• No results found

abatement O binary TiO mixed –Al oxide surfaces for photocatalyticNO Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "abatement O binary TiO mixed –Al oxide surfaces for photocatalyticNO Applied Surface Science"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

TiO 2 –Al 2 O 3 binary mixed oxide surfaces for photocatalytic NO x abatement

Asli Melike Soylu

a

, Meryem Polat

a

, Deniz Altunoz Erdogan

a

, Zafer Say

a

, Cansu Yıldırım

b

, Özgür Birer

b,c

, Emrah Ozensoy

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bKUYTAMSurfaceScienceandTechnologyCenter,Koc¸University,34450Istanbul,Turkey

cDepartmentofChemistry,Koc¸University,34450Istanbul,Turkey

a r t i c l e i n f o

Articlehistory:

Received15November2013

Receivedinrevisedform10February2014 Accepted12February2014

Availableonline22February2014

Keywords:

TiO2

Al2O3

Photocatalysis NOxabatement DeNOx

a b s t r a c t

TiO2–Al2O3binaryoxidesurfaceswereutilizedinordertodevelopanalternativephotocatalyticNOx

abatementapproach,whereTiO2siteswereusedforambientphotocatalyticoxidationofNOwithO2and aluminasiteswereexploitedforNOxstorage.Chemical,crystallographicandelectronicstructureofthe TiO2–Al2O3binaryoxidesurfaceswerecharacterized(viaBETsurfaceareameasurements,XRD,Raman spectroscopyandDR-UV-VisSpectroscopy)asafunctionoftheTiO2loadinginthemixtureaswellasthe calcinationtemperatureusedinthesynthesisprotocol.0.5Ti/Al-900photocatalystshowedremarkable photocatalyticNOxoxidationandstorageperformance,whichwasfoundtobemuchsuperiortothatof aDegussaP25industrialbenchmarkphotocatalyst(i.e.160%higherNOxstorageand55%lowerNO2(g) releasetotheatmosphere).OurresultsindicatethattheonsetofthephotocatalyticNOxabatementactiv- ityisconcomitanttotheswitchbetweenamorphoustoacrystallinephasewithanelectronicbandgap within3.05–3.10eV;wherethemostactivephotocatalystrevealedpredominantlyrutilephasetogether andanataseastheminorityphase.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Indoorand outdoorair pollutants suchasNOx,SOx,volatile organic compounds (VOCs) and particulate matter (PM) result insignificantly adverse effects onhumanhealth. Further nega- tiveimplicationsofair pollutioncanalsobeobservedonwater resources,agricultureandbiologicalhabitat[1–6].Amongthese airbornetoxicspecies,particularlynitrogenoxides(NOx)presenta majorchallengeforairpurification.NOxspecies(i.e.mostlyNO(g), NO2(g)andN2O(g))aregeneratedduringthefossilfuelcombus- tionprocessesviathehomogenousreactionofnitrogenandoxygen gasesathightemperatureswherethemajorcontributioncomes fromNO(g).NOxabatementcanbeperformedinaveryefficient mannerusingthermalcatalytictechnologiessuchasselectivecat- alyticreduction(SCR)[7–9]andNOxstorageandreduction(NSR) (whichis alsocalled LeanNOx Traps, LNT)[10–12] atelevated temperatures(i.e.T>300C).Inthesethermallyactivatedcatalytic DeNOx technologiesalthough SCRapproach requires utilization

∗ Correspondingauthor.Tel.:+903122902121;fax:+903122664068.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

URL:http://www.fen.bilkent.edu.tr/ozensoy(E.Ozensoy).

ofureaas anexternal reducing agent,NSR/LNTtechnologycan be used in the absenceof an additional reducing agent. How- ever,animportantchallengeinairpurificationistheabatement of gaseous NOx species under ambientconditions (i.e. atroom temperatureandunderregularatmosphericconditions).Photocat- alyticsystemsofferpromisingopportunitiesinordertotacklethis importantenvironmentalchallenge,asthesesystemscanbetail- oredtoefficientlyclean/purifyairunderambientconditionswith thehelpofultraviolet(UV)and/orvisible(VIS)light[13].Among thesesystemsTiO2-basedmaterialsarethemosteffectivephoto- catalystsforair/waterpurificationapplications[14,15].Howeverit hasbeenreportedthatcompletephotocatalyticreductionoftoxic NOxspeciesintoharmlessN2occursonlywitharelativelylimited performanceforthesesystems[13].

Inthecurrentwork,ratherthanattemptingtoperformcomplete photocatalytic reduction of NOx,an alternative NOx abatement strategy hasbeen demonstrated, which includes photocatalytic oxidationofNOxonaTiO2/Al2O3binaryoxidephotocatalystsur- faceanditsstorageinthesolidstateintheformofnitratesand nitrites.Thisalternativestrategywasinspiredbyourrecentstud- ies onNSR technology which is used for thethermal catalytic aftertreatmentofautomotiveNOxemissions[12,16–21].Incou- pleof theseformer studies,we spectroscopicallydemonstrated http://dx.doi.org/10.1016/j.apsusc.2014.02.065

