• No results found

University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Coupled adhesion of bacteria to surfaces Skogvold, Rebecca van der Westen"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Coupled adhesion of bacteria to surfaces

Skogvold, Rebecca van der Westen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Skogvold, R. V. D. W. (2018). Coupled adhesion of bacteria to surfaces. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

C H A P T E R

5

Bacterial Adhesion and Detachment to

Oscillating Hydrophobic and Hydrophilic

Surfaces Studied in a Quartz Crystal

Microbalance

(3)
(4)

ABSTRACT

Variationofthedrivingvoltageandcrystaloscillationamplitudeinquartzcrystalmicrobalance with dissipation (QCMͲD) has seldom been explored but offers interesting possibilities to measure (bio)colloidal particle adhesion forces and characteristics of the bond, as achieved during different developmenthistories.Tothisend,webuiltamodifiedQCM,referredtoasavectornetworkanalyzer (VNA)whichallowstovarytheQCMdrivingvoltagesfrom0.01Vto0.4V.QualityfactorsQofthe VNAͲbasedQCM,usingthesamecrystalsandchamberastheQͲsense,werefoundcomparablewith those of the QͲsense QCMͲD and were used to calculate the oscillation forces exerted on the (bio)colloidalparticlesduringadhesiontoanoscillatingcrystal.Forcestoprevent(bio)colloidalparticle adhesionrangedfrom0.2pNto30pN,whileforcesrequiredtodetachadheringparticleswerehigher andrangedfrom2pNto30pN.Althoughtheseforcesareordersofmagnitudesmallerthangenerally derivedfromatomicforcemicroscopy(AFM),theyareofthesameorderofmagnitudeasobtained usingopticaltweezersandflowdisplacementsystems.ThisnegatesoftenvoicedcriticismonQCM data that its high oscillation frequency influences (bio)colloidal particle adhesion. However, bond characteristics,derivedinacoupledresonatormodelbasedontheroutineQCMoutputanduseofa phenomenologicalKelvinͲVoigtmodel,variedwiththeoscillationforcesappliedduringadhesion.



SIGNIFICANCE

Bacterial adhesion forces to surfaces are hard to measure and values differing orders of magnitudelingerthroughcurrentliterature.Thisworkaddsasimple,andeasytointerpretinstrument tomeasure(bio)colloidaladhesionforces,thatcoincidegenerallywellwithforcevaluesobtainedusing opticaltweezersandflowdisplacementsystems,butnotwithforcesobtainedusingAFM.Importantly, thehighfrequencyoscillationsinQCMappearnottoinfluencetheadhesionforcestotheextentthat makethemincomparablewithforcesobtainedunderunidirectionalfluidshearforces.Therewith,this workyieldsasignificantadditionalmethodtomeasurebacterialandcolloidalparticleadhesionforces. Moreover,ithelpssolvethequestionwhetherbacterialadhesionforcesareinthenNͲrange(AFM)or pNͲrange(QCM,opticaltweezersandflowdisplacementsystems).       

5

(5)

INTRODUCTION

Employing resonatorͲbased sensing platforms to determine molecular adsorption and (bio)colloidalparticleadhesioninbiologicalsystemshasbeenwidelyusedinthelast50years,most notablymakinguseofthequartzcrystalmicrobalancewithdissipation(QCMͲD).InQCMͲD,changes inresonancefrequencyofoscillatingcrystalsduetomolecularadsorptionor(bio)colloidaladhesion are registered, along with the characteristic damping of the crystal’s oscillation upon arresting its amplitudedrive(dissipation).Inafirstapproximation,1adsorbedmasses(ȴm)arerelatedtoachange infrequency(ȴf)andovertonenumber(n)accordingto2  ο݉ ൌ ሺܥȀ݊ሻο݂    [1]  inwhich  ܥ ൌ௧೜ఘ೜ ௙బ     [2]  inwhichCisthesensitivityconstantforthecrystalatitsfundamentalfrequency(f0),tqisthethickness ofthequartzcrystaldisc,andʌqthedensityofthecrystal.Notethatincaseofadsorption,(ȴf)should benegative. ThelinearrelationpresentedbyEq.1canbeviolatedduetostructuringofinterfacialwater onthecrystalsurface,waterentrapmentinbetweenadsorbedmoleculesoradhering(bio)colloidal particles,andviscoelasticityofthebond,allleadingtodampingofthecrystalsoscillation,thatcan eitherbeexpressedintermsofthechangesindissipation(ȴD)givenby  ߂ܦ ൌ గ௙ఛ



    [3] 

inwhichfisgivenbyf=f0–fR,wheref0istheresonancefrequencyandfRareferencefrequencyfiltered

withalowpassbandfilter,andʏisthedecaytime.Dissipationisrelatedtothehalfbandhalfwidth(ȳ) ofthesensorresonancefrequencyaccording 



߁ ൌ ஽௙ೞ ଶ         [4]  inwhichfsisthesensorresonancefrequency.Withrespectto(bio)colloidalparticleadhesion,Eq.1 losesitsvalidity,asparticleshavebeendemonstratedtoformacoupledresonatorsystemwiththe

(6)

oscillatingcrystal,givingrisetopositivefrequencyshiftsandafrequencyofzerocrossingtonegative frequencyshifts,indicatingamatchofthesensorandparticleresonancefrequencies.3 Adhesionanddetachmentof(bio)colloidalparticlestotheoscillatingcrystalsurfacecanbe controlledbychangingtheoscillationamplitudewithinaQCMinstrument.2,4,5Theamplitudeofthe crystal’soscillation(A)scaleslinearlywiththedrivingvoltage(Vd)appliedoverthecrystal(seeFigure 1),accordingto  ܣ ൌ ͳǤͶܸܳௗ       [5]  inwhichQisthecrystal’squalityfactor,definedas  ܳ ൌ  ݂଴Ȁሺʹ߁ሻ



    [6]  Qreportedlyrangesfrom2500to5000inaqueoussystemsatlowerovertones.2

 Although driving voltages are seldom reported in QCM studies, driving voltages can be adjusted.IntheQͲsenseinstrument,drivingvoltagescanbeadjustedintenincrementalsteps,ranging from0.2to10,albeitresultingdrivingamplitudesaregiveninarbitraryunitsanddifficulttocalculate inabsoluteunitsduetoabsenceofthenecessarydata.Initsstandardmode,thedrivingvoltageofthe QͲsense is adjusted automatically to yield an optimal output. Variation of the driving voltage is accompanied by a small change in resonance frequency of the crystal, ascribed to piezoelectric stiffeningofthecrystalandnotduetopossible(minor)temperatureincreases.Moreover,changesin resonancefrequencyuponchangingoscillationamplitudesareconfinedto100–200Hzandtherewith ordersofmagnitudesmallerthanthecommoncrystalresonancefrequencies,bothinairaswellasin aqueoussolutions.6 

5

(7)



Figure1.Drivingvoltagesrelatewiththecrystal’soscillationamplitudesaccordingtoEq.5andcause

anoscillationforceonadsorbedmolecules(Eq.7)andadhering(bio)colloidalparticles(Eq.8). 

