• No results found

SO x uptake and release properties of TiO 2 /Al 2 O 3 and BaO/TiO 2 /Al 2 O 3 mixed oxide systems as NO x storage materials

N/A
N/A
Protected

Academic year: 2022

Share "SO x uptake and release properties of TiO 2 /Al 2 O 3 and BaO/TiO 2 /Al 2 O 3 mixed oxide systems as NO x storage materials"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatSciVerseScienceDirect

Catalysis Today

jo u r n al h om epa ge :w w w . e l s e v i e r . c o m / l oc a t e / c a t t o d

SO x uptake and release properties of TiO 2 /Al 2 O 3 and BaO/TiO 2 /Al 2 O 3 mixed oxide systems as NO x storage materials

Göksu S. S¸ entürk

a

, Evgeny I. Vovk

a,b

, Vladimir I. Zaikovskii

b

, Zafer Say

a

, Aslı M. Soylu

a

, Valerii I. Bukhtiyarov

b

, Emrah Ozensoy

a,∗

aChemistryDepartment,BilkentUniversity,06800Bilkent,Ankara,Turkey

bBoreskovInstituteofCatalysis,630090Novosibirsk,RussianFederation

a r t i c l e i n f o

Articlehistory:

Received15September2011 Receivedinrevisedform 23November2011 Accepted1December2011 Available online 30 December 2011

Keywords:

Al2O3

BaO TiO2

Anatase Sulfurpoisoning DeNOx

NOx

SOx

Sulfation NSR LNT HDS ClausProcess

a b s t r a c t

Titaniawas used as a promoter toobtain novel materials in the form of TiO2/Al2O3 (Ti/Al)and BaO/TiO2/Al2O3(Ba/Ti/Al,containing8wt%or20wt%BaO)thatarerelevanttoNOxstoragereduction (NSR)catalysis.Twodifferentprotocols(P1,P2)wereutilizedinthesynthesis.Ti/Al(P1)manifestsitselfas crystallitesofTiO2on␥-Al2O3,whileTi/Al(P2)revealsanamorphousAlxTiyOzmixedoxide.Thestructures ofthesynthesizedmaterialswereinvestigatedviaTEM,EDX,BETanalysisandXPSwhilethecatalytic functionality/performanceofthesesupportmaterialsuponSOxandsubsequentNOxadsorptionwere investigatedwithTPDandinsituFTIRspectroscopy.Ti/Al(P1,P2)revealedahighaffinitytowardsSOx. OverallthermalstabilitiesoftheadsorbedSOxspeciesandthetotalSOxuptakeoftheBa-freesamples increaseinthefollowingorder:TiO2(anatase)␥-Al2O3<Ti/Al(P1)<Ti/Al(P2).ThesuperiorSOxuptake ofTi/Al(P1,P2)supportmaterialscanbetentativelyattributedtotheincreasingspecificsurfacearea uponTiO2promotionand/orthechangesinthesurfaceacidity.PromotionofBaO/Al2O3withTiO2leads totheattenuationoftheSOxuptakeandasignificantdecreaseinthethermalstabilityoftheadsorbed SOxspecies.TherelativeSOxadsorptioncapacitiesoftheinvestigatedmaterialscanberankedasfollows:

8Ba/Ti/Al(P1)<8Ba/Ti/Al(P2)<8Ba/Al∼20Ba/Ti/Al(P1)<20Ba/Al<20Ba/Ti/Al(P2).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Controllingthesurfacechemistryofmixed-oxidesurfacesisof vitalimportancetodesignnovelcatalyticmaterialswithunprece- dentedfunctionalities.Sulfur poisoningonmetaloxidesurfaces isoneof thefrequentlyobservedsurface deactivationphenom- enainheterogeneouscatalysis.AccumulationofSOxspecies on metaloxidesurfaceshavebeenverycommonlystudiedintheliter- atureinrelevancetothree-waycatalysis(TWC),selectivecatalytic reduction(SCR),NOxstoragereduction(NSR),hydrodesulfuriza- tion(HDS)andothercatalyticprocesses,whereAl2O3isutilizedas themainsupportmaterial[1–7].Twomajordeactivationphenom- enaareoftenreportedfortheNSRcatalysts.Thefirstrouteinvolves thermaldegradationofthestructuralintegrityofthecatalystmate- rialduetosolidstatereactionsbetweenthecatalystcomponents

∗ Correspondingauthor.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

andsinteringwhilethesecondrouteisassociatedwiththesulfur poisoning [8,9].The latterdeactivationphenomenon is particu- larlyachallengingproblem.InNSRapplications,NOx(g)andSOx(g) adsorbates,competeforthesamebasicadsorptionsitesonoxide surfaces.Consequently,maximizationoftheNOxstoragecapac- ity(NSC)whileminimizingtheirreversibleSOxuptakeoftheNOx

storagesitesimpliescarefuloptimizationofthesurfaceproperties ofthecatalyticsupportmaterialssuchasthesurfacecomposition, acidity,morphologyandspecificsurfacearea(SSA).

SulfurpoisoningofNSRcatalyststypicallyleadstotheforma- tionofalkalineearth/preciousmetalsulfates,sulfitesorsulfides [8]. For a large number of oxide substrates, the stability of some of the common adsorbates increases in the following order:NO2∼CO32<NO3<SO42 [10–15]. Thus, sulfur effec- tively blocks the catalytic sites for NOx storage and gradually reducestheoverallNOxstoragecapacityoftheNSRcatalysts[16].

Effortstowardsimprovingthecatalytictoleranceagainstsulfur poisoninganddesigninghighlyactiveandstablenovelcatalysts arevitalfortheglobalizationoftheNSRtechnology[14,15,17–20].

0920-5861/$seefrontmatter © 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.cattod.2011.12.006

(2)

Scheme1.SynthesisofTiO2-promotedNOxstoragematerials:P1andP2.