0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

that[12,16–21]ontheTiO2/Al2O3binaryoxidesurface,oxidized NOx species suchasNO2(g)canreadilyundergoa thermaldis- proportionationreactionforming adsorbednitrites and nitrates allowingeffectivesolidstateNOxstorage.HoweverNO(g)hasa limitedadsorptionenergyonmanymetaloxidesurfacescompared tothatofNO2,hinderingthestorageofNOinthesolid(adsorbed) state.Thus,forsolidstateNOxstorage,NOshouldbefirstoxidized toNO2 andthensubsequentlystoredontheavailableadsorption sitesofthecatalystsurfaceintheformofnitrites/nitrates.Although thiscan bedonereadilyatelevatedtemperaturesusinga plat- inumgroupmetal(PGM)promotedmetaloxidecatalystsuchas Pt/Al2O3,itcannotbeefficientlyachievedunderambientcondi- tions(i.e.atroomtemperature)duetokineticlimitations.However thislimitationcanbeovercomebydesigningacatalytic system includinga photocatalyticNO(g)oxidation componentwhich is coupledtoa NOx storage component. Along theselines, inthe currentwork,weshowthatTiO2/Al2O3binaryoxidesurfacescan beexploitedtoperformphotocatalyticNOxoxidationandstorage, whereTiO2surfacedomainsprovideNOoxidationcapabilityunder ambientconditions,convertingNO(g)+O2(g)intonitrites/nitrates whilethehigh-surfaceareaAl2O3componentenablesboththedis- persionofthephotocatalyticTiO2domainsaswellasthecreation ofadditionalstoragesitesforoxidizedNOx.Oncesaturatedwith NOx,suchaphotocatalyticNOxoxidationandstoragecatalystcan readilyberegeneratedbytreatmentwithwater,whichcandissolve theadsorbednitrites/nitratesandrestoretheNOxadsorptionsites [22].

In order to demonstrate this alternative strategy, in the current study, a set of TiO2/Al2O3 binary oxide photocata- lysts were synthesized and characterized. A sol–gel synthesis method was used to co-precipitate titania with alumina. The influences of the surface structure on the photocatalytic NO oxidation and storage was investigated by modifying the sur- face structure via calcination. Photocatalytic performances of thisnewfamilyofTiO2/Al2O3 binaryoxidephotocatalystswere alsocomparedwitha commerciallyavailablephotocatalyst(i.e.

DegussaP25)inordertodeterminetherelative performanceof theTiO2/Al2O3 system against a widelyused industrial bench- mark.

2. Experimental 2.1. Samplepreparation

Titanium (IV) isopropoxide (TIP, 97%, Sigma–Aldrich) and aluminum-tri-sec-butoxide(ASB,97%,Sigma–Aldrich)wereused as the main ingredients in the preparation of the TiO2/Al2O3 binaryoxides via sol–gelmethod [16,18].Three series of sam- ples were prepared by varying therelative molar composition of the TiO2 component in the TiO2/Al2O3 binary oxide. These samples are labeledas “xTi/Al-y”, where x represents theTiO2 to Al2O3 mole ratio (i.e. 0.25, 0.5 and 1.0) and y represents the calcination temperature (150–1000C) of the sample. In thesynthesis,dependingonthecorrespondingTiO2–Al2O3mole ratio, an appropriate amount of ASB was mixed with propan- 2-ol(99.5%,Sigma–Aldrich)andacetylacetone(99.3%,Fluka)for 30min. Subsequently, TIP was added in a drop wise fashion to the mixture over the course of another 30min. All of the synthesis steps were carried out at room temperature under vigorous stirring. The co-precipitation of the obtainedhydrox- ides was accomplished after the gradual addition of 0.5M HNO3(aq) to the solution which led to the formation of a gel. The resulting yellow gel was aged under ambient condi- tions for 2 days and the dried sample was ground to form a fine powder. Next, synthesized TiO2/Al2O3 binary oxides were

calcinedinairfor2hatvarioustemperaturesrangingfrom150 to1000C.

2.2. Structuralcharacterizationmeasurements

Determinationofthecrystalstructureofthesynthesizedmate- rialswerecarriedoutwithaRigakuMiniflexX-raydiffractometer (XRD)equippedwithCuK␣radiationoperatedat30kV,15mA, and 1.54 ˚A (wavelengthof copper X-raysource). The XRD pat- ternswererecordedinthe2rangeof10–60withastepwidth of0.02s−1.Ramanspectraofthesampleswerecollectedin the rangeof200–1500cm−1witharesolutionof4cm−1usingaHoriba JobinYvonLabRAMHR800spectrometerequippedwithaconfocal RamanBX41microscope.TheRamanspectrometerwasequipped witha Nd:YAGlaser (=532.1nm)where thelaser powerwas 20mW. Thespecific surfacearea(SSA) valuesof theTiO2 sam- plesweredeterminedbyconventionalBrunauer–Emmett–Teller (BET)N2 adsorptionmethodusinga MicromeriticsTristar 3000 surface areaand pore sizeanalyzer. Priorto theBET measure- ments,all ofthe sampleswereoutgassed in vacuumfor 2hat 150C.DiffuseReflectanceUV–vis(DR-UV–vis)spectrawereuti- lizedinordertoobtainelectronicbandgapvalues.Thesespectra wererecordedwithaShimadzuUV-3600UV-Vis-NIRspectropho- tometerusingtheISR-3100integratingsphereattachmentinthe specularreflection(8)mode.Bariumsulfate(BaSO4)wasusedas thereferencematerialintheDR-UV–vismeasurements.Obtained DR-UV–visspectrawerefinallycorrectedusingtheKubelka-Munk transformation.