TheinfluenceofdrivingvoltageontheQCMoutputdependsonthesystemstudiedthrough the quality factor (Q) in Eq. 6. Adsorption of streptavidin to a biotinylated stationary or oscillating crystalwasessentiallythesame.2ThisdemonstratesthatthestreptavidinͲbiotinbondisstrongerthan

theoscillationforceexertedonaboundmolecularmass,asgivenby

ܨ௢௦௖ିெൌଶ݉ܣ௢௦௖ሺʹߨ݂଴ሻଶ     [7]

inwhichFoscͲMistheoscillationforceactingonamolecularmass(m)adsorbedtoanoscillatingcrystal

sensorwithoscillationamplitude(Aosc).5,7Ontheotherhand,adhesionof200nmpolystyreneparticles

coatedwithastreptavidinanaloguetobiotinylated,oscillatingcrystalsurfacesreducedtolessthan 20% upon increasing the driving voltage from 0 to 10 V.2 However, detachment of such particles

adheringtoastationarycrystalcouldnotbeestablisheduponoscillatingthecrystal.Thisconfirmsthat forces required to prevent (bio)colloidal particle adhesion are smaller than the forces required to detachalreadyadheringparticles.Theexactforcevaluesatwhich(bio)colloidalparticleadhesioncan bepreventedordetachmentcanbestimulatedgreatlydependonthemethodapplied.Forinstance, atomic force microscopy,8 use of optical tweezers9 and flow displacement systems10,11have

consistentlygivenhighlydifferentvaluesforbacterialadhesionforcesthatrangefromthenNtothe pNrange.

Theoscillationforceexertedonadhering(bio)colloidalparticles(FoscͲP)byanoscillatingQCM

crystalincreaseswiththeparticleradiusandassumingparticlevibrationarounditsvertex(seeFigure 2),canbecalculatedtobe

(8)

 ܨ௢௦௖ି௉ൌ ଵ଺ఘோ యሺ஼ொ௏ బమ ହඥሺ஼ொ௏೏ሻమାସோమ  [8]  inwhichʌisthedensityofthe(bio)colloid,Rtheparticleradius,andCisanexperimentalconstant(1.4 x10Ͳ12m/V).12          Figure2.Schematicrepresentationoftherotationandwigglingofa(bio)colloidalparticleadheringto anoscillatingcrystalarounditsvertexpoint.AdaptedfromYuanetal.6 

 Varying of the driving voltage in QCM and monitoring the detachment and adhesion of colloidal particles in antibodyͲantigen complexes has been suggested as a tool in biomedical diagnostics,5butmaythusalsoofferampleopportunitiestostudybacterialadhesionmechanismsto

surfaces.BacterialadhesiontoasurfacehasbeendescribedinaKelvinͲVoigtmodelasaviscoelastic bond,modeledbyaspringinparallelwithadashpot.Higherspringconstantswereobtainedusing QCMforabaldstreptococcalstrainthanforastrainwithfibrillarsurfacetethers,anddragcoefficients increased for the bald streptococcus with the ratio of electronͲdonating over electronͲaccepting parametersofthecrystalsurfacefreeenergy,13whileforthefibrillatedstrainthedragcoefficientwas

similaronallcrystalsurfaces.ThissuggeststhatthedragexperiencedbyresonatorͲcoupled,fibrillated bacteriatetheredtoasurface,ismoreinfluencedbytheviscosityofthebulkwaterthanbystructuring ofinterfacialwatercloselyadjacenttothecrystalsurface.Oppositely,bacterialackingfibrillarsurface tethersweremassͲcoupledjustabovethecrystalsurfaceandaccordinglyprobedadragduethethin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Detachmentofadheringbacteriahasnotyetbeenmeasuredasinducedbythedragcausedbycrystal oscillationsinQCM.QCManalysisofbacterialadhesionatdifferentoscillationamplitudesmayyield new insights into nonͲlinear effects occurring during adhesion and detachment, such as strain

Pivotpoint

Vertexpoint

Oscillationamplitude

(9)

stiffening or weakening of surface tethers with a potential impact in coupledͲresonator models,14 describingananalyticalrelationshipbetweentheobservedfrequencyanddissipationshiftswithspring constants,dragcoefficientsandparticlemasses. ThischapteraimstoexplorethepossibilitiesinvaryingthecrystaloscillationsinQCMwith respecttoincreasingourunderstandingofbacterialadhesionanddetachmenttoandfromsurfaces. Thespecificaimsofthischapterare: 1.Comparisonofthequalityfactor,Q,oftheQͲsenseQCMͲDasappliedinpreviouschapters andanew,homeͲbuiltQCMͲbasedvectornetworkanalyzer(VNA).SincethecontrolofferedbytheQͲ senseQCMͲDoverthedrivingvoltagecontrollingthecrystaloscillationsisnottrivial,aVNAͲbased QCMwasconstructedofferingfullcontroloverthedrivingvoltageandresultingoscillationamplitude. ConsideringtheuseoftheQͲsenseinstrumentinpreviouschapters,aformalcomparisonwasthought necessary.  2.Comparisonofthedetachmentofadheringstreptococciwithandwithoutfibrillarsurface tethers,andofpolystyreneparticlesofsimilarsizefromahydrophobicandhydrophiliccrystalsurface, asinducedbyanoscillatingcrystalinanaqueousphase.Oscillationforceswillbevariedbyincreasing thedrivingvoltageafteradhesiontoderiveadetachmentforce.Detachmentforcesobtainedwillbe compared with bacterial detachment forces for the two strains as reported in the literature using differentmethods.

3. Comparison of streptococcal and polystyrene particle adhesion to hydrophobic and hydrophiliccrystalsurfacesinpresenceofcrystaloscillationduringadhesiontoderiveaforcerequired topreventbacterialadhesion.Forcesobtainedtopreventbacterialadhesionwillbecomparedwith bacterialdetachmentforcesforthetwostrainsasreportedintheliteratureusingdifferentmethods.