Misonoand Inui[21],Fritzand Pitchon [22]and severalothers [12,13,23–27]reporteddetailedstudiesontheimprovementand thedurabilityenhancementofNSRcatalysts.Thecommercialcat- alystsarealsosuccessfullyusedinlimitedmarketssuchasJapan wherethesulfurcontentofthedieselfuelisrelativelylow(below 10ppm)[28].AccordingtoYamazakietal.,Fewasfoundtodecrease thesulfuruptakeandpromotethedecompositionofBaSO4 [29].

Fansonetal.observedthatFefacilitatedtheformationofabulk nitratespecieswhichweresuggestedtoberesilientagainstsulfur poisoning[30].Kayhanetal.reportedthattheinitialNOxuptake mechanismandtheratiobetweenthesurfaceandbulkBaOsites weresignificantlyinfluencedbyFeloading[20].

TiO2 containingsupportmaterialswerealsoreportedtosup- pressthesulfurpoisoning[31,32].Thiseffectwasassociatedwith thesurfaceacidityofTiO2,inhibitingtheadsorptionofacidicSOx

species[33].Decompositiontemperatureofthesulfatesonpure TiO2 isknowntobelowerthanthatof␥-Al2O3[34,35].Further- more,activesitesonthesulfatedTiO2surfacecanalsobereadily regeneratedunderreactionconditions[36].Recently,itwasalso reportedthatTiO2sitesonthesupportsurfacecanfunctionaseffi- cientanchoringsitesforBaO,whichmaybeexploitedtoenhance thesurfacedispersionofBaOdomainsandfine-tunethesurface morphology[37].

Inordertocircumventsomeoftheunfavorablepropertiesof pureTiO2suchasthelimitedthermalstability,lowsurfacearea, andpoormechanicalproperties,itscombinationwithsecondary oxidesareutilizedtodesignnovelsupportmaterialswithenhanced properties.Alongtheselines,␥-Al2O3[14,19,32,36,38–42]and/or ZrO2[43–45]arepromisingchoicesforthesecondaryoxidesthat can beused in combination withTiO2. It was reported that if sulfur-poisonedBa/Pt/Al2O3catalystwasblendedwithnonsulfur- poisonedPt/TiO2catalyst,sulfurdesorptionfromtheBa/Pt/Al2O3

catalystunderrich conditionsisimproved[14].Furthermore,it wassuggestedthat theinterfacebetweenAl2O3 andTiO2 plays animportantroleinthesulfate decompositionandthedesorp- tionprocesses[32].Matsumotoandco-workers[14,46]reported thatacombinationofTiO2 andlithium-doped␥-Al2O3 presents anoptimumsurfaceaciditytowardssulfurpoisoning.Themacro- scopicgeometricalstructure ofthe catalytic monolithwasalso foundtobeeffectivein limitingthesizeofthesulfate particles andcontrollingthesulfatedecomposition/desorptiontemperature [47,48].Itwasshownthatsulfatedecompositionisfacilitatedon

thesmallersulfatedomains.Therealsoexistanumberofsurface sciencestudiesonplanarmodelNSRcatalysts[49–53]focusingon thestructureandtheoperationalprinciplesofNSRsystemsatthe molecularlevel.Despitetheestablishedsulfurresistingeffectof TiO2asanadditiveinthecompositionofthePt/Ba/␥-Al2O3cata- lysts,anumberofcrucialaspectsregardingtheinfluenceofTiO2

ontheinteractionbetweentheNOxstoragecomponentandthe supportmaterialhavenotyetbeenelucidated.

Thus,inthecurrentwork,wefocusourattentionontheinter- action ofSOxwiththeTiO2/Al2O3 and BaO/TiO2/Al2O3 surfaces aswellastheinfluenceofTiO2domainsontheNOxuptakeafter deactivationbySO2(g)+O2(g).

2. Experimental

TiO2/Al2O3binaryoxidesupportmaterials(whichwillbehere- afterreferredasTi/Alinthetext)werepreparedviatwodifferent syntheticprotocolsP1[23,37]andP2[37]whichweredescribed in detail in ourformer reports. These syntheticprotocolswere schematically described in Scheme 1. Briefly, in the first syn- theticprotocol(P1),␥-Al2O3(PURALOX,200m2/g,SASOLGmbH, Germany)andTiCl4(Fluka,titanium(IV)chloridesolution∼0.1M in20%hydrochloric acid)wereusedasstartingmaterials.TiCl4

wasdilutedincooleddeionizedwaterundercontinuousstirring atatemperaturebelow333K.Then,␥-Al2O3powderwasslowly added to theprepared solution. Next, 30vol% NH3 was slowly addedtothesolutionuntilpH≥9.0wasachievedandagelwas formed.Thiswhite gelwasagedfor 24hunderambientcondi- tions,filtered,washedwithdistilledwater,andcalcinedat873K for 2hin air. In thesecond syntheticprotocol (P2), thebinary Ti/Aloxidesupportmaterialwassynthesizedbyasolgelmethod.

In this synthetic protocol (P2), titanium and aluminum alkox- ides were used as precursors. First, aluminum-tri-sec-butoxide (97%,Sigma–Aldrich)wasdissolvedinthemixtureofpropan-2- ol(99.5+%,Sigma–Aldrich)andacetylacetone(99.3%,Fluka).Then, titanium(IV)isopropoxide(97%,Sigma–Aldrich)wasaddedtothe solutionatroomtemperature. Next,0.5MHNO3 wasgradually addedtothesolutionin ordertoinitiatethegelformation.The resulting gel was aged for 10 days under ambient conditions, ground, and baked at873Kfor 2hin air. The molefractionof TiO2 (i.e. TiO2=nTiO2/(nTiO2+nAl2O3))intheTiO2/Al2O3binary mixture wasequal to 0.3 (based onthe amounts of Ti and Al

(3)

precursorsusedinthesynthesis)inbothofthesyntheticprotocols.