2.3. Photocatalyticactivitymeasurements

The custom-designed photocatalytic flow reactor system (Scheme1)wasusedtomeasure thephotocatalyticNOx oxida- tionandstorageperformancesofTiO2/Al2O3binaryoxidesunder UVA excitation. The photocatalytic flow reactor system mainly consistedofa gasmanifoldsystem,a samplecompartmentand a chemiluminiscenceNOx analyzer(Horiba APNA-370).The gas manifoldsystemwasconnectedtogascylinderscontainingN2(g) (99.998%,LindeGmbH),O2(g)(99.998%,LindeGmbH)and100ppm NO diluted in N2 (Linde GmbH). Mass flow controllers (MFCs, MKS 1479A)wereused tocontrolthe volumetric flowrates of gasesandacapacitancepressuregauge(MKSBaratron)wasused tomeasure total pressure of theflowing gaswhich wasset to 1atm. The following flow rates were used to prepare the gas mixture,0.750SLM(standardlitersperminute)forN2(g),0.250 SLM for O2(g),and 0.010SLM for NO(g) witha total gas flow rate of 1.010 SLM. Prior to mixing, N2(g) and O2(g) were also bubbledthroughahumidifier.Therelativehumidityofthetotal gas mixture was 70% RH which was measured with a Hanna HI 9565 humidity analyzerat the sample position in thepho- tocatalyticflow reactor.Thisgasmixturerepresentsasynthetic polluted air sample. Before the performance tests, synthesized powdersampleswereplacedona2mm×40mm×40mmpoly- methyl methacrylate (PMMA) sample holder and subsequently irradiated with UVA (350nm) light bulbs (F8W/T5/BL350, Syl- vania/Germany) under ambientconditions for 18houtside the flow reactor in order to remove the surface contaminations and toactivatethephotocatalysts. For each measurement,typ- ically a 950mg activatedphotocatalyst samplewasplaced into the flow reactor. The photocatalytic flow reactor was illumi- nated with8W UVA lamps (F8W/T5/BL350, Sylvania/Germany) whoseemissionwavelengthwas350nm.ConcentrationsofNO(g), NO2(g)andtotalNOx(g)speciesinthephotocatalyticreactorwere quantitativelymeasuredonlinewiththechemiluminiscenceNOx

analyzer.

(3)

Scheme1. Descriptionofthecustom-designedphotocatalyticflowreactorsystem.

Gasphasephotocatalyticactivitymeasurementsarereportedin termsofpercentphotonicefficiencies(%)asdescribedinEqs.(1) and(2).

%= nNOx

nphoton×100 (1)

wherenNOx correspondstoeitherthedecreaseinthetotalnum- berofmolesofallgaseousNOxspeciesorthenumberofmoles ofNO2(g)generatedina 60min(i.e.3600s)photocatalyticper- formancetest.Ontheotherhand,nphotoncorrespondstothetotal numberofincidentUVAphotonsimpingingonthecatalystsurface in3600s,whichcanbecalculatedthroughEq.(2)as:

nphoton=ISt

Nhc (2)

whereIrepresentsthephotonpowerdensity oftheUVAlamp, experimentally measuredat the sample positionin thephoto- catalytic reactor (typically, 7.5Wm−2),  is the representative emissionwavelengthoftheUVAlamp(i.e.350nm),Sisthesur- faceareaofthephotocatalystsampleholderinthereactorthatis exposedtotheUVAirradiation(i.e.40mm×40mm=1600mm2);

tisthedurationoftheperformancetest(i.e.3600s),NistheAvo- gadro’snumber,hisPlanck’sconstantandcisthespeedoflight.

3. Resultsanddiscussion

3.1. Specificsurfaceareameasurements

Thermal evolution and the structural variations of the TiO2/Al2O3binaryoxidesampleswithvaryingmolarcompositions wereinvestigatedaftercalcinationstepsatdifferenttemperatures (Fig.1).Fig.1revealsthatTiO2/Al2O3 samplespossessedarela- tivelyhighsurfaceareaafterpreparationandcalcinationatlow temperatures(e.g.≥420m2/g).ThesehighSSAvalueswerepre- servedtoalargeextentupto600C.Thisobservationisinverygood accordancewiththecurrentXRDandRamanresults(Figs.2and3) suggestingapredominantlyamorphousstructureforallTiO2/Al2O3 binaryoxidesamplesbelow600C.Athighertemperatures,adras- ticand a monotonic decreasein theSSA values wereobserved in line withthe enhanced crystallinity and structural ordering ofthesamplesatelevatedtemperatureswhicharealsoevident in the current XRD and Ramanmeasurements (Figs. 2 and 3).

Itisworthmentioningthatuponcalcinationat900C, SSAval- uesfor0.25Ti/Al-900,0.5Ti/Al-900,1.0Ti/Al-900samplesdecreased to108,64and25m2/g,respectively.Theseparticularvaluesare

ratherclosetotheSSAofthecommercialDegussaP25catalyst(i.e.

55m2/g)whichisusedasthebenchmarkphotocatalystinthecur- rentstudy.Athighercalcinationtemperaturessuchas1000C,SSA valuesforalloftheTiO2/Al2O3 binaryoxidesamplesdrastically decreasetoc.a.9–17m2/gwhichisinperfectagreementwiththe increasedcrystallinityandtheformationofthelowsurfacearea phasessuchasrutileand␣-Al2O3(corundum)observedintheXRD andRamanexperiments(Figs.2and3).