 4. The QCM response obtained in selected experiments will be analyzed using a phenomenological KelvinͲVoigt resonator model in order to see whether the resulting spring constants, drag coefficients and particle masses depend on the oscillation forces applied during adhesionandrelatewiththedifferentstructuringofwateraboveahydrophobicorhydrophiliccrystal surface.  EXPERIMENTALSECTION TheVNAͲbasedQCM.TheVNAspansa0.05Ͳ60MHzfrequencyrange,henceupto6frequency overtones(5,15,25,35,45,and55MHz)canbemeasured.Toexplorethedrivingvoltagedependence oftheresonances,theoutputoftheVNAwasconnectedtoanRFPowerAmplifier(ZHZͲ1Ͳ2WͲS+;Mini Circuits,Brooklyn,NY,US)throughadigitalstepattenuator(ZX76Ͳ31R5ͲSPͲS,MiniCircuits,Brooklyn, NY,US),allowingthedrivingvoltagetobevariedfrom0.01Vto0.4V.Thequartzcrystalwasmounted inawindowͲequippedchamber(ModelQͲsenseE1,QͲsense,Gothenburg,Sweden)andcoupledto

(10)

theoutputofRFPowerAmplifierusingaWheatstonebridge(Figure3).Thewindowchamberitself containingthesensorcrystalwasmountedunderneathamicroscope(LeicaDM2500M,Rijswijk,The Netherlands) equipped with a CCD camera (Model A101, Basler vision technologies, Ahrensburg, Germany)formonitoringthenumberofadhering(bio)colloidalparticlesonthecrystalsurface.    Figure3.SchematicsoftheVNAͲbasedQCM.  TheQͲsenseQCMͲD.TheQCMͲDspansa1Ͳ70MHzfrequencyrange,henceupto7frequency overtones(5,15,25,35,45,55,and65MHz)canbemeasured.TheQͲsenseQCMͲDusesthe“ringͲ down”technique.InringͲdown,theresonatorisexcitedbyaRFͲpulse,wherethefrequencyisabout the same as the expected resonance frequency. Following that, the excitation is shut off and the oscillationisallowedtodecay.Thedecaytimeisequalto1/(2ʋȳ).15AllQͲsenseQCMͲDexperiments

werecarriedoutusingthesamewindowͲequippedchamber,crystalsandmicroscopicobservationof particleadhesion,asemployedintheexperimentswiththeVNAͲbasedQCMͲD.

Preparation of QCM Sensor Surfaces. 14 mm ATͲcut goldͲcoated quartz sensors (QͲsense,

Gothenburg, Sweden) were cleaned prior to each experiment by immersing in a 3:1:1 mixture of ultrapurewater(specificresistance>18Mɏcm),ammonia(NH3)(Merck,Darmstadt,Germany)and

hydrogenperoxide(H2O2)(Merck,Darmstadt,Germany)at70°Cfor15min,followed by15minof

UV/Ozonetreatment.Quartzcrystalsused,hadaresonancefrequency(f0)of5MHz,athickness(tq)of

0.33mmandadensity(ʌq)of2.65g/cm3,yieldingasensitivityconstant(C)of17.3ngHzͲ1cmͲ2(see

alsoEq.2).

InordertocoattheQCMcrystalsensorswithahydrophobicselfͲassembledmonolayer(SAM), crystals were left immersed in 0.001 M of 1Ͳoctadecanethiol (SigmaͲ Aldrich, Zwijndrecht, the Netherlands) dissolved in 100% ethanol for 18Ͳ20 h under mild shaking conditions. To obtain

(11)

hydrophiliccrystalsensors,crystalswereimmersedin0.001Mof11ͲmercaptoͲ1Ͳundecanol(SigmaͲ Aldrich)in100%ethanolundertheaboveconditions.Contactangleswithliquidsandresultingsurface

free energy components and parameters as taken from the literature,13 of thus prepared crystal

surfacesaresummarizedinTable1.  Table1Watercontactangles,andsurfacefreeenergycomponentsandparametersofQCMcrystal surfaceswithahydrophobicorhydrophilicSAM.Datarepresentaverageswithstandarddeviations overthreedropletswitheachliquidonthreedifferentcrystals.   HydrophobicSAM HydrophilicSAM Contactangles(degrees) Water 94±7 11±1 formamide 20±2 0±0 methyleneiodine 44±6 34±6 Surfacefreeenergycomponentsandparameters(10Ͳ3JmͲ2) ɶ 38±3 57±4 ɶLW 38±3 42±3 ɶAB 0±0 15±3 ɶͲ 0±0 53±4 ɶ+ 12±1 1±0 ɶͲ/ɶ+ 0±0 53±10  QFactorDetermination.InordertoallowcomparisonoftheQͲsenseandVNAͲbasedQCM,

the quality factor, Q (see Eq. 6), was determined for each instrument and for hydrophobically and hydrophilicallymodifiedcrystals.Moreover,usingthequalityfactorQ,oscillationforcesonadsorbed massesandadhering(bio)colloidalparticlescanbecalculatedfortheVNAͲbasedQCM(Eqs.7and8, respectively). Inordertodeterminetheresonancefrequency(f0)andhalfͲbandhalfͲwidthoftheresonance peak(ȳ)intheVNAͲbasedQCM(seeFigure3)analternatingvoltageisappliedtothesystem,which causesthecrystaltooscillate.Whenthedrivingfrequencymatchesthecrystalresonancefrequency, thisis observed as a steep decrease of the impedanceof the QCM crystal as measured in the "Wheatstone bridge"Ͳconfiguration (see also Figure 3). The impedance decrease represents both a decreaseintheresistanceofthecrystal(realpartoftheimpedance)andacharacteristicphaseͲshift withrespecttothedrivingvoltage(theimaginarypartoftheimpedance).Theshiftintheresonance

(12)

frequencyandthechangesinbandwidthforadhering(bio)colloidsaccordinglydeterminebothȴfand ȴȳ.16

SincetheQͲsenseQCMͲDisbasedonthe“ringͲdown”technique,17analternativestrategywas

applied to determine the Q factor. First an alternating current was applied to oscillate the crystal. Whenthefrequencyofthecurrentmatchestheresonancefrequencyf0ofthecrystal,aresonance peakisobtainedandthedrivingvoltageisturnedoff,leadingtodecayoftheoscillations.Oscillation amplitudedecayovertimeisrecorded.Fromthisdecay,thedissipation(D)canbederived(seeFigure 4).Subsequently,Eq.4canbeemployedtoobtainȳ,whichisthenusedinEq.6tocalculatetheQ factorofthesystem. 

Figure 4. Oscillation amplitude of a QCMͲD crystal after “ringingͲdown” at time zero (putting the

drivingͲvoltagetozero)asafunctionoftime.Thebluedecaycurvecorrespondstotheslowerdecay ofcrystaloscillationsinair,whilethereddecaycurverelatestodecayofcrystaloscillationsinliquid. 

BacterialStrains,CultureConditionsandHarvesting͘StreptococcussalivariusHB7(possessing

wellͲcharacterized91nmfibrils)andHBC12(devoidofsurfaceappendages)18wereusedinthisstudy.

Both S. salivarius strains are hydrophilic, and negatively charged under physiological conditions. S.

salivariusstrainswerepreͲculturedin10mLofToddHewittBroth(THB,OXOID,Basingstoke,UK)under staticconditions,grownfor24hat37°C.After24h,preͲcultureswereinoculatedinto200mLofTHB and maintained under their above conditions for another 16 h. Bacteria were harvested by centrifugationat5000gfor5minat10°Cfollowedbywashingin100mLadhesionbuffer(50mM potassium chloride, 2 mM potassium phosphate, 1 mM calcium chloride, pH 6.8). Subsequently, bacteriaweresonicatedonice3timesfor10sat30W(VibraCellModel375;SonicsandMaterials Inc.,Danbury,CT)tobreakbacterialchainsandobtainsinglebacteriainsuspension.Importantlyin ordertopreventmolecularadsorptioninQCMexperiments,bacteriawerewashedoncemoreafter sonication to remove any free molecules that might have been released during sonication. Finally,

0

1

2

Oscilla

tion

ampli

tude

(a.u

.)

ɲ

1/f

Time(μs)

5

(13)

bacteriaweresuspendedtoaconcentrationof3x108bacteriapermL,asdeterminedbycountingin

aBürkerͲTürkchamber.

 AbioticParticles.Polystyreneparticles(BangLaboratoriesInc.Fishers,IN,US),withadiameter

of1ʅmsimilarasstreptococci,wereselectedforthisstudyinordertocomparecolloidalparticleversus bacterial adhesion. Prior to experiments, particles were washed twice by centrifugation in 10 mL ultrapurewater(specificresistance>18Mɏcm),andsuspendedtoaconcentrationof2x108particles

permLinadhesionbuffer.

DetachmentForcesofAdhering(Bio)colloidalParticles.Inordertodeterminetheoscillation

force required to detach adhering streptococci or polystyrene particles in the VNAͲbased QCM, a (bio)colloidalsuspensionwasperfusedthroughthechamberataflowrateof300ʅLminͲ1for1hin

absence or presence of crystal’s oscillations. Subsequently, buffer was perfused to remove non adhering (bio)colloids from the QCM chamber as well as to replace it with buffer. Next, after enumerationofthenumberofadhering(bio)colloidalparticles,adrivingvoltagewasapplied(0.01V, 0.1Vor0.4V)tocausecrystaloscillationatdifferentoscillationamplitudesandforcesfor30min, during which perfusion with buffer was continued at the same flow rate as during adhesion. Immediatelyafter30mindetachment,ȴfandȴȳweremeasuredapplyingadrivingvoltagesof0.01V, 0.1Vor0.4V(requiringabout5min),andadheringparticleswereenumeratedagain.Datahavebeen analyzedpairwisewithinaseparateexperimenttoquantitatenumbersofdetached(bio)colloidsin eachexperiment,afterwhichnumbersof(bio)colloidsafterdetachmentwerecalculatedwithrespect totheaveragenumberofadhering(bio)colloidspriortodetachmentsinordertoreducetheinfluence ofbiologicalvariationswithinexperiments.Alldatawereperformedinduplicate. ForcesRequiredtoPreventAdhesion.Inordertodeterminetheforcerequiredtoprevent (bio)colloidalparticleadhesionthewindowchamberwasperfused(flowrateof300ʅLminͲ1)for1h witha(bio)colloidalsuspensioninbufferduringcrystaloscillationatdifferentdrivingvoltages(0.01V, 0.1Vand0.4V)tocausecrystaloscillationatdifferentoscillationamplitudesandforces,followedby perfusion and replacement of the suspension by buffer as well as enumeration of the number of adhering(bio)colloidalparticles,requiringabout5min.Finally,ȴfandȴȳweremeasuredapplyinga driving voltages of 0.01 V, 0.1 V or 0.4 V (requiring about 5 min), and adhering particles were enumeratedagain.Alldatawereperformedinduplicate. AnalysisofQCMMeasurements.Forthedataanalysis,frequencyshifts(ȴf)andbandwidth changes(ȴȳ)aswellasthenumberofadhering(bio)colloidalparticlesimmediatelyafterretrieving(ȴf) and(ȴȳ),wereusedtoobtainthespringconstant(k)anddragcoefficients(ʇ)ofthebond,andthe inertialmassoftheparticle(mp)accordingtoaphenomenologicalKelvinͲVoigtresonatormodel13,19,20 

(14)

ο݂ ൅ ௜௱஽௙ೞ ଶ ൌ  ௙ಷ௠೛ గ௓೜ ή  ܰ௣൤ ఠೞయ൫ఠ೛మିఊమ൯ିఠೞఠ೛ర ሺఠೞమିఠ೛మሻమାఠೞమఊమ ൅ ݅ ఠೞరఊ ሺఠೞమିఠ೛మሻమାఠೞమఊమ൨ [9] 

wherefFisthefundamentalresonancefrequencyofthesensor(5MHz),ʘpistheangularresonance

frequencyoftheparticle,ʘsistheangularresonancefrequencyofthesensor,bothgivenby2ʋfpand

2ʋfs,respectively.ɶequalsʇ/mp.ZqistheacousticimpedanceoftheATͲcutquartzcrystal(8.8x106kg

mͲ2sͲ1),andN

pisthenumberofadheringparticlesperunitarea(mͲ2).Alldataderivedrepresentthose

yieldingthesmallestrootmeansquaredeviation(RMSD)ofthefit.

Statistical Analysis. All data are presented as means ± standard deviations. Results were

comparedpairͲwiseforthetwobacterialstrainsandpolystyreneparticle,aswellasunderdifferent oscillation conditions using a Student’s tͲtest. p < 0.05 was considered to indicate statistically significantdifferences.



RESULTSANDDISCUSSION

1.ComparisonoftheQFactorsoftheQͲsenseandVNAͲbasedQCM.Thequalityfactorofthe

crystal needs to be established from the ratio of the resonance frequency and the damping, as measured by “ringͲdown” experiments for the QͲsense and impedance analysis for the VNAͲbased QCM.Table2summarizestheQfactorsforbothQCMinstruments.Qfactorsforbothinstruments shownosignificantdifferences(Student’stͲtestp<0.05),neitherbetweeninstrumentsnorbetween hydrophilicandhydrophobiccrystalsandincreasewithovertonenumberfromaround3000to12000. TheQfactorsinTable2arerelativelylowastheypertaintooscillationsinaliquidphase,whereasin airQfactorsrangingfrom55000to100000havebeencalculated.7,12ThelargerQfactorvaluesinair areduetoslowerdampeningofoscillationsinairthaninanaqueousphase(seealsoFigure4).            

5

(15)

Table2Qualityfactors,QfortheQͲsenseandVNAͲbasedQCMforhydrophilicandhydrophobicSAMͲ coatedcrystalsatsixdifferentovertones.Datarepresentaverages±standarddeviationsovertriplicate experimentswithseparatecrystals.   VNAͲbased QͲsense Overtone (n) Hydrophobic crystal Hydrophilic crystal Hydrophobic crystal Hydrophilic crystal 1 3266±74 3368±122 3364±23 3057±577 3 5754±96 5901±114 5992±31 5884±159 5 7216±560 7621±150 7359±46 7307±43 7 8956±122 9133±107 8477±68 8466±207 9 10105±141 10358±66 10265±133 10272±351 11 11451±172 11615±575 11519±215 11602±410  CombinationoftheQfactorswiththedrivingvoltage,allowstocalculatetheoscillationforces on adsorbed masses or adhering (bio)colloidal particles according to Eqs. 7 and 8, respectively, providedthedrivingvoltageisknownwhichisnotthecasefortheQͲsense.Inthisstudy,wewilladapt theQfactormeasuredforthethirdovertone(15MHz)forthecalculationofoscillationforces.Useof thethirdovertoneiscommoninQCManalyses,asitprevailsinthecenterofthecrystal,whilehigher overtonesbecomemoreprominenttowardtheedgesofthecrystal.2Resultingoscillationforcesfor

ourVNAͲbasedQCMarecomparedinTable3withoscillationforcesobtainedinotherstudies,together with the resonance frequencies, Q factors, particle radii and driving voltages applied. The data compiledinTable3inessencerepresenttheproportionalityofFoscͲPonf02,R2andQ2,andimportantly

demonstrate that the characteristics obtained for our VNAͲbased QCM are in line with available literaturedata.     

(16)

Table3Comparisonofresonancefrequencies,Qfactors,particleradiianddrivingvoltagestogether withtheresultingoscillationforcesonasphericalparticle(radius(R))adheringonanoscillatingcrystal surfaceinanaqueousphase,asobtainedinthisstudyandreportedintheliterature.  Reference f0 Q R FoscͲP(pN) 0.01 0.1 0.4 3.5 6 10 (MHz)  (μm) (V) (V) (V) (V) (V) (V) Thisstudy 5 5900* 0.5 0.2 2 30 Ͳ Ͳ Ͳ Edvardssonetal21 5 2500 0.1 Ͳ Ͳ Ͳ Ͳ Ͳ 16 Yuanetal6 10 4000 3 Ͳ Ͳ Ͳ 17900 Ͳ  Dultsevetal4 15 5000 2.5 Ͳ Ͳ Ͳ Ͳ 129200 Ͳ *averageQfactorobtainedforhydrophilicandhydrophobiccrystalsobtainedfromthethirdovertone. 

2. Detachment forces of adhering (bio)colloidal particles. In a first series of experiments,

streptococciandpolystyreneparticleswereallowedtoadhereduring1hfromaflowingsuspension tohydrophobicandhydrophiliccrystalsurfacesinabsenceandpresenceofcrystaloscillation,followed by30minapplicationofanoscillationforcetostimulateparticledetachment.Bothstreptococciand polystyrene particles adhered in numbers in the order of 1010 mͲ2(Table 4), corresponding with a

surface coverage of around 1Ͳ10%, low enough to prevent direct interactions between adhering particlesduringcrystaloscillation.                        

5

(17)

Table4Numberofstreptococciandpolystyreneparticlesadheringafter1hfromaflowingsuspension

to hydrophilic and hydrophobic crystal surfaces in absence and presence of crystal’s oscillations, followed by 30 min application of three different oscillation forces. Data represents averages with standarddeviationsovertwoseparateexperiments.  Duringadhesion Npafteradhesion (x1010mͲ2) During detachment Npafterdetachment (x1010mͲ2) FoscͲP (pN) Hydrophilic crystal Hydrophobic crystal FoscͲP (pN) Hydrophilic crystal Hydrophobic crystal ^͘ƐĂůŝǀĂƌŝƵƐHB7  0   0.2 6.1±0.4 4.6±0.6 0 6.1±0.4 4.6±0.6 2 6.3±0.8 5.6±1.0 0   30 5.9±0.5 4.0±0.4 2 4.7±0.3 4.8±0.3 30 4.7±0.7 4.8±0.1 ^͘ƐĂůŝǀĂƌŝƵƐHBC12  0   0.2 2.2±0.2 2.8±0.7 0 2.1±0.1 2.9±0.7 2 1.7±0.7 2.5±0.8 0   30 1.5±0.1 2.1±0.6 2 2.0±0.0 1.6±0.2 30 1.6±0.1 1.6±0.2 Polystyreneparticles  0   0.2 3.9±0.6 3.7±0.0 0 3.5±0.7 3.9±1.1 2 2.9±0.4 3.2±0.3 0   30 0.2±0.0 0.4±0.1 2 3.5±0.1 1.7±0.3 30 0.9±0.2 0.6±0.0  S.salivariusHB7,beingrelativelyhydrophobiccomparedtoS.salivariusHBC12andpossessing 91nmlongfibrillarsurfacetethers,adheredinhighernumberstothehydrophiliccrystalascompared withthehydrophobiccrystalinabsenceofcrystaloscillation.However,uponapplicationofaminor oscillationforceduringadhesionthenumberofadheringS.salivariusHB7reducedonthehydrophilic crystaltobecomeequalonbothcrystals.Subsequentapplicationofahigheroscillationforcedidnot cause significant detachment of adhering streptococci. For S. salivarius HBC12, possessing no demonstrablefibrillarsurfacetethers,nosignificantdifferencesinnumbersofadheringbacteriawere found on both crystals, nor did application of an oscillation force during adhesion affect adhesion.

(18)

However,duringthedetachmentphaseoftheexperiment,streptococcithathadadheredinabsence ofcrystaloscillations,detachedwithincreasingoscillationforces.

The lower adhesion numbers of S. salivarius HBC12, being more hydrophilic and without demonstrable fibrillar surface tethers as compared with S. salivarius HB7, has been described as a resultofthegreaterthermodynamicpreferenceofS.salivariusHB7toadheretosurfacesfroman aqueousphase,possessinganinterfacialfreeenergyofadhesionthatisacrossthedifferentcrystal surfacesaround13mJmͲ2morenegativeforS.salivariusHB7thanforHBC12.Also,itspossessionof

fibrillarsurfacetethersallowsS.salivariusHB7tospringͲcoupleitselfthroughitstethersdirectlytoa substratumsurface,therewithovercomingthepotentialenergybarrierbetweennegativelycharged substratum surfaces anditsownnegativecharge.Clearly,thisyieldsastrongbondthatcannot be disruptedbytheoscillationforcesapplied.S.salivariusHBC12ontheotherhand,hasbeendescribed toadhereina“floating”modewithinthesecondaryinteractionminimumatvariabledistanceabove thesubstratumsurfaceandtheoscillationforcesappliedafteradhesionweresufficienttopushthe organismoutofthesecondaryenergyminimumandcausedetachment(seealsoTable4).Adhesion underhigheroscillationforcesmayhaveselectedforstronglyadheringbacteriafromasuspension,as inthosecasesapplicationofahigheroscillationforcedidnotyieldsignificantbacterialdetachmentfor neitherstrain. Thepolystyreneparticlesemployedinthisstudyarebasedonacomparisonofpolystyreneand

S. salivarius water contact angles, more hydrophobic22 than the bacterial strains, allowing them to

more closely approach to substratum surfaces. In absence of oscillation, they adhere in similar numbers to the hydrophilic and hydrophobic crystals alike S. salivarius HB7, but in presence of an oscillation force, adhesion to the hydrophobic crystal is significantly reduced. Different than its bacterialcounterpart,theinertcolloidalparticledoesnotpossesslongsurfacetetherstospringͲcouple itselftothesubstratumandsignificantdetachmentcanbeinducedbycrystaloscillationsappliedafter theadhesionphase.  3.ForcesRequiredtoPreventAdhesion.(Bio)colloidalparticleadhesionwasalsocarriedout toanoscillatingcrystalduringoscillationsatdifferentoscillationforceswithoutbeingfollowedbya detachmentphaseinordertodeterminetheoscillationforcepreventingadhesion.Oscillationduring adhesion,didnotimpedespringͲcoupledadhesionofS.salivariusHB7tohydrophobiccrystals,buta minor decrease in adhesion was observed on hydrophilic crystal surfaces compared to absence of oscillation during adhesion (Table 5). The more hydrophilic S. salivarius HBC12 showed a strong reductioninadhesionduringcrystaloscillationatanoscillationforceof30pN.Similarly,polystyrene particlesweregreatlydiscouragedtoadherewhentheoscillationforceduringadhesionwas30pN, especially from the hydrophilic crystal. These observations suggest that rotation and wiggling of

(19)

adheringS.salivariusHB7mayleadtoanincreaseofthenumberoftethersinvolvedinthecoupling, resultinginstrongeradhesionthancanbeachievedfor(bio)colloidalparticleslackingsurfacetethers.11

Comparisonofthe bacterialadhesion forcesobtainedfromliteratureis difficult,because a cleardistinctionbetweenforcestopreventadhesionandforcestodetachadheringbacteriaisnot always trivial in the literature. Moreover, bacterial adhesion forces reported can vary by orders of magnitudedependingonthemethodapplied.Atomicforcemicroscopy(AFM)hassofaryieldedthe largestadhesionforcesintheliteraturerangingupto50000pN,23roughly1500–2000timeslarger

thanappliedusingtheoscillatingcrystalmethodhere.Thismightbecausedamongstothers,bythe factthatinAFMbacteriaareforcedintocontactwithasubstratumsurfaceunderanappliedloading force, after which detachment is initiated and an adhesion force (“detachment”) is measured. However, using optical tweezers that also require a forced albeit possibly more gentle, contact, adhesion forces in a detachment mode for coccal bacteria of around 20 pN were obtained,24

resembling the values obtained in this study. Flow displacement systems allow to make a clear distinctionbetweenforcestopreventadhesiontoforcestocausedetachmentandfluidshearforces of around 20 pN10 were found sufficient to prevent adhesion of coccal bacteria, while bacterial

detachment required a fluid shear forces up to 42 pN.10 This comparison puts data obtained with

opticaltweezers,flowdisplacementsystemsandQCMatequalvalues,makingAFMadhesiondata unrealisticallyhigh.Also,itpartlynegatesfrequentlyvoicedcriticismonQCMdatathattheadhesion processmaybeinfluencedbythehighfrequenciesatwhichthesubstratumoscillatesduringadhesion. However,theinfluenceofsubstratumoscillationsupontheadhesionprocessisdependentonwhether bacteriaadhereina“springͲcoupled”or“floatingmode”likeS.salivariusHB7andHBC12respectively andcautionthusremainsnecessarywheninterpretingQCMdata. Forcestopreventbacterialadhesionarisingfromflowdisplacementdata,areobtainedusing a uniͲdirectional force upon the bacteria, while in QCM the crystal oscillates and accordingly the direction of the forces changes at high frequency. Whereas this does not clearly show from major differencesinadhesionforcevaluesobtainedinflowdisplacementsystems,thespatialdistributionof adhering bacteria is affected (Figure 5). Both strains of streptococci as well as polystyrene particle adherehomogeneouslydistributedandmainlyassingleparticlesduringadhesioninabsenceofcrystal oscillation,liketheydounderflow.AdhesiononoscillatingcrystalsshowssurfaceaggregationofS.

salivariusHB7andpolystyreneparticles,whichismostpredominantforS.salivariusHB7.Thisimplies that in absence of oscillation, streptococci may remain longer in their soͲcalled “mobile” adhesion phase,whiletheymaytumbleovertheircomboffibrillarsurfacetetherstilltheybecomeimmobilized inasurfaceaggregateduringpresenceofoscillation.Note,thatthemicroscopicimagesobtainedof adhering bacteria on oscillating crystals have been taken from the center of the crystal, where

(20)

oscillation amplitudes are maximal.21 Calculation of the distribution of adhering bacteria over the

crystalsurfacewouldthereforebeinterestingtopursue. 

Table 5 The number of streptococci and polystyrene particles after adhesion during application of

different oscillation forces FoscͲP to a hydrophilic and hydrophobic crystal surface. Data represents

averageswithstandarddeviationsovertwoseparateexperiments.  Duringadhesion  Npafteradhesion (x1010mͲ2) FoscͲP (pN) Hydrophilic crystal Hydrophobic crystal ^͘ƐĂůŝǀĂƌŝƵƐHB7  0 6.1±0.4 4.6±0.6 0.2 4.8±0.0 4.1±0.1 2 4.8±0.2 4.9±0.2 30 4.2±2.1 5.0±0.9 ^͘ƐĂůŝǀĂƌŝƵƐHBC12  0 2.9±0.1 2.9±0.7 0.2 2.1±0.4 2.4±0.1 2 2.0±0.1 1.6±0.1 30 0.6±0.2 1.5±0.5 Polystyreneparticles  0 3.5±0.7 3.9±1.1 0.2 4.1±0.5 3.6±0.2 2 4.1±0.2 1.8±0.2 30 0.2±0.0 1.5±0.8 

5

(21)

 Figure5.DistributionofadheringS.salivariusHB7,S.salivariusHBC12andpolystyreneparticlesto hydrophilicandhydrophobiccrystalsafteradhesioninabsenceandpresenceofoscillationforces(FoscͲ P=0.2pN).Scalebarcorrespondsto10μm,whilesurfaceaggregationofparticlesisindicatedbyred circles.  4.KelvinͲVoigtAnalysesofQCMData.Inordertoseewhetherthespringconstantsanddrag

coefficients of the bond with the crystal surface, including particle masses derived, depend on the oscillationforcesappliedduringadhesion,adhesionwasallowedinabsenceandpresenceofcrystal oscillationsfollowedbyQCMmeasurementsandfittingofthedatatoaphenomenologicalKelvinͲVoigt model(seeFigures6and7forresultsonahydrophobicandhydrophiliccrystal,respectively).Ascan beseenthequalityofthefitisrathergood(seealsoTable6),whilewithinthewindowofobservable resonancefrequenciespositivefrequencyshiftsorfrequenciesofzerocrossingareobserved,except forS.salivariusHBC12onthehydrophobiccrystal,confirmingitsknowntendencytomasscoupletoa substratumsurface.25

(22)



Figure6.QCMresponses,ȴfandȴȳasafunctionofthecrystaloscillationfrequencyforadhesionof S. salivarius HB7, S. salivarius HBC12 and polystyrene particles on hydrophobic crystals after 1 h

adhesioninabsence(toppanels)andpresenceofcrystaloscillation(0.2pN;bottompanels),followed by 30 min oscillation and measurement at the same oscillation force. Data represent duplicate experiments.                         

5

(23)

 Figure7.QCMresponses,ȴfandȴȳasafunctionofthecrystaloscillationfrequencyforadhesionof S. salivarius HB7, S. salivarius HBC12 and polystyrene particles on hydrophilic crystals after 1 h

adhesioninabsence(toppanels)andpresenceofcrystaloscillation(0.2pN;bottompanels),followed by 30 min oscillation and measurement at the same oscillation force. Data represent duplicate experiments.



Table6summarizestheresultingbondparametersfittedtotheVNAͲbasedQCMoutput.For

S.salivariusHB7,adhesioninabsenceofoscillationsyieldslowerparticlemasses,slightlyhigherspring

constantsanddragcoefficientsthanobtainedwhenadhesionoccursunderanoscillationforceof0.2 pN and regardless of the hydrophobicity of the crystal surface. Also for S. salivarius HBC12 and polystyrene particles, it can be seen that adhesion in absence of oscillations yields lower particle masses,despitethe30minapplicationofanoscillationforceof0.2pNtodetachadheringparticles. However,fortheparticlesstilladheringwhenQCMmeasurementsstarts,this30mintimeperiodmay alsoactasabondmaturationtimeperiodduringwhichthenumberofbindingtethersmayincrease andaggregatesareformed(seeFigure5).Asasimpleexplanationfortheincreasesinparticlemasses observedforS.salivariusHB7andpolystyreneparticles,itissuggestedthatthisisduetoaggregate formationastheincreaseratioroughlymatchesthenumberofparticlesthatcanbediscernedinthe aggregates.Aggregateformationalsoincreasesthetotalnumberoftethers,i.e.bindingtethersinthe entireaggregatecoupledtothesurface,explainingtheincreaseinspringconstantobserved.Alongthe same lines, but now with respect to volume, aggregate formation may explain why the drag coefficients measured are larger in case of adhesion under and applied oscillation force. This explanationdoesnotholdhoweverformorehydrophilicS.salivariusHBC12.Thedragcoefficientfor

(24)

S. salivarius HBC12 on hydrophilic crystal is much higher compared to on the hydrophobic crystal, possiblyduetodifferentialstructuringofwater.Onthehydrophiliccrystal,theratiobetweenelectronͲ donatingandacceptingsurfacefreeenergyparametersislarge(Table1)indicatingthatinorderto contactthecrystalsurfacethebacteriumhastopermeateahighlystructuredwaterlayer.26Thismay leadtoalargerdragcoefficient.Thisexplanationevidentlycannotbeextrapolatedtobacteriawith surfacetethersontheiroutermostsurface,becausetheykeepalargerdistancefromthesurface. Table6Springconstantsk,dragcoefficientsʇ,massesmp,andRMSDvaluesobtainedintheKelvinͲ VoigtcoupledͲresonatormodel,forS.salivariusHB7withfibrillarsurfacetethers,baldS.salivarius HBC12andabioticpolystyreneparticlesonhydrophilicSAMͲcoatedcrystalsandhydrophobicSAMͲ coatedcrystals.  Fosc–P(pN) mp(x10Ͳ16Kg) k(kgsͲ2) ૆(x10Ͳ9KgsͲ1) RMSD(Hz) During adhesion During detachment During measurement Hydro phobic Hydro philic Hydro phobic Hydro philic Hydro phobic Hydro philic Hydro phobic Hydro philic ^͘ƐĂůŝǀĂƌŝƵƐHB7 0 0.2 0.2 2.7 1.0 0.2 0.1 3.0 1.0 14.5* 11.0* 0.2 0.2 0.2 4.2 4.3 0.8 0.2 26.9 5.0 69.4* 13.0* ^͘ƐĂůŝǀĂƌŝƵƐHBC12 0 0.2 0.2 0.0 0.3 1.0 0.0 0.0 17.0 0.0 9.9 0.2 0.2 0.2 4.7 2.6 0.0 0.3 3.0 15.0 10.9* 18.7* Polystyreneparticles 0 0.2 0.2 3.3 3.8 0.4 0.5 5.0 9.0 22.4* 28.6* 0.2 0.2 0.2 5.8 4.8 0.0 0.0 36.9 22.9 76.5* 42.4* *Positivefrequencyshiftsorfrequenciesofzerocrossingobservedwithinthewindowofobservable resonancefrequencies.   CONCLUSION

 In summary, the study performed here offers a new, and versatile as well as low cost quantitativetoolforthedeterminationofforcesinvolvedin(bio)colloidalparticleadhesion.Adhesion force values obtained using the QCM crystal as an oscillating substratum, coincide well with data obtained using optical tweezers and flow displacement systems. Despite the lack of influence of substratumoscillationupontheadhesionforcesmeasured,thecharacteristicsofthebondasobtained inacoupledͲresonator,KelvinͲVoigtbasedmodelaredependentonthedevelopmenthistoryofthe bond,i.e.ontheoscillationforcesfeltby(bio)colloidalparticlesduringadhesion.

 

(25)

ACKNOWLEDGEMENTS

Theauthorsliketothank Prof.Diethelm Johannsmann,ClausthalUniversity ofTechnology, GermanyforprovidingthesoftwarepackageQTZ,thatturnsthebasicVNAintoaQCM.Theauthors declarenopotentialconflictsofinterestwithrespecttoauthorshipand/orpublicationofthisarticle. HJBisalsodirectorofaconsultingcompanySASABV.Opinionsandassertionscontainedhereinare those of the authors and are not construed as necessarily representing views of the funding organizationortheirrespectiveemployer(s).

(26)

REFERENCES

(1) Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung.ZeitschriftfürPhysik.1959,155,206–222.

(2) Edvardsson,M.;Rodahl,M.;Kasemo,B.;Höök,F.ADualͲFrequencyQCMͲDSetupOperatingat ElevatedOscillationAmplitudes.Anal.Chem.2005,77,4918–4926.

(3) Pomorska,A.;Shchukin,D.;Hammond,R.;Cooper,M.A.;Grundmeier,G.;Johannsmann,D. Positive Frequency Shifts Observed upon Adsorbing MicronͲSized Solid Objects to a Quartz CrystalMicrobalancefromtheLiquidPhase.Anal.Chem.2010,82,2237–2242. (4) Dultsev,F.N.;Ostanin,V.P.;Klenerman,D.“Hearing”BondBreakage.MeasurementofBond RuptureForcesUsingaQuartzCrystalMicrobalance.Langmuir2000,16,5036–5040. (5) VanDerWerff,M.J.;Yuan,Y.J.;Hirst,E.R.;Xu,W.L.;Chen,H.;Bronlund,J.E.QuartzCrystal MicrobalanceInducedBondRuptureSensingforMedicalDiagnostics.IEEESens.J.2007,7,762– 769. (6) Yuan,Y.J.;Jia,R.StudyonPivotͲPointVibrationofMolecularBondͲRuptureEventsbyQuartz CrystalMicrobalanceforBiomedicalDiagnostics.Int.J.Nanomedicine2012,7,381–391. (7) Borovsky, B.; Mason, B. L.; Krim, J. Scanning Tunneling Microscope Measurements of the

AmplitudeofVibrationofaQuartzCrystalOscillator.J.Appl.Phys.2000,88,4017. (8) Dufrene,Y.F.AtomicForceMicroscopy,aPowerfulToolinMicrobiology.J.Bacteriol.2002, 184,5205–5213. (9) Simpson,K.H.;Bowden,G.;Höök,M.;Anvari,B.MeasurementofAdhesiveForcesbetween IndividualStaphylococcusAureusMSCRAMMsandProteinͲCoatedSurfacesbyUseofOptical Tweezers.J.Bacteriol.2003,185,2031–2035. (10) Boks,N.P.;Norde,W.;VanderMei,H.C.;Busscher,H.J.ForcesInvolvedinBacterialAdhesion toHydrophilicandHydrophobicSurfaces.Microbiology2008,154,3122–3133. (11) Sjollema,J.;VanderMei,H.C.;Hall,C.L.;Peterson,B.W.;DeVries,J.;Song,L.;DeJong,E.D.; Busscher, H. J.; Swartjes, J. J. T. M. Detachment and Successive ReͲAttachment of Multiple, ReversiblyͲBindingTethersResultinIrreversibleBacterialAdhesiontoSurfaces.Sci.Rep.2017,

7,4369.

(12) Kanazawa,K.K.MechanicalBehaviourofÐlmsontheQuartzMicrobalance.FaradayDiscuss

1997,107,77–90.

(13) VanderWesten,R.;Sharma,P.K.;DeRaedt,H.;Vermue,I.;VanderMei,H.C.;Busscher,H.J. Elastic and Viscous Bond Components in the Adhesion of Colloidal Particles and Fibrillated StreptococcitoQCMͲDCrystalSurfaceswithDifferentHydrophobicitiesUsingKelvin–Voigtand MaxwellModels.Phys.Chem.Chem.Phys.2017,19,25391–25400.

(27)

(14) D’Amour,J.N.;Stålgren,J.J.R.;Kanazawa,K.K.;Frank,C.W.;Rodahl,M.;Johannsmann,D. CapillaryAgingoftheContactsbetweenGlassSpheresandaQuartzResonatorSurface.Phys.

Rev.Lett.2006,96,058301.

(15) Johannsmann, D. Introduction. In The Quartz Crystal Microbalance in Soft Matter Research:

FundamentalsandModeling;Johannsmann,D.,Ed.;SpringerInternationalPublishing,2015,1–

22.

(16) Beck,R.;Pittermann,U.;Weil,K.G.ImpedanceAnalysisofQuartzOscillators,ContactedonOne SidewithaLiquid.BerichtederBunsengesellschaftfürPhys.Chemie1988,92,1363–1368. (17) Reviakine, I.; Johannsmann, D.; Richter, R. P. Hearing What You Cannot See and Visualizing

WhatYouHear.Anal.Chem.2011,83,8838–8848.

(18) Van der Mei, H. C.; Leonard, A. J.; Weerkamp, A. H.; Rouxhet, P. G.; Busscher, H. J. Surface Properties of Streptococcus salivarius HB and Nonfibrillar Mutants: Measurement of Zeta Potential and Elemental Composition with XͲRay Photoelectron Spectroscopy. J. Bacteriol.

1988,170,2462–2466.

(19) Peschel,A.;Langhoff,A.;Johannsmann,D.CoupledResonancesAllowStudyingtheAgingof Adhesive Contacts between a QCM Surface and Single, MicrometerͲSized Particles.

Nanotechnology.2015,26,484001.

(20) Olsson, A. L. J.; Van der Mei, H. C.; Johannsmann, D.; Busscher, H. J.; Sharma, P. K. Probing ColloidͲSubstratumContactStiffnessbyAcousticSensinginaLiquidPhase.Anal.Chem.2012, 84,4504–4512. (21) Edvardsson,M.;Rodahl,M.;Höök,F.InvestigationofBindingEventPerturbationsCausedby ElevatedQCMͲDOscillationAmplitude.Analyst2006,131,822–828. (22) Zhang,L.;Torkelson,J.M.EnhancementofSurfaceWettabilitybyIncorporatingPolarInitiator FragmentsatChainEndsofLowͲMolecularͲWeightPolymers.ACSAppl.Mater.Interfaces2017, 9,12176–12181. (23) Bowen,W.R.;Fenton,A.S.;Lovitt,R.W.;Wright,C.J.TheMeasurementofBacillusmycoides SporeAdhesionUsingAtomicForceMicroscopy,SimpleCountingMethods,andaSpinningDisk Technique.Biotechnol.Bioeng.2002,79,170–179. (24) Simpson,K.H.;Bowden,M.G.;Höök,M.;Anvari,B.MeasurementofAdhesiveForcesbetween S.epidermidisandFibronectinͲCoatedSurfacesUsingOpticalTweezers.LasersSurg.Med.2002, 31,45–52.

(25) Olsson, A. L. J.; Van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Influence of Cell Surface Appendages on the BacteriumͲSubstratum Interface Measured RealͲTime Using QCMͲD.

Langmuir2009,25,1627–1632.

(26) VanOss,C.J.;Giese,R.F.RoleofthePropertiesandStructureofLiquidWaterinColloidaland InterfacialSystems.J.Dispers.Sci.Technol.2004,25,631–655.

(28)
(29)

Referenties

GERELATEERDE DOCUMENTEN

Dit werd duidelijk waargenomen bij het archeologisch onderzoek in de Heilige Geestkapel (eveneens gelegen aan de Kattestraat, iets meer richting de Grote Markt),

In the adaptive modeling procedure presented in this paper, we estimated a new model at each time step t based on both the fixed estimation data and the data from the

TableofContents Chapter1 ϭϭ Chapter2 Ϯϭ Chapter3 ϰϭ Chapter4 ϲϵ Chapter5 ϵϯ Chapter6 ϭϮϭ ϭϯϱ

dimensionsintheevanescentwavewhentherefractiveindicesofthecolloidsdifferfromthatofthe suspending fluid. The intensity of the scattered wave light

The quartzͲcrystalͲmicrobalanceͲwithͲdissipation (QCMͲD) has become a powerful tool for studying the bond viscoelasticity of biotic and abiotic colloidal

QuartzͲcrystalͲmicrobalance with dissipation (QCMͲD) can measure molecular

potential energy barrier that impedes close approach and a deep primary minimum close to

voltage and crystal oscillation amplitude in QCM has seldom been explored but offers interesting possibilities to measure (bio)colloidal particle adhesion