BaO/TiO2/␥-Al2O3 (whichwillbehereafterreferred asBa/Ti/Al) sampleswithdifferentBaloadings(8and20wt%BaO)weresyn- thesizedbyconventionalincipientwetnessimpregnationofthe Ti/AlbinaryoxidesupportmaterialswithBa(NO3)2.In thecur- renttext,sampleswith8and20wt%BaOloadingwillbedenoted as 8Ba/Ti/Al(P1, P2) and 20Ba/Ti/Al(P1, P2), respectively. For a comprehensivediscussionofthestructuralcharacterizationofthe synthesized materials via SEM, EDX, BET, Raman spectroscopy andXRD,theanalysisofthesurfaceacidityoftheTi/Al(P1)and 8/20Ba/Ti/Al(P1)samplesviapyridineadsorption,aswellasNOx

adsorption/releasepropertiesviaFTIRandTPD,readerisreferred toourpreviouslypublishedwork[23,37]whichwillalsobeused frequentlyinthediscussionofthecurrentresults.␥-Al2O3(Puralox, 200m2/g,SASOLGmbH,Germany)usedin(P1)syntheticprotocol wasalsoutilizedasareferencematerialinsomeexperiments.

TEMimageswere obtainedwitha resolution of 0.14nm on a JEM-2010 (200keV) microscopeequipped withan EDX spec- trometerwitha Si (Li) detectorhavinganenergy resolution of 130eV. The analyzed area in a typical EDX measurement was about10×10nm2.ThesamplesfortheTEManalysiswerepre- paredby dispersing thepowders in anultrasonic ethanol bath andsubsequentdepositionofthesuspensionupona“holey”car- bonfilmsupportedonacopperTEMgrid.XPSdatawererecorded using a SPECS spectrometer with a PHOIBOS-100 hemispheri- calenergyanalyzerandamonochromaticAlKX-rayirradiation (h=1486.74eV, 200W). FTIRspectroscopic measurementswere carriedoutintransmissionmodeinabatch-typecatalyticreac- tor[20]coupledtoanFTIRspectrometer(BrukerTensor27)and a quadrupole mass spectrometer(QMS,Stanford Research Sys- tems,RGA200)usedforTPDexperiments.AllFTIRspectrawere acquiredat323K.IntheTPDexperiments,alineartemperature rampwithaheatingrateof12K/minwasutilizedtoheatthesam- plewithin323–1023K.TheQMSsignalswithm/zequalto18(H2O), 28(N2/CO), 30(NO),34(H2S),32(O2), 44(N2O/CO2), 46(NO2)and 64(SO2)weremonitoredduringtheTPDmeasurements.BETSSA andporesizedistributionmeasurementswereperformedusinga MicromeriticsTristar3000surfaceareaandporesizeanalyzerby low-temperatureisothermaladsorption–desorptionofN2.

Thesulfurexposureexperimentswereperformedthroughfour differentconsecutivesteps.In thefirstspectralacquisitionstep, the sample was exposed to 0.6Torr of SO2(g)+O2(g) mixture (SO2:O2=1:10)for1hat323Kand thefirstFTIRspectrum was obtainedinthepresenceoftheSO2(g)+O2(g)mixtureoverthe sample.Inthesecondstep,thesamplewasannealedto473Kin thepresenceoftheSO2(g)+O2(g),andaftercoolingto323K,the secondFTIRspectrumwasacquired.Inthethirdstep,beforethe spectrumacquisition,thesamplewasannealedto673K(inthe presenceofSO2(g)+O2(g)),thencooledto323Kandsuccessively evacuatedat323Kfor20min(Preactor<1×10−4Torr).Inthefourth step,thesamplewasflashedto673Kinvacuumandaftercool- ingthesampleto323K,aFTIRspectrumwasobtained.ForNO2 adsorptionexperiments,thefreshsampleswerepre-poisonedby anexposureof0.6TorrofSO2(g)+O2(g)(SO2:O2=1:10)mixture at323Kandwerefurtherheatedinthegasmixtureat473Kfor 30min.Afterhavingpumpedoutthereactor,poisonedsamplewas exposedto8TorrofNO2(g)at323Kfor20mininordertosaturate thesurfacewithNOx.ThisisfollowedbytheevacuationandFTIR spectraacquisitionat323K.

3. Resultsanddiscussion

3.1. TEMcharacterizationofTi/Almaterials

Fig.1representstheTEMmicrographsoftheTi/Al(P1,P2)sam- plesshowingthemorphologyofthesynthesizedsupportmaterials.

EDXanalysisofarea1giveninFig.1a,whichisabundantindarker domains,revealsthepresenceofTiO2andAl2O3containingspecies withaTi:Alatomicratioequalto70:30.EDXanalysisofthebright domainssuchasarea2inFig.1a,demonstratedthattheseareas exclusivelycontainAl2O3.However,theFourieranalysisofarea2 inFig.1adidnotrevealwell-definedspots,mostlikelyduetothe smallparticlesizesandthedefectivenatureofthesealuminacrys- tallites.TheimageinFig.1bshowsahigh-resolutionTEM(HRTEM) micrographofsuchabrightdomain.

ItisvisibleinFig.1athatthedarkerdomainscontainaggregates withsizesofabout10nm.Fig.1cshowsaHRTEMimageofone ofthesedarkerdomains.InterplanarspacingmeasuredonHRTEM micrographsofthesedarkerdomainsareinverygoodagreement withtheanatasephaseofTiO2.FastFourierTransform(FFT)picture obtainedfromthisimageisalsoshownasaninsetinFig.1cand isingoodagreementwiththereflexesofanatasephase(fileno.

21-1272inPDF-2Database,JCPDS-ICDD).