3.2. XRDandRamanspectroscopyexperiments

Fig.2presentsXRDprofilesobtainedfortheTiO2/Al2O3samples withdifferentmolarcompositionsthatwerecalcinedatvarious temperatureswithin150–1000C.Itisapparentthatforallsam- ples,calcinationattemperatureslessthanorequalto600Cyields amorphous structures. Calcination at 800C resultsin the first discernibleindicationsofcrystallinity,where␥-Al2O3(JCPDS29- 0063)phasestartstobevisiblefor0.25Ti/Aland0.5Ti/Alsamples.

Forthe1.0Ti/Alsample,inadditiontothe␥-Al2O3phase,forma- tionofanatase(JCPDS21-1272)andrutile(JCPDS04-0551)phases ofTiO2alsobecomesvisible.ItisclearthatwithincreasingTiO2to Al2O3moleratiointhephotocatalystcomposition,crystallinityof

300 400 500 600 700 800 900 1000 1100 0

100 200 300 400 500 600

aerAecafruScificepS (m2 /g)

Temperature (oC)

0.25 Ti/Al 0.5 Ti/Al 1.0 Ti/Al 470487

285 256

108 17

424 393

131

64 9 390

86

25 9

Fig.1. SpecificsurfaceareavaluesfortheTiO2/Al2O3binaryoxidesampleswith differentmolarcompositionsthatwerecalcinedatvarioustemperatureswithin 150–1000Cinair.

(4)

Fig.2. XRDpatternsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwerecalcinedatvarioustemperatureswithin150–1000Cinair.

theobservedphasesincreases.Thisisinlinewiththefactthatpure (bulk)TiO2hasmuchlowerphasetransitiontemperaturesbetween amorphous,anataseandrutilephasesthantheTiO2 domainson theTiO2/Al2O3 surface[16,18].Thus atlowTiO2 toAl2O3 mole ratios,thereexistsastronginteractionbetweentheTiO2minor- itydomainsandtheAl2O3majoritydomains,whichisdecreasing

thesurfacemobilityoftheTiO2domainsandhinderingthenuclea- tionandgrowthofanataseandrutilephasesatlowtemperatures.

HoweverathigherTiO2toAl2O3moleratios,interactionbetween theTiO2andAl2O3domainsweakenstoacertainextentasTiO2 convergestoa morebulk-like configuration,pushingthephase transitiontemperaturestolower(bulk-like)values.

Fig.3. RamanspectrafortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwerecalcinedatvarioustemperatureswithin150–1000Cinair.

(5)

Uponcalcinationat900C,although␥-Al2O3seemstobethe onlydiscerniblecrystallinephaseonthe0.25Ti/Alsurface(where TiO2isstillinamorphousstate),anataseandrutilephasesbecome clearlyvisibleonthe0.5 Ti/Aland1.0 Ti/Alsurfaceswherethe crystallinityofthelatterissignificantlygreater.Thisisinperfect agreementwiththeSSAvalues presentedinFig.1,suggestinga muchlowerSSAfor the1.0 Ti/Al-900samplecompared to0.25 Ti/Al-900and0.5Ti/Al-900samples.Itisalsoworthmentioning thatalthough␣-Al2O3(JCPDS10-0173)phaseisnotsignificantly visibleat900CforlowerTiO2toAl2O3moleratios;thisphaseis noticeablydiscernibleforthe1.0Ti/Al-900sample.Furthermore,

␣-Al2O3(corundum)phasestartstoappearduringtheanataseto rutilephasetransition.Asdiscussedinoneofourformerreports [16],this canbeexplained bytheformationof asolid solution betweenanataseand alumina.In this solid solution,when the anatasephase isconvertedintorutileatelevatedtemperatures, aphasesegregationoccurswhichtriggersaphasetransitioninthe aluminacomponentfrom␥to␣-phase.Finally,aftercalcinationat 1000C,allsamplesseemtobehighlyordered,wherecorundum andrutilearetheonlyvisiblecrystallinephases,inverygoodhar- monywiththedrasticSSAdecreasesobservedforthesesamplesin Fig.1.

Raman spectra of the synthesized TiO2/Al2O3 binary oxide sampleswithdifferentmolarcompositionsthatwerecalcinedat varioustemperatureswithin150–1000CaregiveninFig.3.These Ramanspectralfeaturescanbereadilyexplainedinthelightofthe XRDresultsgiveninFig.2,aswellastheformerRamanspectro- scopicstudiesintheliterature[16,18,23,24].Itisknownthatthe RamanspectrumofanatasephaseshowssixRamanfeatures(1A1g, 2B1g,and3Eg)at144(Eg),197(Eg),399(B1g),516(A1g+B1g),639 (Eg)and796cm−1 (Eg)[23].Ontheotherhand,therutilephase canbecharacterizedbyaRamanspectrumwithfourmajorRaman activefeatures(A1g+B1g+B2g+Eg)at143(B1g),447(Eg),612(A1g), 826cm−1(B2g)andalsoatwo-phononscatteringbandat236cm−1 [24].InverygoodagreementwiththeXRDresultsgiveninFig.2,up to600C,allsamplesrevealanamorphousstructurewithnosharp Ramanfeatures.Itisworthmentioningthatsample1.0Ti/Al-600 revealsverybroadandconvolutedRamansignalscorresponding tosmallandpoorlycrystallineanataseandrutiledomainswhich seemtobeelusivetodetectinXRD(Fig.2c).Atcalcinationtemper- atureshigherthan600C,anatasephaseappearsasthedominant phasetogetherwithaminorcontributionfromrutile.Withincreas- ingtemperature,anatasetorutileratiointhesamplesdecreases whereat900Crutilebecomesthepredominantphasedetectedin theRamanspectra.Forthe0.5Ti/Al-900sample,anatasephaseis stillvisibleintheRamanspectra(Fig.3b),althoughrutileisdefi- nitelythemajorityphase.InperfectharmonywiththeXRDresults (Fig.2),RamanspectrainFig.3alsosuggestthatincreasingTiO2 toAl2O3moleratioenhancesthecrystallinityofthephasesonthe TiO2/Al2O3binaryoxidesurfaceswhichisevidentbythesharper andstrongerRamanscatteringfeatures.

3.3. Photocatalyticperformanceexperiments

Fig.4shows atypicalconcentrationversustime plotthat is obtainedduringaphotocatalyticperformancetest.InFig.4,the totalNOxconcentration(i.e.sumoftheconcentrationsofallofthe NOxspeciesexistinginthereactor,i.e.bluecurve)aswellassep- arateNO(g)(blackcurve)andNO2(g)(redcurve)concentrations inthephotocatalyticreactormeasuredbythechemiluminiscence NOxanalyzerarepresented.Duringtheinitialc.a.20minofthe analysis,asyntheticpollutedairgasmixturecomprisedofN2(g), O2(g),H2O(g) aswell as 1ppm NO(g) is fed to the photocata- lystsurfaceunderdarkconditionswheretheUVAlampisoffand anybackgroundexposuretosunlightisprevented. Underthese conditions(i.e.inthefirst15min), aminortransientfallinthe

0 20 40 60 80

0.0 0.2 0.4 0.6 0.8

1.0 0.5 Ti/Al-900

Concentration (ppm)

Time(min) Light-on

Light-off

Thermal Adsorpon

NOx(g) NO(g)

NO2 (g)

Fig.4.Concentrationversustimeplotforthephotocatalyticperformancetestofthe 0.5Ti/Al-900sample.Blue,blackandredcurvescorrespondtotheconcentrationsof totalNOx(g),NO(g)andNO2(g),respectively(seetextfordetails).(Forinterpretation ofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

totalNOx(g)andNO(g)concentrationswasobserved.Thiscanbe attributedtothedilutionofthegasinthereactorpipelineandthe thermaladsorptionofNOxspeciesonthegaslines,reactorwallsas wellasadsorptiononthephotocatalystsurface.Sincethereactor iskeptincompletedarknessundertheseconditions,nophotocat- alyticactivityisobservedduringthisinitialstageevidentbythe presenceofaminoramountofNO2(g)productionduetothermal catalytic disproportionation processesoccurring onthecatalyst surface.Followingthisinitialtransientperiod,reactorwallsandthe photocatalystsurfacearesaturatedwithNOx,afterwhichNOx(g) andNO(g)tracesquicklyreturntotheoriginalinletconcentration valueofc.a.1ppm,signifyingtheendofthermalcatalyticactivity.

Afterthispreliminarytransientperiod,UVAexcitationsource isturnedonandthephotocatalyticreactionisstarted.UponUVA illumination,adrasticandapermanentfallintheNO(g)andtotal NOx(g)concentrationsconcomitanttoaquickandsignificantjump in theNO2(g)level, were observed.This behavior suggeststhe conversionofNO(g)intoNO2(g)viaphotocatalyticoxidation.Fur- thermore,producedNO2(g)canadsorbonthephotocatalystsurface intheformofchemisorbedNO2,nitritesandnitrates[16,18]and storedin thesolidstate,resultingin afurtherfallintheNO(g) and total NOx signals. It is worth mentioning that, fall in the NO(g)concentrationmightalsohavesomecontributionfromthe directphotocatalyticdecompositionandphoto-reductionofNO(g) formingN2(g)and/orN2O(g)[25].However,sincethedirectphoto- catalyticreductionisknowntobearelativelyinefficientpathway, thisreactionchannelmaybeexpectedtobeaminorphotochem- icalroute.Consequently,thetotalNOxconcentration(blue)curve (whichismostlycomprisedofthesumofNO(g)andNO2(g)signals) inFig.4remains mostlybelow1ppmduringtheUVA-activated regime,illustratingthecontinuousphotocatalyticactivityandNOx

storageinthesolidstate.

Photochemical NO oxidation and storage performance tests wereperformedforallofthesynthesizedsamplesandthesum- maryoftheseperformancetestswerepresentedintermsofpercent photonicefficienciesinFig.5,alongwiththecorrespondingdatafor theDegussaP25industrialbenchmark.Inthehistogramgivenin Fig.5,blueandredbarsrepresentthepercentphotonicefficien- ciesfortotalNOx(g)decreaseandNO2(g)production,respectively.

Thesevalueswereobtainedbyintegratingthecorrespondingareas undertheconcentrationversustimecurvesforthedatasimilarto theonesgiveninFig.4.

(6)

It is worth mentioning that for an ideal catalyst with an utmostphotocatalyticDeNOxperformance,bluebars(i.e.NOx(g) storage/conversion) should be maximized; while red bars are simultaneouslyminimized(i.e.minimumslipoftoxicNO2(g)into theatmosphere).WhenthebehavioroftheDegussaP25indus- trialbenchmarkphotocatalystgiveninFig.5isinvestigated,itis immediatelyseenthatthisindustrialphotocatalysthasaveryhigh NO(g)photo-oxidation capabilitygeneratinga largequantityof NO2(g),whilethesamecatalyst hasa verylimited NOxstorage capability(bluebar).ConsideringthefactthatNO2(g)isamuch moretoxicpollutantthanNO(g),althoughDegussaP25industrial benchmarksystemisveryactiveinphoto-oxidation,thismaterial doesnotqualifytobeaveryefficientphotocatalyticDeNOxsys- temforNOxabatement.Anotherbenchmarksampleusedinthe controlexperimentswas␥-Al2O3.Fig.5unambiguouslyindicates that,␥-Al2O3hasneithersignificantphotocatalyticNOxstoragenor photocatalyticNO2(g)productioncapabilities.

Ontheotherhand,whenthephotocatalyticperformancedata fortheTiO2/Al2O3 binaryoxidesamplesare examined,onecan immediatelynotetheremarkableimprovementinthephotocat- alyticDeNOxperformancecomparedtotheDegussaP25industrial benchmark.InFig.5,performanceresultsfortheTiO2/Al2O3binary oxidesamplesareassembledinthreegroupsbasedonTiO2toAl2O3 moleratio(i.e.0.25,0.5and1.0)inthephotocatalyststructure.It isvisiblethatforthe0.25Ti/Alsamplescalcinedatvarioustem- peratures,catalystscalcinedbelow900CrevealverylowDeNOx

performance,wheretheperformancereachesanoptimumvalue between900and950Candstartstofallat1000C.

Asimilarperformancetrendisobservedfor0.5Ti/Alcatalysts calcinedatvarious temperatures(Fig.5).For thisfamily ofcat- alysts,althoughnosignificantactivityisobservedatcalcination temperatureslessthan900C,photocatalyticDeNOxperformance presentsaveryradicalenhancementat900C, revealingvalues thataremuchbetterthananyofthephotocatalystsinthe0.25Ti/Al family.Itisworthmentioningthatafurtherincreaseinthecalci- nationtemperatureto1000CresultsinthephotocatalyticDeNOx

performanceofthe0.5Ti/Alsystem.

Fig.5indicatesthatforthe1.0Ti/Alphotocatalystfamily,no significantphotocatalyticactivityisdetectedupto800C,whileat thiscalcinationtemperaturearemarkableincrease intheactiv- ity is observed, though this catalyst is not as effective as the 05 Ti/Al-900 catalyst in total NOx abatement, due to the

significantNO2(g)generationoftheformer.ItcanbeseeninFig.5 that for calcinationtemperaturesabove 800C, NOx abatement startstofall,evidentbytheincreasedNO2(g)slipintotheatmo- sphereaswellasdecreasingNOxstorageinthesolidstate.Thus, ageneralanalysisoftheperformanceresultspresentedinFig.5 revealsthat,0.5Ti/Al-900binaryoxidecatalystshowsthehighest NOxabatementperformanceamongalloftheanalyzedphotocata- lysts,whereitperforms160%higherNOxstorageand55%lower NO2(g)releasetotheatmospherecompared totheDegussaP25 industrialbenchmark.

PhotocatalyticperformanceoftheTiO2/Al2O3binaryoxidesam- plescanbereadilyinterpretedinthelightofcurrentstructural characterization experiments (Figs. 1–3) which reveal valuable insightregardingthespecificsurfaceareasaswellasthecrystal- lographicphasesthatarepresentontheTi/Alsamples.Firstly,itis apparentinFig.5thatforthebestperformingphotocatalystfamily (i.e.0.5Ti/Al),onsetofactivityisobservedinaverydrasticmanner asthecalcinationtemperatureisincreasedfrom800Cto900C.

BET,XRDandRamanmeasurementsgiveninFigs.1–3suggests thatthis thermalwindowdirectlyoverlapswiththecrystalliza- tionoftheamorphousTiO2toformamixtureofanataseandrutile phaseswherethelatteristhedominantphase.Inotherwords,itis apparentthatinordertoachievethebestphotocatalyticNOxabate- mentperformance,auniquecrystallographicmixtureofanatase andrutilephaseshastobeobtained.

Secondly,Fig.5alsosuggeststhatforTi/Alfamilieswithdifferent TiO2loadings,ultimateperformanceisobservedfortheinterme- diateloadingandtheperformancewasseentodecreaseforvery loworveryhighTiO2loadings.Thiscanbeexplainedbythefact thatatlowTiO2loadings,itislikelythatTiO2loadingisnothigh enoughtobedispersedonalloftheAl2O3 surface.Thusnot all oftheNOxadsorption/storage(i.e.Al2O3)sitescanbeutilizeddue tolimitedphoto-oxidationcapabilityoftheinadequatenumberof TiO2oxidationsitesonthesurface.Ontheotherhand,atveryhigh TiO2loadings,TiO2coversmostoftheAl2O3surfaceanduponcal- cinationabove800C,SSAofthecatalystsamplefallsdrastically togetherwiththeformationofcrystallineanataseandrutilemix- ture;limitingtheavailablenumberofNOxstoragesitesthatare availableafterphoto-oxidation.

Thirdly, Fig.5 indicates that onset of photocatalytic activity is observed in a rather sharp manner at 950, 900 and 800C for the0.25Ti/Al, 0.5Ti/Al and 1.0Ti/Al samples,respectively. In

Fig.5.PhotocatalyticDeNOxperformanceresultsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwerecalcinedatvarioustemperatures within150–1000Cinair.

(7)

Fig.6. ElectronicbandgapvaluesderivedfromDR-UV–visspectroscopicresultsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwere calcinedatvarioustemperatureswithin150–1000Cinair.

otherwords,astherelativeTiO2loadingintheTiO2/Al2O3binary oxidesamplesincreases,onsettemperatureforthephotocatalytic activityshiftstolowertemperatures.Thiscanalsobeexplained bytheonsettemperatureforthecrystallizationofTi/Alsamples (and hence the formation of photo-active TiO2 sites) observed inXRDandRamanmeasurements(Figs.2and3)whichsuggest thatincreasingTiO2 loadingincreasesthetemperaturerequired to switch form an amorphous TiO2 structure to a crystalline structure.

3.4. DR-UV–vismeasurementsandelectronicbandgap

Inordertoinvestigatetherelationshipbetweentheelectronic structure and the photocatalytic NOx abatement performance, electronicband gap values were calculated from the currently performed(notshown)DR-UV–visspectroscopicmeasurements.

ThesebandgapvaluesarepresentedinFig.6.Inverygoodagree- mentwiththediscussiongivenabove,electronicbandgapvalues fortherelativelyinactiveamorphousTi/Alsampleswhicharecal- cinedatlowertemperatures,revealacharacteristicallyhighvalue within3.4–3.6eV.Ontheotherhand,withtheonsetofthepho- tocatalyticactivity,a very sharpfallin theelectronicbandgap valueswereobserved,where thebandgapdecreasestoatypi- calvalueof3.05–3.10eV,in linewiththeformationof ordered anataseandrutilephases.Typicalbandgapvaluesforbulkanatase andrutilephasesarec.a.3.2and3.0eV,respectively[26].Thus,for theactivephotocatalystsamples,thebandgapvalueisinbetween thatofanataseandrutile,beingclosertothelatter,inaccordance withthefactthatin themostactivephotocatalyst,rutileexists asthepredominantphasetogetherwithanataseastheminority phase.

Itisalsoworthnotingthatalthoughonsetofthephotocatalytic activityasafunctionofcalcinationtemperaturecanbefollowed withtheelectronicbandgapvalues,electronicbandgapcannot beusedasasoleindicatorfortheestimationofthephotocatalytic activitytrends.Thisisduetothefactthatoncethephotocatalyt- icallyactivestructureisobtainedleadingtoadrasticdecreasein theelectronicbandgap,bandgapvaluesceasetochangeathigher calcinationtemperaturesalthoughphotocatalyticactivitystartsto decline.

4. Conclusions

TiO2–Al2O3 binary oxide surfaces were utilized in order to develop analternative photocatalyticNOx abatement approach, where TiO2 sites were used for ambient photocatalytic oxida- tion of NO with O2 and alumina sites wereexploited for NOx

storage.Chemical,crystallographicandelectronicstructureofthe TiO2–Al2O3 binaryoxidesurfaceswerecharacterizedasa func- tionoftheTiO2loadinginthemixtureaswellasthecalcination temperatureusedinthesynthesisprotocol.0.5Ti/Al-900photocat- alystshowedremarkablephotocatalyticNOxoxidationandstorage performancewhichwasfoundtobemuchsuperiortothatofa DegussaP25industrialbenchmarkphotocatalyst(i.e.160%higher NOx storageand 55%lower NO2(g)release totheatmosphere).

OurresultsindicatethattheonsetofthephotocatalyticforNOx

abatementactivityisconcomitanttotheswitchbetweenamor- phoustoacrystallinephase withanelectronicbandgapwithin 3.05–3.10eVwherethemostactivephotocatalystrevealedpre- dominantly rutile phase together withanatase as theminority phase.

Acknowledgments

AuthorsacknowledgeZaferSayforperformingBETmeasure- ments. E.O. also acknowledges financial support from Turkish AcademyofSciencesthroughthe“TUBA-GEBIPOutstandingYoung Scientist Prize” and from Fevzi Akkaya Science Fund (FABED) throughEserTümenScientificAchievementAwardaswellasthe Scientific and Technical Research Council of Turkey (TUBITAK) (ProjectCode:109M713).

References

[1]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[2]A.K.Gupta,K.Karar,S.Ayoob,K.John,Spatio-temporalcharacteristicsof gaseousandparticulatepollutantsinanurbanregionofKolkata,India,Atmos.

Res.87(2008)103–115.

[3]S.Ishii,J.N.B.Bell,F.M.Marshall,Phytotoxicriskassessmentofambientair pollutiononagriculturalcropsinSelangorState,Malaysia,Environ.Pollut.150 (2007)267–279.

(8)

[4]R.Chen,B.Zhou,H.Kan,B.Zhao,Associationsofparticulateairpollution anddailymortalityin16Chinesecities:animprovedeffectestimateafter accountingfortheindoorexposuretoparticlesofoutdoororigin,Environ.

Pollut.182(2013)278–282.

[5]AirQualityGuidelinesforEurope,2nded.,WorldHealthOrganizationRegional OfficeforEurope(WHORegionalPublications,EuropeanSeries,No.91),Copen- hagen,2000.

[6]Airqualityandhealth,WorldHealthOrganization,FactSheetNo:313,Updated September2011.

[7]R.M.Heck,Catalyticabatementofnitrogenoxides—stationaryapplications, Catal.Today53(1999)519–523.

[8]Y.Traa,B.Burger,J.Weitkamp,Zeolite-basedmaterialsfortheselectivecat- alyticreductionofNOxwithhydrocarbons,MicroporousMesoporousMater.

30(1998)3–41.

[9]G.Busca,L.Lietti,G.Ramis,F.Berti,Chemicalandmechanisticaspectsofthe selectivecatalyticreductionofNOxbyammoniaoveroxidecatalysts:areview, Appl.Catal.B:Environ.18(1998)1–36.

[10]W.S.Epling,L.E.Campbell,A.Yezerets,N.W.Currier,J.E.ParksII,Overviewofthe fundamentalreactionsanddegradationmechanismsofNOxstorage/reduction, Catal.Rev.Sci.Eng.46(2004)163–245.

[11]S.Roy,A.Baiker,NOxstorage-reductioncatalysis:frommechanismandmate- rialspropertiesto storage-reductionperformance,Chem.Rev. 109(2009) 4054–4091.

[12]E. Ozensoy, J. Szanyi, C.H.F. Peden, Model NOx storagesystems: storage capacityandthermalagingofBaO/␪-Al2O3/NiAl(100),J.Catal.243(2006) 149–157.

[13]J.Lasek,Y.H.Yu,J.C.S.Wu,RemovalofNOxbyphotocatalyticprocesses,J.Pho- tochem.Photobiol.C:Photochem.Rev.14(2013)29–52.

[14]V.Loddo,G.Marci,C.Martin,L.Palmisano,V.Rives,A.Sclafani,Preparation and characterisation of TiO2 (anatase) supported on TiO2 (rutile) cata- lystsemployedfor4-nitrophenolphotodegradationinaqueousmediumand comparisonwithTiO2(anatase)supportedonAl2O3,Appl.Catal.B:Environ.20 (1999)29–45.

[15]A.Mitsionis,T.Vaimakis,C.Trapalis,N.Todorova,D.Bahnemann,R.Dillert, Hydroxyapatite/titaniumdioxidenanocompositeforcontrolledphotocatalytic NOxoxidation,Appl.Catal.B:Environ.106(2011)398–404.

[16]S.M.Andonova,G.S.Senturk,E.Kayhan,E.Ozensoy,NatureoftheTi–Bainter- actionsontheBaO/TiO2/Al2O3NOxstoragesystem,J.Phys.Chem.C113(2009) 11014–11026.

[17]E.Kayhan,S.M.Andonova,G.S.Senturk,C.C.Chusuei,E.Ozensoy,Fepromoted NOxstoragematerials:structuralpropertiesandNOxuptake,J.Phys.Chem.C 114(2010)357–369.

[18]S.M.Andonova,G.S.Senturk,E.Ozensoy,Fine-tuningthedispersionandthe mobilityofBaOdomainsonNOxstoragematerialsviaTiO2anchoringsites,J.

Phys.Chem.C114(2010)17003–17016.

[19]E.Emmez,E.I.Vovk,V.I.Bukhtiyarov, E.Ozensoy,Directevidenceforthe instabilityanddeactivationofmixed-oxidesystems:influenceofsurfaceseg- regationandsubsurfacediffusion,J.Phys.Chem.C115(2011)22438–22443.

[20]E.I.Vovk,E.Emmez,M.Erbudak,V.I.Bukhtiyarov,E.Ozensoy,Roleofthe exposedPtactivesitesandBaO2formationinNOx storagereductionsys- tems:amodelcatalyststudyonBaOx/Pt(111),J.Phys.Chem.C115(2011) 24256–24266.

[21]G.S.Senturk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E.

Ozensoy,SOxuptakeandreleasepropertiesofTiO2/Al2O3andBaO/TiO2/Al2O3

mixedoxide,systemsasNOxstoragematerials,Catal.Today184(2012)54–71.

[22]Soylu,Polat,Ozensoymanuscript,inpreparation.

[23]T.Ohsaka,F.Izumi,Y.Fujiki,RamanspectrumofanataseTiO2,J.RamanSpec- trosc.7(1978)321–324.

[24]H.L.Ma,J.Y.Yang,Y.Dai,Y.B.Zhang,B.Lu,G.H.Ma,Ramanstudyofphase transformationofTiO2rutilesinglecrystalirradiatedbyinfraredfemtosecond laser,Appl.Surf.Sci.253(2007)7497–7500.

[25]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[26]D.A.H.Hanaor,C.C.Sorrell,Reviewoftheanatasetorutilephasetransformation, J.Mater.Sci.46(2011)855–874.

Referenties

GERELATEERDE DOCUMENTEN

Purpose – The purpose of this study is to examine the relationship between four types of organizational cultures (supportive, innovative, rule, and goal), two job

More specifically, the following values will be taken from the annual proxy statements: yearly cash compensation, yearly salary and bonus, total yearly compensation, name of the

3p 9 Geef de vergelijking van de reactie van calciumcarbonaat met opgelost salpeterzuur waarbij onder andere CO 2 en opgelost calciumnitraat ontstaan. In het experiment in

Both methods may have their advantages and disadvantages depending on the usage and many examples for both are available in literature [9–12]. An efficient approach, used for

Influence of the calcination temperature on the structural properties and the photocatalytic activity of these systems under UVA excitation were investigated both in the gas phase

Briefly, upon NO 2 adsorption, the fresh sample surfaces are characterized by adsorption bands due to the presence of the bulk (ionic) Ba-nitrates located at ∼1320, ∼1440 and ∼1480

The main aim of the research was to investigate the best photocatalyst with band gap smaller than WO 3 with a wider absorption band. The compound MnWO 4 , which meets with

The magnitude of the photoresponse of the p-GaN is much larger, and, similar to the case of the electrical charging, has multiple (slow, intermediate and fast) components, as can