticModels.InViscoelasticity;Prager,W.,Kestin,J.,Eds.;BlaisdellPublising company,1967,3–21. (11) Peterson,B.W.;He,Y.;Ren,Y.;Zerdoum,A.;Libera,M.R.;Sharma,P.K.;VanWinkelhoff,A.ͲJ.; Neut,D.;Stoodley,P.;VanderMei,H.C.;Busscher,H.J.ViscoelasticityofBiofilmsandTheir RecalcitrancetoMechanicalandChemicalChallenges.FEMSMicrobiol.Rev.2015,39,234–245. (12) Wright,C.J.;Armstrong,I.TheApplicationofAtomicForceMicroscopyForceMeasurements totheCharacterisationofMicrobialSurfaces.Surf.InterfaceAnal.2006,38,1419–1428. (13) Dufrêne,Y.F.TowardsNanomicrobiologyUsingAtomicForceMicroscopy.Nat.Rev.Microbiol. 2008,6,674–680. (14) Muller,D.J.AFM:ANanotoolinMembraneBiology.Biochemistry2008,47,7986–7998. (15) Simpson,K.H.;Bowden,G.;Höök,M.;Anvari,B.MeasurementofAdhesiveForcesbetween IndividualStaphylococcusaureusMSCRAMMsandProteinͲCoatedSurfacesbyUseofOptical Tweezers.J.Bacteriol.2003,185,2031–2035.

(16) Neuman, K. C.; Nagy, A. SingleͲMolecule Force Spectroscopy: Optical Tweezers, Magnetic TweezersandAtomicForceMicroscopy.Nat.Methods2008,5,491–505.

(17) Friedrichs, J.; Helenius, J.; Muller, D. J. Quantifying Cellular Adhesion to Extracellular Matrix

1

(9)

9  ComponentsbySingleͲCellForceSpectroscopy.Nat.Protoc.2010,5,1353–1361. (18) Song,L.;Sjollema,J.;Sharma,P.K.;Kaper,H.J.;VanderMei,H.C.;Busscher,H.J.Nanoscopic VibrationsofBacteriawithDifferentCellͲWallPropertiesAdheringtoSurfacesunderFlowand StaticConditions.ACSNano2014,8,8457Ͳ8467. (19) Prieve,D.C.MeasurementofColloidalForceswithTIRM.Adv.ColloidInterfaceSci.1999,82, 93–125. (20) Walz,J.Y.MeasuringParticleInteractionswithTotalInternalReflectionMicroscopy.Curr.Opin. ColloidInterfaceSci.1997,2,600–606. (21) Robertson,S.K.;Bike,S.G.QuantifyingCellͲSurfaceInteractionsUsingModelCellsandTotal InternalReflectionMicroscopy.Langmuir1998,14,928–934. (22) Vigeant,M.A.S.;Ford,R.M.;Wagner,M.;Tamm,L.K.ReversibleandIrreversibleAdhesionof Motile Escherichia coli Cells Analyzed by Total Internal Reflection Aqueous Fluorescence Microscopy.Appl.Environ.Microbiol.2002,68,2794–2801.

(23) Dufrêne, Y. F.; Ando, T.; Garcia, R.; Alsteens, D.; MartinezͲMartin, D.; Engel, A.; Gerber, C.; Müller,D.J.ImagingModesofAtomicForceMicroscopyforApplicationinMolecularandCell Biology.Nat.Nanotechnol.2017,12,295Ͳ307.

(24) Olsson, A. L. J.; Van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Acoustic Sensing of the BacteriumͲSubstratum Interface Using QCMͲD and the Influence of Extracellular Polymeric Substances.J.ColloidInterfaceSci.2011,357,135–138.

(25) Johannsmann,D.TheQuartzCrystalMicrobalanceinSoftMatterResearch;SoftandBiological Matter;SpringerInternationalPublishing.2015.

(26) Anderson,T.H.;Min,Y.;Weirich,K.L.;Zeng,H.;Fygenson,D.;Israelachvili,J.N.Formationof SupportedBilayersonSilicaSubstrates.Langmuir2009,25,6997–7005.

(27) Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung.ZeitschriftfürPhysik.1959,155,206–222. (28) Dybwad,G.L.ASensitiveNewMethodfortheDeterminationofAdhesiveBondingbetweena ParticleandaSubstrate.J.Appl.Phys.1985,58,2789–2790. (29) Johannsmann,D.ViscoelasticAnalysisofOrganicThinFilmsonQuartzResonators.Macromol. Chem.Phys.1999,516,501–516. (30) Pomorska,A.;Shchukin,D.;Hammond,R.;Cooper,M.A.;Grundmeier,G.;Johannsmann,D. Positive Frequency Shifts Observed upon Adsorbing MicronͲSized Solid Objects to a Quartz CrystalMicrobalancefromtheLiquidPhase.Anal.Chem.2010,82,2237–2242.



(10)

10



(11)

Referenties

GERELATEERDE DOCUMENTEN

TableofContents Chapter1 ϭϭ Chapter2 Ϯϭ Chapter3 ϰϭ Chapter4 ϲϵ Chapter5 ϵϯ Chapter6 ϭϮϭ ϭϯϱ

The quartzͲcrystalͲmicrobalanceͲwithͲdissipation (QCMͲD) has become a powerful tool for studying the bond viscoelasticity of biotic and abiotic colloidal

QuartzͲcrystalͲmicrobalance with dissipation (QCMͲD) can measure molecular

potential energy barrier that impedes close approach and a deep primary minimum close to

constantsanddragcoefficientsthanobtainedwhenadhesionoccursunderanoscillationforceof0.2 pN and regardless of the hydrophobicity of the crystal surface.

voltage and crystal oscillation amplitude in QCM has seldom been explored but offers interesting possibilities to measure (bio)colloidal particle adhesion

Moreover,itisassumedthatthespringanddashpotareindependentfromthefrequencyaccording to the coupled resonance model, which means that the frequency should

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright