• No results found

microbowls TiO templated Thermal structure evolution and of photocatalytic activity in polymermicrosphere Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "microbowls TiO templated Thermal structure evolution and of photocatalytic activity in polymermicrosphere Applied Surface Science"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO 2 microbowls

Deniz Altunoz Erdogan

a

, Meryem Polat

a

, Ruslan Garifullin

b

, Mustafa O. Guler

b

, Emrah Ozensoy

a,∗,1

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bInstituteofMaterialsScienceandNanotechnology,NationalNanotechnologyResearchCenter(UNAM),BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received22January2014

Receivedinrevisedform4April2014 Accepted12April2014

Availableonline21April2014

Keywords:

TiO2

Photocatalyst

Cross-linkeddivinylbenzene NO(g)oxidation

RhodamineB

a b s t r a c t

Polystyrenecross-linkeddivinylbenzene(PS-co-DVB)microsphereswereusedasanorganictemplate inordertosynthesizephotocatalyticTiO2microspheresandmicrobowls.Photocatalyticactivityofthe microbowlsurfacesweredemonstratedbothinthegasphaseviaphotocatalyticNO(g)oxidationbyO2(g) aswellasintheliquidphaseviaRhodamineBdegradation.Thermaldegradationmechanismofthepoly- mertemplateanditsdirectinfluenceontheTiO2crystalstructure,surfacemorphology,composition, specificsurfaceareaandthegas/liquidphasephotocatalyticactivitydatawerediscussedindetail.With increasingcalcinationtemperatures,sphericalpolymertemplatefirstundergoesaglasstransition,cover- ingtheTiO2film,followedbythecompletedecompositionoftheorganictemplatetoyieldTiO2exposed microbowlstructures.TiO2microbowlsystemscalcinedat600Cyieldedthehighestper-sitebasispho- tocatalyticactivity.CrystallographicandelectronicpropertiesoftheTiO2microspheresurfacesaswell astheirsurfaceareaplayacrucialroleintheirultimatephotocatalyticactivity.Itwasdemonstratedthat thepolymermicrospheretemplatedTiO2photocatalystspresentedinthecurrentworkofferapromising andaversatilesyntheticplatformforphotocatalyticDeNOxapplicationsforairpurificationtechnologies.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Shape-definednanoandmicro scale titaniumdioxide(TiO2) structuresare widelyutilized asphotocatalytic systems;where theyhaveattractedaparticularinterestinenvironmentalapplica- tions.Ithasbeenreportedthatcontrollingparticleshape,geometry, size,surfacemorphology,electronicstructure,relativeabundance ofanatase/rutile surfacedomains andthenatureof thesurface functionalgroups(suchas OH)aresomeofthekeyfactorsfor designingefficientTiO2photocatalyticarchitectures[1–5].

TiO2 materials can be produced with unique morpholo- gies, shapes and structures at the micro/nanoscale revealing extraordinaryphysical,chemical,electronicandopticalproperties, renderingthesesystemsveryversatilephotocatalysts[3].Template directedsynthesisis oneoftheapproachesforfine-tuningsize,

夽 ElectronicSupplementaryInformation(ESI)available:Gas-phaseandsolution- phasephotocatalyticperformenceofP25.

∗ Correspondingauthor.Tel.:+903122902121;fax:+903122664068.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

1 Web:http://www.fen.bilkent.edu.tr/∼ozensoy.

shapeand porosityofTiO2 particles[6–8].Inparticular,utiliza- tionoforganictemplatessuchaspolymersoffersvastopportunities forcontrollingtheshapesofinorganicmaterialsatthemicrome- ter/nanometerscale.Suchstrategiescanbeexploitedtosynthesize shape-definedTiO2 materialsexhibitingnano/microspheres[9], hollowstructures[10],tubes[11],wires[3],core–shellstructures [3],andegg-yolkstructures[12].

In thecurrent report,TiO2 microbowlswere synthesizedby usingpolystyrenecrosslinkeddivinylbenzene(PS-co-DVB)micro- spheres.Thepolymertemplate wasremovedbycalcinationand TiO2 microbowls were produced. The effect of the calcination temperatureonthestructuralpropertiesandactivityofthepho- tocatalystswerestudiedinthegasphaseaswellasinthesolution phaseoxidationreactions.

2. Experimental 2.1. Samplepreparation

Acustomsol–gelmethodcombinedwithapolymertemplating techniquewasusedforthesynthesisofTiO2microbowlstructures http://dx.doi.org/10.1016/j.apsusc.2014.04.082

0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

Scheme1.SyntheticprotocolforPS-co-DVB-templatedTiO2microspheresandmicrobowls.

[13–15].Commerciallyavailablepolystyrenecross-linkeddivinyl benzene(PS-co-DVB)microspheres(Aldrich)withanaverageparti- clesizeofca.8␮mwereusedasthetemplatematerial.Preparation ofTiO2microspheresandmicrobowlsisshowninScheme1.First, equalmasses(i.e.1.0g)ofpolymermicrospheresandtitanium(IV) isopropoxide(TIP,97%,Aldrich)weremixedandstirredfor24h underambientconditions.Then,100mLofdeionizedwater(Milli- Q,18.2Mcm)wasaddedtothemixtureundercontinuousstirring (24h),wherehydrolysisandcondensationreactionswerecarried out.Then,microsphereswerevacuum-filtered,washedwithdeion- izedwater and dried for 24hat 60C inair. Later, thesample wascalcinedinair inordertoremovethepolymertemplateas wellastocrystallizetheinorganiccomponent(i.e.TiO2).Samples werecalcinedatvarioustemperatures(200,300,400,500, 600, 700C)in air for 2h(usinga heating rateof 8C/min) to con- trolcrystallinity and surfacemorphology ofTiO2 microspheres.

SynthesizedsampleswerenamedasPsTi-200,PsTi-300,PsTi-400, PsTi-500, PsTi-600, and PsTi-700 depending onthe calcination temperature.

2.2. Structuralcharacterization

Themorphologyandtheparticlesizeofthepolymertemplated TiO2 microspheres and microbowlswere investigated by using aCarl-Zeiss Evo40environmentalscanningelectronmicroscope (SEM) equipped with a Bruker energy dispersive X-Ray (EDX) detector.Determinationofthecrystalstructureofthesynthesized materialswerecarriedoutwithaRigakuMiniflexX-raydiffrac- tometer(XRD)equippedwithCuK␣radiationoperatedat30kV, 1.54 ˚Aand15mA.TheXRDpatternswererecordedinthe2range of10–60withastepwidthof0.02s−1.Ramanspectraofthesam- pleswerecollectedintherangeof200–1500cm−1witharesolution of4cm−1usingaHoribaJobinYvonLabRAMHR800spectrometer equippedwitha confocalRamanBX41 microscope.The Raman spectrometerwasequippedwitha Nd:YAGlaser (=532.1nm) where the laser power was 20mW. The thermal properties of the TiO2 systems were also investigated by using thermo gravimetricanalysis(TGA).TGAmeasurementswerecarriedout between30and800C(ataheatingrateof10C/minandunder nitrogenflow)byusing aTA InstrumentsTGA-Q500setup.The specificsurfacearea(SSA)oftheTiO2sampleswasdeterminedby

conventional Brunauer–Emmett–Teller (BET) N2 adsorption methodwithaMicromeriticsTristar3000surfaceareaandpore sizeanalyzer.PriortotheBETmeasurements,allofthesamples wereoutgassedinvacuumfor2hat150C.

2.3. Photocatalyticperformanceanalysismeasurements

2.3.1. Gas-phasephotocatalyticoxidationperformance measurements

ReactivityoftheTiO2 microstructureswasstudiedviaphoto- catalyticNOoxidation(NO(g)+½O2(g)→NO2(g)).Thegasphase photocatalyticactivityoftheTiO2microstructureswasanalyzedin acustom-madecontinuousflowreactionsystem,whichisshown inScheme2.Theexperimentalsetupwascomprisedofa high- puritygasmixturecontainingNO(g)(100ppmNO(g)inN2(g),Linde GmbH),O2(g)(99.998%,LindeGmbH)andN2(g)(99.998%,Linde GmbH) which was humidifiedwith 70%RH (relative humidity, measuredvia a Hanna HI9565 humidity analyzerat the sam- plepositioninthephotocatalyticreactor).Inatypicalgasphase photocatalytic performance analysis test, a total gas flow rate of1SLM(SLM,standardliters perminute)wasused,where the volumetric flow ratesof N2(g),O2(g)and NO(g)were settobe 0.750SLM, 0.250SLM and 0.010SLM via mass flow controllers (MFCs,MKS,1479A), respectively.Beforetheperformance tests, synthesizedTiO2 microsphere/microbowlpowder sampleswere dispersedonapoly-methylmethacrylate(PMMA)sampleholder (2×40×40mm3)andirradiatedwithUVAillumination(Sylvania UV-lamp,black-light,F8W,T5,368nm)underambientconditions for18hinordertoremovethesurfacecontaminationsandtoacti- vatethephotocatalysts.Afterthisactivationanddecontamination procedure,sampleswereinsertedintothephotocatalyticflowreac- torforperformanceanalysis.UVAilluminationsourceusedinthe performanceanalysistests(SylvaniaUV-lamp,black-light,F8W,T5, 368nm)generatedaUVAphotonfluxof7.5W/m2atthesample positionundertypicalreactionconditions.Duringtheperformance tests, reaction gases were swept over a 950mg photocatalyst sample and the concentration of NO(g), NO2(g) and total NOx

(g)speciesinthephotocatalyticreactorwerequantitativelymea- sured online with a Horiba APNA-370 chemiluminiscence NOx analyzer.

Scheme2.Gas-phasephotocatalyticperformanceanalysissetup.

(3)

Gasphasephotocatalyticactivitymeasurementsarereportedin termsofpercentphotonicefficiencies(%)asdescribedinEqs.(1) and(2).

%= nNOx

nphoton×100 (1)

wherenNOxcorrespondstoeitherthedecreaseinthetotalnumber ofmolesofallgaseousNOxspeciesorthenumberofmolesofNO2(g) generatedina60min(i.e.3600s)photocatalyticperformancetest.

Ontheotherhand,nphotoncorrespondstothetotalnumberofmoles ofincidentUVAphotonsimpingingonthecatalystsurfacein3600s, whichcanbecalculatedthroughEq(2)as:

nphoton=(ISt)

(Nhc) (2)

whereIrepresentsthephotonpowerdensity oftheUVAlamp, experimentallymeasuredatthesamplepositioninthephotocat- alyticreactor(typically,7.5W/m2),istherepresentativeemission wavelengthoftheUVAlamp(i.e.368nm),Sisthesurfaceareaof thephotocatalystsampleholderinthereactorthatisexposedto theUVAirradiation(i.e.4cm×4cm=16cm2);tisthedurationof theperformancetest(i.e.3600s),NistheAvogadro’snumber,his Planck’sconstantandcisthespeedoflight.

2.3.2. Liquid-phasephotocatalyticoxidationperformance measurements

Liquid-phase photocatalytic oxidation activity of the TiO2 microstructureswasdemonstratedbyphotodegradation[16–18].

Oxidative degradation of Sulforhodamine B (RhB, 95%, Sigma) underUVA irradiation (SylvaniaUV-lamp, F8W,T5, Black-light, 8W,368nm)wasconductedinabatch-modephotocatalyticreac- torofdimensions45×23×28cm3.AnaqueousRhBsolutionat concentrationof1mg/Land 30mgof TiO2 microstructureswas addedintothereactorandstirredcontinuouslyatastirringrateof 100rpm.Then,thephotocatalyticdegradationprocesswasstud- iedbymeasuringthechange inthe dyeconcentrationwithan UV–visspectrophotometer(Carry300,Agilent).Attenuationofthe majorabsorptionbandofRhB(564nm)associatedwiththeS0→S1 absorption[19]wasrecordedevery30minuntilthetestsolution becamevisuallytransparent.BeforetheUV–visabsorptionmea- surements,testsolutionswerecentrifugedandtheabsorbanceof thefiltratewasrecorded.Byusingacalibrationcurve(R2=9994)of thedyesolution,thepercentdecolorizationefficiency(Def)ofthe systematanirradiationtimet(min)wascalculatedasdescribedin Eq.(3)[20].

Def(%)=(C0−Ct)

C0 ×100 (3)

InEq.(3),C0andCtrepresenttheconcentrationofthetestsolu- tionbeforeandafterirradiationattimet,respectively.AplotofC0/C versusirradiationtime(t)determinesthedecolorizationdegreeof thetestsolution.

3. Resultsanddiscussion

3.1. Structuralcharacterizationofpolymer-templatedTiO2 microstructures

TheSEM images in Fig.1a–d illustratethe morphology and theparticlesizeoftheTiO2coatedPS-co-DVBmicrospheres.The particlesizevariationinthemicrostructuresstemsfromthecor- respondingsizedistributioninthenascentcommercialPS-co-DVB material.SEMimagesinFig.1a–dandthecorrespondingEDXmea- surements(Fig.1e)oftheTiO2-coatedmicrospheresrevealedthat thesurfaceofthepolymermicrosphereswascoatedwithathin layerofTiO2andadditionalTiO2wasalsofurtherdeposited.

Fig.1.(a–d)SEMimagesand(e)arepresentativeEDXspectrumofTiO2-coated PS-co-DVBmicrospheresbeforecalcination.

UponcalcinationoftheTiO2 coatedPS-co-DVBmicrospheres between200and700C,significantmorphologicalchangeswere observed. The microspheres were converted into microbowls (Fig.2).Thisobservationwasalsoaccompaniedbyaconsiderable weightloss,which willbediscussedfurtherinthetext(Fig.3).

Fig.2showstheSEMimagesandthecorrespondingEDXspectrum ofthepolymer-templatedTiO2microbowls,whichwerecalcined at600Catambientconditionsfor2h.Duetodecompositionof thepolymertemplateandtheassociatedformationofHxCy(g)and HxCyOz(g),pressureaccumulationinsidethemicrosphereleadsto theruptureofthesphericalmorphologyduringtheevolutionof theentrappedgas.Theresultingopenmicrobowlstructuresare shownintheinsetofFig.2b.Theinteriorcavitiesofthemicrobowls haveanaveragediameterof8␮mwithanaveragewallthickness of600nm.TheEDX spectrumof themicrobowls(Fig.2b)indi- cates TiO2/TiOx content witha relativelyminor contributionof carbon-basedspecies.Ontheotherhand,EDXspectrumofthesame samplesbeforethecalcinationrevealedexcessiveCsignal(Fig.1e).

EvolutionofHxCy(g)andHxCyOz(g)andtheanticipatedweight loss of the sample upon the decomposition/degradationof the polymertemplatebelow600Cisinperfectagreementwiththe TGAresultsshowninFig.3,whichshowasharpgravimetricloss

(4)

Fig.2. (a)SEMimage,(b)EDXspectrumofPS-co-DVBtemplatedTiO2microbowls aftercalcinationat600Cfor2h(insetshowsthedetailedmorphologyofthe microbowlsinSEM).

within400–500C.TheTGAcurveofTiO2-coatedPS-co-DVBmicro- spheres(Fig.3)exhibitsa2.7wt%lossinthetemperaturerangeof 30–250Cduetotheevaporationofwaterandothervolatileorgan- ics.TiO2 revealsa negligiblegravimetric losswithin30–800C, whilepure/uncoatedpolystyreneundergoesalmost100wt%loss within 300–500C due to decomposition/degradation [21–23].

Fig.3.TGAmeasurementforPS-co-DVBtemplatedTiO2microspheres.

Thus, TGAdata in Fig. 3, suggest that after the 71wt% loss at T>400C,alargeportionoftheremainingsample,whichcorre- spondsto29%oftheoriginalsampleweight,isduetotheinorganic content(i.e.TiO2).

In order toinvestigatethe influenceof thecalcination tem- perature on the photocatalyst structure and thephotocatalytic activity,sampleswerecalcinedatdifferenttemperatureswithin 200–700C.Corresponding XRD patternsand Ramanspectraof thesesamplesarepresentedinFig.4.Calcinationat200and300C leadstotheformationofanamorphousTiO2/TiOxstructure,which startstocrystallizeintoaratherdisorderedanatasephaseat400C withasmallaverageparticlesize,evidentfromthecorresponding broadanataseXRDdiffractionsignals(ICDDCardNo:21-1272)in Fig.4aandthecharacteristicallyintenseanataseRamanscattering observedat144cm−1 [24–26].At500C,awell-orderedanatase phasewithalargeraverageparticlesizeisformedascanbeseen fromthesharpandintenseanatasesignalsinbothXRD(Fig.4a) andRaman(Fig.4b)results.Atthistemperature,rutilephasealso appearsasasecondaryphaseinbothXRDresultsshowninFig.4a (ICDDcardno:04-0551)aswellasintheRamandatainFig.4b.For- mationoftherutilephaseleadstotheevolutionoftypicalRaman scatteringfeaturesat236,447,612,826cm−1[24–26].Rutilephase becomesmorecrystallineandabundantathighercalcinationtem- peratures.Uponcalcinationat700C,rutilebecomesthedominant phase,althoughanatasephasecanstillbedetectedasasecondary phase(Fig.4aandb).

3.2. Photocatalyticactivityofthepolymer-templatedTiO2

microspheresandmicrobowls

3.2.1. Gas-phasephotocatalyticoxidationperformance

ThephotocatalyticNO(g)oxidationwithO2(g)wasusedasa modelreaction[27–32].Fig.5illustratesatypicalgasphasepho- tocatalyticperformanceanalysistestinwhichthephotocatalyst sampleisexposedtoafeedgasmixturecontaining1ppmNO(g) aswellasacertaincompositionofN2(g)andO2(g)witha70%RH (seeSection2fordetails).Fig.5showsthetime-dependentpro- filesforthetotalNOxconcentration(i.e.sumoftheconcentrations ofalloftheNOxspeciesexistinginthereactor,i.e.bluecurvein Fig.5)aswellas separateNO(g)(blackcurve) andNO2(g)(red curve)concentrationsinthephotocatalyticreactormeasuredby thechemiluminiscenceNOxanalyzer.AsshowninFig.5,during theinitial15minoftheperformancetest,gasmixturecontaining 1ppmNO(g)isfedtothephotocatalystwhileUVAlampisinoff positionandthereactoriskeptindarkinordertopreventany exposuretosunlight.Thisleadstoaminortransientfallinthetotal NOx(g)andNO(g)concentrations,whichisassociatedwiththedilu- tionofthegasinthereactorpipelineandthethermaladsorption ofNOx speciesonthegaslines,reactorwallsaswellasonthe photocatalystsurface.Asthesystemiskeptindarkunderthese conditions,nophotocatalyticactivityisobservedduringthisini- tialstage,whichisevidentbythelackofanyNO2(g)production.

Aftertheinitialtransientperiod,reactorwallsandthephotocata- lystsurfacearesaturatedwithNOx,afterwhichNOx(g)andNO(g) tracesquicklyreturntotheoriginalinletconcentrationvalueof 1ppm.

Next,UVAlampisturnedonandthephotocatalyticreaction isstarted. UponUVA radiation,asharpanda permanentfallin the NO(g) and total NOx(g) concentrations along witha quick risein NO2(g) signal,wereobserved.This iscaused byconver- sionofNO(g)intoNO2(g)viaphotocatalyticoxidation.Inaddition, generated NO2(g) can alsoadsorb onthe photocatalystsurface intheformofchemisorbedNO2,nitric/nitrousacid,nitritesand nitrates [24–26,33] and stored in the solid state, leading to a furtherdecreaseintheNO(g)signal.Furthermore,directphotocat- alyticdecompositionandphoto-reductionofNO(g)formingN2(g)

(5)

100 200 300 400 500 600 700 800 A A A

PsTi-200 PsTi-300 PsTi-400

PsTi-500 PsTi-700

Raman Intensity (a.u.)

Raman Shift (cm-1) x20

R A

R R

A A

PsTi-600 A

R A R

A

10 000

10 20 30 40 50 60

Intensity (a.u)

2θ(deg) PsTi-700

PsTi-600

PsTi-500

PsTi-400 PsTi-300 PsTi-200

1000 R

R R AR R R A

A

AA R A

RR A R R A

R AA A

RR A R R A

A A A A

(a) (b)

Raman Intensity (a.u.)

Raman Shi (cm-1)

Fig.4. (a)XRDpatterns,(b)RamanspectraofPS-co-DVBtemplatedTiO2microspheres/microbowlsuponcalcinationat200C,300C,400C,500C,600C,and700Cfor 2hunderambientconditions(insethighlightsthedetailedRamanfeaturesofPsTi-600andPsTi-700samples).A:anatase,R:rutile.

and/orN2O(g)cannotberuledout[34].ThetotalNOxconcentra- tion(blue)curve(whichismostlycomprisedofthesumofNO(g) andNO2(g)signals)inFig.5staysalwaysbelow1ppmduringthe UVA-activatedregime,illustratingthecontinuousphotocatalytic activity.

Gas-phasephotocatalyticperformancetestssimilartotheone giveninFig.5werealsoperformedonotherPS-co-DVBtemplated TiO2microsphere/microbowlphotocatalysts,whichwerecalcined atvarioustemperaturesbetween200and700C.Percentphotonic efficiencyvaluesderivedfromsuchexperimentsareshowninFig.6, wherebluebarsrepresentthe%photonicefficiencyoftotalNOx(g) decrease,whileredbarscorrespondtothe%photonicefficiencyof NO2(g)production.

Fig.6showsthatPsTi-200samplerevealsbothconsiderableNOx

storage(bluebar)and NO2(g) production(redbar) capabilities.

0 20 40 60 80

0.0 0.2 0.4 0.6 0.8 1.0

Concentration (ppm)

Time(min)

Thermal NOx adsorpon

Light-on Light-off

NOx (g)

NO(g)

NO2(g)

Fig.5.Typicaltime-dependentconcentrationprofilesfortotalNOx(g),NO(g)and NO2(g)overPS-co-DVBtemplatedTiO2microbowlphotocatalyst(PsTi-600)during gas-phasephotocatalyticNOoxidationactivitytests.(Forinterpretationoftheref- erencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

Ontheotherhand,uponincreasingthecalcinationtemperature to300C,bothNOxstorageandNO2(g)productionperformances wereobservedtodeclinedrastically.Ontheotherhand,aftercalci- nationat400C,NOxstoragecapabilityisrecoveredwhileNO2(g) productionisstillnoticeablysuppressed.Above500C,although NOxstorage capacitydecreasestoacertainextent,NO2(g)pro- ductioncapabilityisfullyregained,reachingitshighestvalueat 600C.Increasingthecalcinationtemperatureto700Cleadstoa decreaseintheNOxstorageandNO2(g)productionperformances simultaneously.

Interestinggas-phasephotocatalyticperformancetrendsgiven inFig.6canbeelucidatedbyusingthestructuralpropertiesofthe polymer-templatedTiO2microstructuresshowninScheme3.The crosslinkedpolystyrenesystemshavetypicalglasstransitiontem- peratures(Tg)within100–150C,abovewhichthesolidpolymer tendstoswitchtoamobilemolten/glassystate[23].Ascanbeseen fromthespecificsurfacearea(SSA) resultsshownin Scheme3, PsTi-200samplehasamoderatelyhighSSA(86m2/g)suggesting that the mobilized PS-co-DVB microsphere template starts to segregateontheverytopsurface,onlypartiallycovering/blocking

Fig.6.ComparisonofthephotonicefficienciesofTiO2microspheres/microbowls.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

(6)

Scheme3.Temperature-inducedstructuralevolutionofTiO2microspheres/microbowls.

the amorphous TiO2/TiOx coating on the microsphere system.

Thus, at this calcination temperature, TiO2/TiOx coating is still partiallyaccessibleforgasphasephotocatalyticNOxstorageand NO2(g)production(Fig.6).

However,uponcalcinationat300C,theSSAwasobservedto decreasebyabout50%,whichisaccompaniedbyatotallossofpho- tocatalyticNOxstorageandNO2(g)productionactivities(Fig.6).

Apparently,calcinationat300Cleadstothesegregationofthe mobilized PS-co-DVB microsphere template onto the TiO2/TiOx

coating(Scheme3).Hence,accesstothephotocatalyticactivesites toNO(g)iscompletelyblockedandthephotocatalyticactivityis entirelylost.

Increasingthecalcinationtemperatureto400Cshowsaunique switchinthephotocatalyticactivity.Thisistheborderlinetem- perature, where the PS-co-DVB template starts to decompose leadingtotheruptureofthemicrospheresandformationofthe microbowls.Formationofmicrobowlsandeliminationofthecar- bonaceous/polymericfilmat400Cisalsofullyconsistentwiththe drasticincreaseintheSSAofthesystemto159m2/g(Scheme3).

The increase in the SSA is alsoaccompanied by the formation of a cavity inside the microspheres due to the degradation of thePS-co-DVBtemplate,generatingadditionaladsorptionsites.At thistemperature,Ti-coatingrevealsmostlyanamorphous/porous nature, which also exhibits poorly crystalline anatase domains (Fig.4).Thus,duetothedecomposition/removalofthepolymer template,mostofthephotocatalyticactivesitesontheamorphous Ti-coatingbecomereadilyaccessibleandphotocatalyticNOoxida- tioncanbeperformedefficientlywhichisevidentbytherecovery ofthephotocatalyticNOxstorage(bluebarforPsTi-400inFig.6).

AlthoughPsTi-400samplecanefficientlyperformphotocatalytic NOxstorage,yetitgeneratesarelativelysmallamountofNO2(g).

ThiscouldbeduetothelargeSSAofthePsTi-400sample with alargenumberofadsorptionsitesthatcanimmediatelycapture

NO2(g)intheformofnitritesandnitratesontheTiO2surfaceand preventNO2(g)slipintothegasphase.

Fig.6showsthatasthecalcinationtemperatureisincreased from400Cto500C,thephotocatalyticNOx storagedecreases significantlyincontrasttothenoticeableincreaseintheNO2(g) production.Within400–500C,PsTisamplesundergoasubstantial crystallographictransformation(Fig.4),whereporousandamor- phous TiO2 domains crystalize into ordered anatase and rutile domainsresultinginasignificantlossintheSSA.Alongtheselines, PsTi-500samplehasaSSAof13.9m2/g(Scheme3).Thus,thepho- tocatalyticNOxstoragecapacityfallsinlinewiththecorresponding theSSAloss,suggestingthatNO2(g)generatedviaphoto-oxidation readilyslipsintothegasphase.However,thisdoesnotmeanthat thephotocatalyticactivitydecreasesuponincreasingthetempera- turefrom400Cto500C.BycomparingthecombinedNOxstorage andNO2formationresults(i.e.sumoftheredandbluebarsinFig.6) for400Cand500CalongwiththecorrespondingSSAvaluessug- geststhatPsTi-500samplehasaconsiderablyhigherper-sitebasis photocatalyticactivitywithrespecttoPsTi-400.

Fig. 6 indicates that the optimum gas-phase photocatalytic activityisreachedforthePsTi-600sample,whichrevealsalower anatase/rutileratio(Fig.4aandScheme3)estimatedbyXRDresults byusingtheapproachdevelopedbySpurrandMyers[35].Onthe otherhand,asthecalcinationtemperatureisincreasedto700C, concomitanttothefurtherdecreaseintheanatase/rutileratio,pho- tocatalyticactivitystartstodecrease.Thus,itisapparentthatrather thanthesoleSSAvalues,crystallographicandelectronicproperties oftheTiO2 microspheres/microbowlsplayamajorroleindeter- miningtheirultimategas-phasephotocatalyticactivities.

3.2.2. Solution-phasephotocatalyticoxidationperformance PhotocatalyticactivityofTiO2microstructurecalcinedatdiffer- enttemperatureswasalsostudiedbyconventionalsolutionphase

(7)

Fig.7. Time-dependentUV–VisabsorptionspectrashowingUVA-inducedpho- tocatalyticdegradation of RhB in thepresence ofPS-co-DVB templated TiO2

microbowlscalcinedat600Cfor2h.

photocatalyticoxidationofRhB.Atypicalseriesoftime-dependent UV–visabsorptionspectraobtainedduringtheUVAirradiationis presentedinFig.7.ThisseriesofspectracorrespondstothePsTi- 600samplewhichiscomprisedofTiO2microbowls(Fig.2).During thephotocatalyticreaction,thecharacteristicRhBabsorptionband locatedat564nm graduallydecreasesindicating photocatalytic degradation/oxidationofRhB.After330minofUVA irradiation, thedyesolutionbecomesvisiblycolorlessandthe564nmsignal vanishesalmostcompletely.

Time-dependent decolorization efficiency results for the remainingsamplesaresummarizedinFig.8a.Thesolutionphase photocatalyticoxidationexperimentscouldnotberealizedforthe PsTi-200andPsTi-300samplesduetolow densityofthecorre- spondingsolidphotocatalysts(originatingfromtheirhighpolymer content),whichresultsinthefloatingofthemicrospheresonthe

Fig.8.(a)Liquid-phasephotocatalyticreactivity ofPS-co-DVBtemplated TiO2

microspheres/microbowlsinRhodamineBphotodegradationviaUVAirradiation, (b)photocatalyst-containing1mg/LRhBsolutionsafter18hUVAirradiation.

aqueousmediumpreventingtheirefficientmixingandhomoge- nousUVAexposure.Fig.8ashowsthatRhBconcentrationinthe solutiondecreasesmonotonicallywithincreasingirradiationtime whichis alsoillustratedinFig.8b(forphotocatalyst-containing 1mg/LRhBsolutionsafter18hUVAirradiation).Controlexperi- mentsperformedbyexposing1mg/LRhBsolutiontoUVAinthe absenceofaphotocatalyst(datanotshown)didnotleadtoany decolorizationundertypicalreactionconditions.Theliquid-phase photocatalyticactivityofthesynthesizedTiO2structuresexhibits astrongdependenceonthecalcinationtemperature.Fig.8aclearly indicatesthatPsTi-600samplewhichhasamicrobowlstructure (Fig.2)andexhibitspredominantlyanatasephase(inadditionto rutileasasecondaryphase)revealsthehighestliquid-phasepho- tocatalyticactivity.ThePsTi-400sampleissignificantlylessactive thanalloftheanalyzedsamples(Fig.8),andiscomprisedofapoorly crystallineanatasephase(Fig.4).Thissuggeststhatsolution-phase photocatalyticactivityrequiresformationoforderedanatase/rutile crystallographicphases.Ontheotherhand,Fig.8aalsoshowsthat thesolution-phasephotocatalyticactivitytendstodecreaseatele- vatedcalcinationtemperaturessuchas700C,suggestingthata rutile-dominantTiO2microbowlstructureisnotfavorable.

Itisworthmentioningthatthesolution-phasephotocatalytic reactivitytrendspresentedinFig.8acannotbeexplainedsolely basedontheSSAvaluesof thesynthesizedmaterials.Although PsTi-400 sample reveals a significantly higher SSA than all of the other synthesized materials, it has a considerably lower liquid-phasephotocatalyticactivity(Fig.8).Inotherwords,crys- tallographic and the electronic properties of the TiO2-coated Ps-co-DVBmicrospheres/microbowlsseemtoplayamajorrolein theirliquid-phasephotocatalyticreactivity.

It isworth mentioningthat wehave alsoperformedsimilar liquid-phaseand gas-phase photocatalyticactivitytestsusing a benchmarkphotocatalyst(P25)(Figs.S1andS2,ESI†).Weobserved thattotalphotocatalyticactivityforP25inbothliquidandgasphase experimentswereabouttwotimeshigherthanthat ofthebest Ps-co-DVBtemplatedTiO2 microsphere/microbowlphotocatalyst (PsTi-600).TheSSAofP25isabout50m2/g,whichisaboutmore than5timesgreaterthanthatofPsTi-600.Thus,per-sitebasispho- tocatalyticactivityofPsTi-600isstill 2.5timeshigherthanthat ofP25.Thissuggeststhatbyoptimizingthepolymermicrosphere templatingstrategy(forinstancebyusingpolymernanospheres withsmalleraverageparticlesizesandthushigherSSA),advanced photocatalyticsystemscanbedesigned,whichrevealhigherphoto- catalyticperformancebothintermsoftotalphotocatalyticactivity aswellasper-site-basisphotocatalyticactivity.Inaddition,further improvements in the photocatalytic performance of PS-co-DVB templatedTiO2microsphere/microbowlphotocatalystscanalsobe achievedbyincorporatingplasmonicmetalnanoparticlestothese systems[36].Suchexperimentaleffortsarecurrentlyunderwayin ourresearchgroup[37].

4. Conclusions

In this work, Ps-co-DVB microsphere templated TiO2 pho- tocatalysts were synthesized via sol–gel method. Influence of thecalcinationtemperatureonthestructuralpropertiesandthe photocatalytic activity of these systems under UVA excitation wereinvestigatedbothin thegasphase (bystudyingphotocat- alyticNO(g)oxidationbyO2(g))aswellasinthesolutionphase (by monitoring Rhodamine B photocatalytic degradation). The polymermicrosphereswerefoundtobecoveredwithathinfilmof TiO2/TiOxaswellasTiO2/TiOxnanoparticles.Photocatalyticactivity carriedoutinthesolutionphaseandinthegasphaseshowedthat the photocatalyst calcined at 600C exhibiting a microbowl structure, yielded the highest per-site-basis photocatalytic

(8)

activity which is even greater than that of the commercial benchmarkP25.Ourfindings indicatethatnotonlythespecific surfaceareabutalsothecrystallographicandelectronicproperties oftheTiO2microstructuresplayamajorroleindeterminingtheir ultimate photocatalytic activities. This suggests that polymer- templated TiO2 microstructures offer a promising versatile syntheticplatformforphotocatalyticDeNOxapplications,which canbefurtherimprovedbyusingpolymernanospheretemplates withhigherSSAorbyadditionalfunctionalizationwithtransition metalnanoparticlesand/orplasmoniccomponents.

Acknowledgments

AuthorsgratefullyacknowledgeAssociateProf.Dönüs¸Tuncel for fruitful discussions,and Zafer Sayfor performing BET mea- surements.E.O.alsoacknowledgesfinancialsupportfromTurkish AcademyofSciencesthroughthe“TUBA-GEBIPOutstandingYoung Scientist Prize” and from Fevzi Akkaya Science Fund (FABED) throughEserTümenScientificAchievementAwardaswellasthe Scientific and Technical Research Council of Turkey (TUBITAK) (ProjectCode:109M713).

AppendixA. Supplementarydata

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.

apsusc.2014.04.082.

References

[1]U.Diebold,Thesurfacescienceoftitaniumdioxide,Surf.Sci.Rep.48(2003) 53–229.

[2]T.L.Thompson,J.T.Yates,SurfacesciencestudiesofthephotoactivationofTiO2- newphotochemicalprocesses,Chem.Rev.106(2006)4428–4453.

[3]X.Chen,S.S.Mao,Titaniumdioxidenanomaterials:synthesis,properties,mod- ifications,andapplications,Chem.Rev.107(2007)2891–2959.

[4]A.Fujishima,X.Zhang,D.A.Tryk,TiO2photocatalysisandrelatedsurfacephe- nomena,Surf.Sci.Rep.63(2008)515–582.

[5]M.A.Henderson,AsurfacescienceperspectiveonTiO2photocatalysis,Surf.Sci.

Rep.66(2011)185–297.

[6]Y.Liu,J.Goebl,Y.Yin,Templatedsynthesisofnanostructuredmaterials,Chem.

Soc.Rev.42(2013)2610–2653.

[7]C.N.R.Rao,A.Govindaraj,Synthesisofinorganicnanotubes,Adv.Mater.21 (2009)4208–4233.

[8]A.S.Attar,M.S.Ghamsari,F.Hajiesmaeilbaigi,S.Mirdamadi,K.Katagiri,K.

Koumoto,Sol–geltemplatesynthesisandcharacterizationofalignedanatase- TiO2nanorodarrayswithdifferentdiameter,Mater.Chem.Phys.113(2009) 856–860.

[9]F.Cesano,D.Pellerej,D.Scarano,G.Ricchiardi,A.Zecchina,Radiallyorganized pillarsinTiO2andinTiO2/Cmicrospheres:synthesis,characterizationand photocatalytictests,J.Photochem.Photobiol.,A:Chem.242(2012)51–58.

[10]J.Hu,M.Chen,X.Fang,L.Wu,Fabricationandapplicationofinorganichollow spheres,Chem.Soc.Rev.40(2011)5472–5491.

[11]T.Kang,A.P.Smith,B.E.Taylor,M.F.Durstock,Fabricationofhighly-ordered TiO2nanotubearraysandtheiruseindye-sensitizedsolarcells,NanoLett.9 (2009)601–606.

[12]I.Lee,J.B.Joo,Y.Yin,F.Zaera,Ayolk@shellnanoarchitectureforAu/TiO2cata- lysts,Angew.Chem.Int.50(2011)10208–10211.

[13]U. Meyer,A.Larsson, H.Hentze,R.A. Caruso,Templatingofporouspoly- mericbeadstoformporoussilicaandtitaniaspheres,Adv.Mater.14(2002) 1768–1772.

[14]A.S. Deshpande, D.G.Shchukin, E.Ustinovich, M.Antonietti, R.A. Caruso, Titania and mixed titania/aluminum, gallium, or indium oxide spheres:

Sol–gel/templatesynthesisandphotocatalyticproperties,Adv.Funct.Mater.

15(2005)239–245.

[15]J.H. Schattka,D.G. Shchukin, J. Jia, M.Antonietti, R.A. Caruso,Photocat- alyticactivitiesofporoustitaniaandtitania/zirconiastructuresformedby usingapolymergeltemplatingtechnique,Chem.Mater.14(2002)5103–

5108.

[16]L.Yuan,S.Meng,Y.Zhou,Z.Yue,ControlledsynthesisofanataseTiO2nanotube andnanowirearraysviaAAOtemplate-basedhydrolysis,J.Mater.Chem.A1 (2013)2552–2557.

[17]D.A.H.Hanaor,C.C.Sorrell,Reviewoftheanatasetorutilephasetransformation, J.Mater.Sci.46(2011)855–874.

[18]P.Zhang,C.Shao,Z.Zhang,M.Zhang,J.Mu,Z.Guo,Y.Sun,Y.Liu,Core/shell nanofibersofTiO2@carbonembeddedbyAgnanoparticleswithenhancedvis- iblephotocatalyticactivity,J.Mater.Chem.21(2011)17746–17753.

[19]N.K.M.N.Srinivas,S.V.Rao,D.N.Rao,Saturableandreversesaturableabsorption ofRhodamineBinmethanolandwater,J.Opt.Soc.Am.B:Opt.Phys.20(2003) 2470–2479.

[20]K.Sridharan,T.J.Park,Thorn-ballshapedTiO2nanostructures:InfluenceofSn2+

dopingonthemorphologyandenhancedvisiblelightphotocatalyticactivity, Appl.Catal.,B:Environ.134(2013)174–184.

[21]D.Yu,J.H.An,S.D.Ahn,S.Kang,K.S.Suh,Titaniumdioxide/P(St-co-DVB)-MAA hybridcompositeparticlespreparedbydispersionpolymerization,Colloid Surf.,A:Physicochem.Eng.Aspects266(2005)62–67.

[22]E.D.Mekeridis,I.A.Kartsonakis,G.S.Pappas,G.C.Kordas,Releasestudiesof corrosioninhibitorsfromceriumtitaniumoxidenanocontainers,J.Nanopart.

Res.13(2011)541–554.

[23]S.E.Shim,S.Yang, H.H.Choi,S.Choe, Fully crosslinked poly(styrene-co- divinylbenzene) microspheres by precipitation polymerization and their superiorthermalproperties,J.Polym.Sci.,PartA:Polym.Chem.42(2004) 835–845.

[24]S.M.Andonova,G.S.entürk,E.Kayhan,E.Ozensoy,NatureoftheTi–Bainter- actionsontheBaO/TiO2/Al2O3NOxstoragesystem,J.Phys.Chem.C113(2009) 11014–11026.

[25]S.M.Andonova,G.S.entürk,E.Kayhan,E.Ozensoy,Fine-tuningthedispersion andthemobilityofBaOdomainsonNOxstoragematerialsviaTiO2anchoring sites,J.Phys.Chem.C114(2010)17003–17016.

[26]G.S.entürk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E.

Ozensoy,SOxuptakeandreleasepropertiesofTiO2/Al2O3andBaO/TiO2/Al2O3

mixedoxidesystemsasNOxstoragematerials,Catal.Today184(2012)54–71.

[27]T.Giannakopoulou,N.Todorova,G.Romanos,T.Vaimakis,R.Dillert,D.Bahne- mann,C.Trapalis,Compositehydroxyapatite/TiO2materialsforphotocatalytic oxidationofNOx,Mat.Sci.Eng.B177(2012)1046–1052.

[28]A.Mitsionis,T.Vaimakis,C.Trapalis,N.Todorova,D.Bahnemann,R.Dillert, Hydroxyapatite/titanium dioxidenanocomposites for controlled photocat- alyticNOoxidation,Appl.Catal.,B:Environ.106(2011)398–404.

[29]Y.Lin,Y.Tseng,J.Huang,C.C.Chao,C.Chen,I.Wang,Photocatalyticactivity fordegradationofnitrogenoxidesovervisiblelightresponsivetitania-based photocatalysts,Environ.Sci.Technol.40(2006)1616–1621.

[30]Y.Tseng,C.Kuo,C.Huang,Y.Li,P.Chou,C.Cheng,M.Wong,Visible-light- responsivenano-TiO2withmixedcrystallatticeanditsphotocatalyticactivity, Nanotechnology17(2006)2490–2497.

[31]N.Negishi,K.Takeuchi,T.Ibusuki,SurfacestructureoftheTiO2thinfilmpho- tocatalyst,J.Mater.Sci.33(1998)5789–5794.

[32]T.Sano,N.Negishi,K.Koike,K.Takeuchi,S.Matsuzawa,Preparationofvisible- light-responsivephotocatalystfromcomplexofTi4+withnitrogen-containing ligand,J.Mater.Chem.14(2004)380–384.

[33]R.Hummatov,O.Gülseren,E.Ozensoy,D.Toffoli,H.Üstünel,First-principles investigationofNOx andSOx adsorptiononanatase-supportedBaOandPt overlayers,J.Phys.Chem.C116(2012)6191–6199.

[34]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[35]R.A.Spurr,H.Myers,Quantitativeanalysisofanatase-rutilemixtureswithan X-raydiffractometer,Anal.Chem.29(1957)760–762.

[36]J.Lu,P.Zhang,A.Li,F.Su,T.Whang,Y.Liu,J.Gong,MesoporousanataseTiO2

nanocupswithplasmonicmetaldecorationforhighlyactivevisible-lightpho- tocatalysis,Chem.Commun.49(2013)5817–5819.

[37]D.A.Erdogan,M.Polat,E.Ozensoy,(inpreparation).

Referenties

GERELATEERDE DOCUMENTEN

This means it can be concluded that there is a strong confirmation of Spearman’s hypothesis for the Black and White children tested by Osborne, and the differences in score

Based on the fact that English courts use terms implied in fact to correct significant disparities in bargaining power and/or expertise and that SMEs are recognized as being a

De bevindingen lieten zien dat: (1) er geen verschillen waren tussen chronisch zieke kinderen en gezonde leeftijdsgenoten wat betreft de leerkracht-leerling relatie (2) moeders

téropodes de 1'Eocène du Bassin de Paris: I Genre. TIN0ST0MA, II-III Familie PYRAMIDELLIDAE,

de venige laag, lagen 12, 14 (deze laag bevatte een groot aantal mollusken) en 73 (de oude geul onder de venige laag en doorsneden door de middeleeuwse gracht).. Er wordt

Bij het vooronderzoek werden verspreid over het terrein, ijzertijd- en Romeinse resten aangetroffen, naast sporen uit de nieuwste tijd.. Het gaat

Although a thorough understanding of the physiology of the abdominal muscles may not be necessary for a beginner to be able to learn to play the flute, once flautists reach the

Echter dit gen BMP4 bepaalt bij vertebraten welke cellen uiteindelijk de buikzijde vormen (Arendt and Nubler-Jung, 1994). Dat geleedpotigen en vertebraten t.o.v. elkaar