Fig.1d–fshowsTEMimagesoftheTi/Al(P2)sample.Itisclearly visibleintheseimagesthatthissampledisplaysaratherhomoge- nousmorphologyexhibitingauniformsponge-likefinestructure whichisduetothemesoporouscharacterofthemixedTixAlyOz

oxidephasethatisabundantinTiOx/AlOxinterfaces.Area1given in Fig. 1e highlights a characteristic region where this rather homogenousandporousstructureisapparent.Ti:Alelementalratio obtainedfromtheEDXspectrumofarea1inFig.1discloseto 15:85which isinvery goodagreementwiththenominalcom- positionexpectedfrom therelative concentrationsof TiandAl precursorsusedin thematerialsynthesis (20:80).On theother hand,EDX elementalanalysisof a lesscharacteristic (minority) regioninFig.1d(labeledasarea2)revealsthepresenceofalmost exclusivelyAl2O3 particles.TheTEMimagegivenin Fig.1eand HRTEMimagegiveninFig.1fshowthecharacteristicsponge-like structureofTi/Al(P2).FFTimageoftheTEMimagegiveninFig.1f isalsopresentedasaninset.FuzzycharacteroftheFFTimageis inagreementwiththeamorphouscharacteroftheTixAlyOzoxide phase withsmall anddisorderedAlOxand TiOx domains.How- ever,the steepintensitychanges near0.45nm fromthecenter showsthat disorderedstructure isprobablyduetothealumina spinelstructure(thisdistancecanbeassociated withd-spacing between(111)closepackedoxygenplanesinthelatticeof␥-Al2O3 (fileno.29-0063inPDF-2Database,JCPDS-ICDD).FFTfilteredpic- ture(Fig.1g)supportsthelackofanorderedcrystallinestructure.

TheseobservationsindicatethattheTi/Al(P2)structureismostly composedofa TixAlyOz mixedoxideexhibitinga largeconcen- tration ofTiOx/AlOx interfacialsites,while theTi/Al(P1) reveals aninhomogeneousdistributionoflargerAl2O3andTiO2agglom- erates witha relativelysmaller concentrationof suchinterface sites.

3.2. Poresizedistribution

BET SSA analysis demonstrates that Ti/Al(P1) and (P2) sam- pleshavesurfaceareavaluesof167.0and393.2m2/g,respectively [37]. SSA values of Ti/Al(P1, P2) support materials as well as 8(20)Ba/Ti/Al(P1,P2) materialsafter thermal treatments within 623–1023Kcanbefoundinoneofourformerreports[37].Thepore sizedistributionsofthesesupportmaterialsmonitoredduringN2

desorptionarepresentedinFig.2.TheTi/Al(P1)sampleshowsa relativelybroadpeakwithanaverageporesizeabout80 ˚Awhichis probablyduetotheconvolutionoftheporesizedistributionsofthe discreteTiO2andAl2O3domains,whileTi/Al(P2)sampledemon- stratesarelativelynarrowdistributionwithanaverageporesizeof 30 ˚A,correspondingtotheTixAlyOzmixedoxidenetwork.Ascanbe seeninFig.2,theporesizeanalysisisconsistentwiththedissimilar surfacestructuresoftheTi/Al(P1)andTi/Al(P2)supportmaterials.

(4)

Fig.1.(a–c)TEMimagesofTi/Al(P1),region1:TiO2-richdomains,region2:␥-Al2O3-richdomains,and(d–g)Ti/Al(P2),region1:sponge-likestructureoftheTiOx AlOx

mixedoxide,region2:(dark)Al2O3domains.EDXspectraobtainedfromselectedregionsarealsogivenasinsets.

3.3. SOxinteractionwithTi/AlandBa/Ti/Almaterials:FTIR

Itshouldbenotedthatthereisnotaclearconsensusonthe vibrationalspectroscopicassignmentsoftheSOxspeciesonmetal oxides(particularlyonAl2O3)duetotheheavilyconvolutednature oftheFTIRsignalsoftheadsorbedSOxspecies.Assignmentsofthe FTIRsignalsforvariousSOxspeciesdiscussedintheliteratureare summarizedinTable1.

WeperformedFTIRinvestigationsofSO2(g)adsorptionon␥- Al2O3.Theresults(datanot shown)are inagreementwiththe formerinvestigations,revealingtheformationofsurfacesulfites (SO32−)(notethatbulkAl2(SO3)3doesnotexist[60]),withoutany additionaloxidationtosulfates.

300 250 200 150 100 50 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

4,0 Ti/Al (P1)

Ti/Al (P2)

pore size (Å) pore volume (cm3/g)

Fig.2.PoresizedistributionplotsforTi/Al(P1)andTi/Al(P2)supportmaterials.

TheadsorptionofSO2(g)+O2(g)onthe␥-Al2O3surfaceat323K (Fig. 3a, spectrum i) revealsa major broad band at 1073cm−1 aswellasweakerandpoorlydefinedadditionalfeaturesaround 1350,1250,1180and1005cm−1.ThepresenceofSO32species areapparentdue totheintense characteristic sulfitefeatureat c.a.1073cm−1(3)andtheshouldersat1049cm−1(3)aswellas 1005cm−1(1)[58–60].Minorfeaturesat1350(3)and1180cm−1 (1)canbeattributedtochemisorbedSO2 onabasic(O2−)sur- facesites[59,60]whilethefeaturelocatedat1250cm−1 canbe associatedwiththeSO2adsorbedonAl3+Lewisacidsitesand/or bidentatesulfates[59].AveryminorcontributionfromtheSO2(g) speciesmayalsobepresentat1130(3),1150(1)and2499cm−1 (1+3,notshown)[60].

As the adsorption temperature increases to 473K (Fig. 3a, spectrumii)the1368,1102signalsbecomemore visiblewhich correspondtothe3 and1 modesofsurfacesulfatesonAl2O3, [60],respectively.Furthermore,theshoulderlocatedat1170cm−1 whichcanbeassociatedwithbulkAl2(SO4)3[56]startstobemore discernible.Inaddition,arelativelyminorcontributionfromsul- fatespeciesthatareinteractingwiththesurface–OHgroupswhich revealtypicalsignalsat1290and1080cm−1cannotbeexcluded [58].Increasingthetemperatureto673K(Fig.3a,spectraiiiandiv) resultsinthegrowthofthesurfaceandbulkaluminasulfatesin expenseofthesurfacesulfiteandchemisorbedSO2species.

Theseresultsindicatethatsulfitesareinitiallyformedonthe aluminasurfaceduringtheSO2+O2 adsorptionat323Kwhileat elevatedtemperatures(473–673K),thesespeciesare converted intorelativelystablesurfacesulfates(SO42−/Al2O3)aswellasbulk Al2(SO4)3.Theformationofsulfatesonaluminasurfacewascon- sideredinnumerousformerstudies[56,57,60,68].Typically,SO2 bindstotheacidicsites(i.e.coordinatelyunsaturatedaluminum cations,Al3+)formingphysisorbedSO2.TheadsorptionofSO2on thebasicadsorptionsitesisfollowedbyacleavageofanAl Obond onthesurface(primarilyatOHsitesoratexposedoxygenatoms,

(5)

Table1

TypicalFTIRsignalsassociatedwithcommonSOxspecies[7,54–67].

Species Symmetry v1(cm−1) v3(cm−1) References

SO2(gas) C2v 1151 1362 [54]

SO32−(freeion) C3v 961 1010 [54,55]

SO42−(freeion) Td 1104 [54]

S

O O

Al3+

(physisorbed) C2v 1135–1150 1300–1370 [7,55–58]

S

O O

Al

(chemisorbed) C2v 1255(typeI),1189(typeII) [59]

S

O O

OH Al

Cs 1148–1150 1330–1334 [55,59]

O S

O O

Al Al

C2v 1140 1320–1326 [55,59,60]

S

O O

Al O

C3v 1050–1065 1135 [56,59]

O S O O O Al Al

Al C3v 1045–1130 1380 [58,61]

O S O

O O Ti Ti

Ti C3v 1005,1045 1370 [61]

S

O O

O O

C C

(organicsulfates) C2v 1230–1150 1440–1350 [62,63]

S

O O

S

O O

C2v ∼910 960–1000

S O O Fe

O O

C2v 1180,968 1375, 1025 [64]

(NH4)2SO4 C2v 1090 1390 [65]

BaSO4(surface) 1060 1120 [66]

Ce(SO4)2(surface) 980 1340–1400 [67]

Al2(SO4)3(bulk) 1190 [56]

BaSO4(bulk) 1155,1248 [66]

Ce(SO4)2(bulk) 1145–1240 [67]

O2)leadingtotheformationofchemisorbedSO32.Theoxidation ofadsorbedSO32−/SO2inoxygenatrelativelyhightemperatures (673–773K)leadstotheformationofsurfacesulfatespecieswhich arecoordinatedtothemetalcationsoftheoxidesurfacethrough threeoxygenatoms[60].

In order to examine the sulfur accumulation on the TiO2 (anatase) surface, SO2+O2 adsorption experiments were also performed on TiO2 (Fig. 3b). At 323K (Fig. 3b, spectrum i)

acomplexandaconvolutedgroupofsignalswereobservedwithin 1150–950cm−1whicharelikelytobeassociatedwithSO32and/or HSO3 species[60].At473K,thefeatureat1137cm−1 startsto growtogetherwithanintensefeatureat1350cm−1.In analogy withthesimilarbehaviorobserved fortheAl2O3 surface, these twobandsareassignedtoweaklyadsorbedmolecularSO2species.

This assignment is also consistent with the attenuationof the 1137cm−1 signalafterevacuationat673K(Fig.3b,spectrumiv).

(6)

1000 1100 1200 1300 1400

1049

1005

1350

1250

absorbance (arb.u.)

γ-Al2O3

ii 1368

1170 995

1102 1073 0.05

(a)

i iii iv

900 1000 1100 1200 1300

1137 0.05

ii i iii iv

TiO2 (anatase) (b)

10461002

1083 1160 1287 13661356

1000 1100 1200 1300 1400

(c) Ti/Al (P1)

wavenumber(cm

-1

)

1353

1173 1032

1235 1384

i ii iii iv 0.05

900 1000 1100 1200 1300

1060 Ti/Al (P2) (d)

1360

1080 1350 1260 1160

0.05

i ii iii iv

Fig.3. FTIRspectrafor0.6TorrSO2(g)+O2(g)(SO2:O2=1:10)co-adsorptionon(a)␥-Al2O3,(b)TiO2(anatase),(c)Ti/Al(P1),(d)Ti/Al(P2).(i)After1hexposuretoSO2(g)+O2(g) at323K(spectrumwasobtainedinthepresenceofthegasmixture),(ii)aftersubsequentflashingofthesampleto473KinSO2(g)+O2(g)mixtureandcoolingto323K(spec- trumwasobtainedinthepresenceofthegasmixture),(iii)aftersubsequentflashingto673KinSO2(g)+O2(g)mixtureandfurtherevacuationat323K(Preactor<1×10−4Torr), (iv)aftersubsequentflashingthesampleto673Kinvacuumandcoolingto323K.

Notethatitisdifficulttofollowthefateofthe1350cm−1atele- vatedtemperaturessincenewbandsstartstogrowinthesame spectralregionat673K.Thefeaturelocatedat1287cm−1together withthe1083cm−1featurecanbeattributedtobidentatesulfates interactingwiththeadsorbedwaterat473–673K[58]andortho- chelatingbidentatesulfateswhichrevealvibrationalfeaturesina similarrange[64,69].Aftertheevacuationat673K,relativelywell- resolvedfeaturesareobservedintheFTIRdata(Fig.3b,spectrum iv).Thusthebandsat1366–1356,1160,1046and1002cm−1are assignedtosurfacesulfatesontheTiO2surfacewhichareformed aftertheoxidationoftheadsorbedSOxspeciesat673K[61,70].

Fig.3canddshowstheIRspectraoftheTi/Al(P1)andTi/Al(P2) supportmaterialsaftertreatmentinSO2+O2atdifferenttemper- atures(323–673K),followedbyevacuation.TheIRspectradueto

theSO2+O2adsorptiononTi/Al(P1,P2)at323and473K(spectra iandiiinFig.3candd)exhibitastrongresemblancewherethe mostprominentfeatureisthebroadIRsignalat∼1050cm−1cor- respondingtosulfitespecies.Themaindifferencebetweenthese twospectraisthepresenceoftheshoulderat1130cm−1forthe Ti/Al(P1) sample which maybe likely due toweakly adsorbed SO2species,similartotheonesthatwereobservedforbothpure anataseand ␥-alumina surfaces.Increasing the temperatureto 673KinthepresenceofSO2+O2leadstotheformationofaddi- tionalfeaturesassociatedwithsurfacesulfatesat1350–1360and 1160–1175cm−1onbothTi/Al(P1,P2)samples.Hightemperature SO2+O2 exposure alsoseem to triggerthegrowth of the con- volutedbandat 1230–1260cm−1 on both samples,which may indicatetheformationofbidentatesulfates.Thepresenceofthe

(7)

1160–1170cm−1signalinFig.3canddalsosuggeststhepossible formationofbulkAl2(SO4)3species.Ageneralcomparisonofthe lineshapesoftheFTIRspectragiveninFig.3canddrevealsthat sulfatecontainingsurfacedomainsontheTi/Al(P1)samplearerela- tivelymoreorderedandwell-crystallizedwithrespecttothatofthe Ti/Al(P2)sample,whichisconsistentwiththesharperandbetter resolvedsulfatebandsvisibleinFig.3c.

Analogous experiments were also performed with Ba con- taining samples. In these studies, conventional 8(20)Ba/Al benchmark samples that do not contain TiO2, were compared with 8(20)Ba/Ti/Al(P1,P2) samples containing TiO2. After the introductionofa SO2+O2 mixtureonto the8Ba/Al and 20Ba/Al samplesat323K(Fig.4aandc,spectrai)amajorbroadbandat 1080cm−1,whichcanbeattributedtosulfitespecies,isobserved.

Aftersubsequentheating at473K (intheSO2+O2 gasmixture) no substantial changes are observed in the case of the 8Ba/Al sample(Fig.3a, spectrumii),while in thecaseof 20Ba/Al,two differentfeaturesat1250and1160cm−1becomeapparent.These featurescanbeassignedtobulkBaSO4[66].Subsequentheating at673KinSO2+O2mixture(Fig.4a,spectrumiii)andinvacuum (Fig.4a,spectrumiv)leadstotheappearanceofthebulkBaSO4

bandsforthe8Ba/Alsample.Theadditionalsignalat1350cm−1 is associated with surface sulfates on alumina domains. This bandis morepronouncedforthe8Ba/Alsample, incomparison to the 20Ba/Al surface due to the larger number of exposed alumina sites in the former case as a result of the lower BaO loading.

Thesulfationexperimentsof8Ba/Ti/Al(P1)and20Ba/Ti/Al(P1) samplesarepresentedinFig.4bandd. AfterSO2+O2 exposure at 323K, a set of broad and overlapping bands appear within 1100–980cm−1indicatingtheformationofvarioussulfitespecies.

Interestingly,onlyinsignificantlyminorchangesareobservedfor the8Ba/Ti/Al(P1)sampleevenafterhightemperaturetreatment (Fig. 4b, spectra ii–iv) indicating that the formation of surface aluminum sulfate and bulkBaSO4 species is rather suppressed.

The changes observed for the 20Ba/Ti/Al(P1) sample are more pronounced (Fig. 4d): bulk BaSO4 related features at 1260 and 1160cm−1appearafterheatingat473Kandthesebandsbecome slightlymoreintenseaftersubsequentheatingat673K.Itisclear thatsuppressionofbulk BaSO4 formation byTiO2 promotionis effectiveforthe8Ba/Ti/Al(P1)samplewhileitislessefficientfor 20Ba/Ti/Al(P1)sample.Wehavereportedinourpreviousstudies thatTiO2domainsfunctionasanchoringsitesforBaOsitesandlimit thesurfacediffusionofBaOclusters[23,37].Thus,itislikelythat forlowBaOloadings,mostoftheBaOdomainsonthe8Ba/Ti/Al(P1) samplecaneffectivelybindtoTiO2domains,andpreventthesin- teringofBaOdomains.Thus,forlowBaOloadings,TiO2domains canefficientlysuppresstheformationoflargeBaOclusterswhere thermallystablebulkBaSO4canform.Ontheotherhand,forhigher BaOloadings,asinthecaseof20Ba/Ti/Al(P1),alargerfractionof theBaOdomainsarelocatedonthealuminasurfacewheretheycan diffusefasterandformlarger3DBaOclusterswhichcanenablethe formationofbulkBaSO4 asinthecaseof20Ba/Al(Fig.4c). Itis worthmentioningthatsimilarexperimentswerealsoperformed on8(20)Ba/Ti/Al(P2)samples(datanotshown)andaqualitatively similarbehavior wasobservedindicatingthesignificanceofthe Ba/TiratiointhepromotionaleffectofTiinSOxuptake.

Inordertoquantitatively comparetheamountofSOxstored ontheinvestigated surfaces,XPSanalysisofthepoisoned sam- pleswasperformed.Becauseoftherelativelylowsensitivityofthe XPStechniquetowardssulfur,poisoningprocedurewasmodified toobtainabettersignaltonoiseratioandmoreaccurateatomic ratiovalues.Thus,beforetheatomicratiodeterminationbyXPS,the sampleswerepoisonedin10TorrofSOx(SO2:O2=1:10)at673K for30min.TheshapeoftheFTIRspectrarecordedafterthispoi- soningprocedure(datanotshown)wereinverygoodagreement

withthecorrespondingspectrapresentedinFigs.3and4.Binding energy(BE)ofS2p(168–170eV)XPSsignalindicatedthepresence ofmainlysulfates(i.e.S6+states)onallsamples.Itisworthmen- tioningthatalthoughinsituFTIRdatagiveninFig.4bsuggestthe presenceofmostlysulfitespeciesonthe8Ba/Ti/Al(P1)sample,XPS dataindicatesthepresenceofpredominantlysulfatespecies.This maybeassociatedwiththeexposureofthe8Ba/Ti/Al(P1)sample toatmospherebeforetheXPSanalysisresultingintheoxidation ofsulfitesintosulfates.Fig.5demonstratesthatunderidentical poisoningconditions,Ti/Al(P1,P2)samplesaccumulateupto3–5 timesmoresulfurthan␥-Al2O3.Thisbehaviormightbeoriginat- ingfromthelargerSSAof theTi/Almaterialsincomparison to

␥-Al2O3aswellasthedecreasingnumberoftotalLewisacidsites inmixedTi/Aloxides.ThelessacidicTi/Almixedoxidesurfaces candemonstrateahigheraffinitytowardsacidicSOx.Theacidityof TiO2 Al2O3mixedoxidesaswellas␥-Al2O3hasbeeninvestigated inpreviousstudies[23,71]bypyridineadsorption.Itwassuggested thatadditionofTiO2toAl2O3introducessomemediumstrength Lewisacidsites,[23]howeveritwasdemonstratedinanotherstudy thatthetotalamountofLewisacidsitesisdecreasedby30%for TiO2 Al2O3incomparisontopurealumina[71].

Analysis of Fig. 5 also reveals that for an identical mass of eachmaterial(i.e.20mg),8Ba/Ti/Al(P1,P2)samplesaccumulate alesserquantityofsulfurthanthe8Ba/Alsample,demonstrating thefavorablepromotionaleffectofTionlimitingsulfuraccumula- tion.Furthermore,8Ba/Ti/Al(P2)sampleseemstostoremoreSOx

(perunitsampleweight)thanthe8Ba/Ti/Al(P1)samplewhichcan beexplainedbythelargerSSAoftheformermaterial(185cm2/g vs.150cm2/g,respectively)[37].However,itisimportanttomen- tion that the promotion of 8Ba/Al sample with TiO2 favorably decreasesthetotalSOxuptake(perunitsampleweight)regard- lessofthepreparationmethod(i.e.P1orP2)(notethattheSSA ofthefresh8Ba/Al sampleis185cm2/g[20]).Thistrendispar- tiallyreversedwhentheBaOloadingisincreasedto20wt%.Fig.5 revealsthatalthough20Ba/Ti/Al(P1)sample(SSA=79cm2/g[37]) storesalesserquantityofSOx(perunitsampleweight)thanthat of20Ba/Alsample(SSA=126cm2/g[20]);20Ba/Ti/Al(P2)sample (SSA=173cm2/g[37])storesagreatertotalamountofSOx.These resultssuggestthatforhigherBaOloadings,thepromotionaleffect ofTiO2isweaker.BesidestheseSSAtrends,thisobservationmay alsoarisefromthefactthatnotalloftheBaOdomainsarelocated ontheTiO2sitesforhighBaOloadingsandalargefractionofthe BaOdomainsdirectlyinteractwiththeunderlyingaluminasitesas inthecaseof20Ba/Alsystem.

3.4. InfluenceofSOxpoisoningontheNOxadsorption

NOxadsorptiononfreshTi/Al(P1,P2)andfresh8(20)Ba/Ti/Al(P1, P2)samplesviaFTIRtechniqueandthecorrespondingassignments oftheobservedvibrationalbandswerethoroughlydiscussedinone ofourrecentreports[37]andthuswillnotbereiteratedhere.In thelightofthesepreviousstudies,similarNOxadsorptionexperi- mentswerealsoperformedonthesulfur-poisonedmaterialsand theresultswereanalyzed.

Fig.6a comparestheNOxuptake characteristicsof thefresh and poisoned ␥-Al2O3 surface at 323K.After the saturationof thefresh␥-Al2O3 surfacewithNO2(g),vibrationalfeaturesasso- ciatedwithdifferenttypesofnitratespecieswereobserved.These nitratespeciesadsorbedon␥-Al2O3wereintheformofbridged (1258,1628cm−1),bidentate(1300,1604cm−1)andmonodentate nitrates(1300, 1564cm−1)[37,72].Additionally,theweakband locatedat∼1958cm−1 thatwasformedafterNOxadsorptionon thepoisonedsurfaceisassociatedwiththeadsorbedNO+and/or weaklyadsorbedN2O3[73].Thepoisoningofthe␥-Al2O3surface bySO2+O2decreasestheintensitiesofthenitratesignals,indicat- ingadeclineintheNOxuptakeofthe␥-Al2O3 surface.Itisseen

(8)

1000 1100 1200 1300 1400

1043

1350 1250

absorbance (arb.u.)

8Ba/Al

ii 1160

995 1080 0.05

(a)

i iii iv

900 1000 1100 1200 1300

1250 0.05

ii i iii iv

8Ba/Ti/Al (P1) (b)

1046995 1100 1160 1350

1000 1100 1200 1300 1400

1080

(c) 20Ba/Al

wavenumber (cm

-1

)

1350

1160

1040

1250

i ii iii iv 0.05

900 1000 1100 1200 1300

980 1120

1046 20Ba/Ti/Al (P1) (d)

1100 1160

1350 1260 0.05

i ii iii iv

Fig.4.FTIRspectrafor0.6TorrSO2(g)+O2(g)(SO2:O2=1:10)co-adsorptionon(a)8Ba/Al,(b)8Ba/Ti/Al(P1),(c)20Ba/Al,(d)20Ba/Ti/Al(P1).(i)After1hexposureto SO2(g)+O2(g)at323K(spectrumwasobtainedinthepresenceofthegasmixture),(ii)aftersubsequentflashingofthesampleto473KinSO2(g)+O2(g)mixtureand coolingto323K(spectrumwasobtainedinthepresenceofthegasmixture),(iii)aftersubsequentflashingto673KinSO2(g)+O2(g)mixtureandfurtherevacuationat323K (Preactor<1×10−4Torr),(iv)aftersubsequentflashingthesampleto673Kinvacuumandcoolingto323K.

inFig.6athatSOxpoisoningdecreasestherelativeratioofmon- odentateandbidentatenitrates(1300cm−1)tothebridgednitrates (1258cm−1).Thisobservationsuggeststhatsulfatespeciesonthe

␥-Al2O3surfacesuppresstheformationofalltypesofnitrates,par- ticularlythemonodentateandbidentatenitratesbyoccupyingthe correspondingadsorptionsites.

Theappearanceofthebandsat1375and1100cm−1inFig.6a forthepoisonedsampleindicatestheformationofsurfacesulfates.

Althoughsulfateformationonthe␥-Al2O3surfaceintheabsence ofNOxspecies(Fig.3a)requiresarelativelyhightemperature(i.e.

673K),sulfateformationcanreadilyoccurbyexposingthealumina surfacetoSO2(g)+O2(g)at473KfollowedbyNO2(g)exposureat 323K.Itisapparentthat,NOxspeciesfunctionasefficientoxidizing agentsintheoxidationoftheSO2 and SO32tosulfatesonthe

␥-Al2O3surface.Thefollowingreactionpathwayscanbesuggested fortheinteractionbetweensurfaceSOxspeciesandtheadsorbed NOxspecieson␥-Al2O3:

I:

SO32(ads)+NO2(ads,g)→ SO42(ads)+NO(g) (1) SO32(ads)+2NO2(ads,g) →SO42(ads)+N2O3(ads) (2) N2O3(ads)→ NO2(ads)+NO+(ads) (3)

II:

3NO2(g)+O2(s)→2NO3(ads)+NO(g) (4) SO32−(ads)+NO3(ads)→SO42−(ads)+NO2(ads) (5)

(9)

Fig.5. Relativesulfurcontent(i.e.percentileofsulfuratomsonthesurfacewith respecttoallotheratoms)oftheinvestigatedsamplesaftersulfurpoisoning(as describedinthetext)determinedbyexsituXPSanalysis.

NO2(ads)+NO2(ads,g) →NO3(ads)+NO(g) (6) NO2(ads)+2NO2(ads,g) →NO3(ads)+N2O3(ads) (7) PathwayIsuggeststhatthesulfitespeciesonthe␥-Al2O3surface thatareformedintheprocessofpoisoningcanbedirectlyoxidized tosulfateswiththehelpofNO2(g)orweaklyadsorbedmolecular NO2.Ontheotherhand,pathwayIIproposesanalternativeroute forthesulfateformation,wheresurfacenitratespeciesfacilitate theoxidationofsurfacesulfites(orweaklyadsorbedmolecularSO2 species).Inthislatterroute,duringthesulfateformation,nitrates areconsumed at theexpense ofnitrite and NO(NO+)or N2O3 generation.Theobservationof1958cm−1featureintheFTIRspec- trumcorrespondingtothepoisonedsampleinFig.6a,which is notpresentinthecorrespondingspectrumforthefreshsample, supportstheformationofN2O3/NO+(reactions(2)and(7)).Itis difficulttoassesswhichofthesetwopathwaysisfavoredonthe surfaceunderthecurrentexperimentalconditions.However,by takingintoaccountthefacileformationofnitratespeciesonthe

␥-Al2O3surface,itcanbearguedthatpathwayIImaypresumably beoccurringmorereadilythanpathwayI.

Fig. 6b, presents analogous poisoning and subsequent NOx

uptakeexperimentsconductedonpureTiO2(anatase).TheLewis acidsitesontheanatasesurfacerevealfourandfive-coordinated Ti4+ions(refereedas␣and␤sites,respectively)where␣-Lewis acid sites (with two oxygen vacancies) favor bidentate (1578 andshoulder at∼1220cm−1)and bridge(1627 and1236cm−1) nitrateformationwhilethe␤-sites(Ti4+withoneoxygenvacancy) favortheformationofmonodentatenitrates(groupoffeaturesat 1550–1500cm−1andpeakat1282cm−1)[37,74–77].SimilarFTIR signals,thoughwithreducedintensitiesofallNOxvibrationalsig- nalsarealsoobservedforthepoisonedanatasesamplemarkedin redinFig.6b.Thepoisonedanatasesamplealsoshowssomeaddi- tionalbandsat1359and1030–1070cm−1thatareassociatedwith thesulfiteandsulfatespecies.

SimilarexperimentswerealsoperformedonTi/Al(P1,P2)sur- facesasshowninFig.6candd.ItisreadilyseenthattheNOxuptake issuppressedbySOxpoisoningonbothsurfaces.ItisvisibleinFig.6 thattheextentofthenitratesignalsuppressionismorepronounced forTi/Al(P1,P2)samplesincomparisonwithpure␥-Al2O3andTiO2. ThisresultisinagreementwiththeXPSdatagiveninFig.5,indi- catingasignificantlyhigheraffinityofTi/Al(P1,P2)towardsSOx

thanthatofpure␥-Al2O3.Sucha behaviorcanbeexplainedby anincrease intheSSAvalues and adecreasein thetotal num- berofLewisacidsitesuponTiO2promotion.Asimilarinteresting behaviorwasalsoreportedintheliteratureforTiO2–ZrO2mixed oxidesystems.Forinstance,itisknownthatpureTiO2(anatase)or pureZrO2 (monoclinic/tetragonal)haveverylimitedNOxstorage capacities[78].Ontheotherhand,whenthesetwodifferenttypes

ofoxidesarecombinedtoobtainanamorphousTiO2–ZrO2mixed oxide,NOxstoragecapacitycanbeimprovedbymorethananorder ofmagnitude,whichwasattributedtotheformationofnewLewis basicsitesattheTiO2–ZrO2hetero-junctions[78].Inanalogywith theseobservations,Ti/Al(P1,P2)surfacesmayalsocontainnewand strongSOxadsorptionsites,whicharenotpresentoneitherpure TiO2or␥-Al2O3surfaces.

WhentherelativepoisoningofTi/Al(P1)iscompared tothat ofTi/Al(P2) (Fig.6cand d),itis visiblethatnitratefeaturesare suppressedtoalesserextentonTi/Al(P2),althoughtheintensities ofsulfatefeatures(1360and1100cm−1)arestrongeronTi/Al(P2) (Fig.5d).Thisobservationsuggeststhattheporousanddisordered surfacemorphologyoftheTi/Al(P2)sampleresultsinalargerover- allSOxuptake,howeverduetoitslargesurfacearea(SSAoffresh Ti/Al(P1)and Ti/Al(P2)are167and393m2/g,respectively [37]), Ti/Al(P2)surfacestillpossessesalargernumberofNOxbindingsites withrespecttoTi/Al(P1).Ontheotherhand,suchacomparison basedsolelyonIRintensitiesshouldbeconsideredwithcaution, astheIRabsorptioncross-sectionsofadsorbednitratespecieswith dissimilaradsorptionconfigurationscanbesignificantlydifferent, whichmayrenderadirectIRintensitycomparisonrelativelyinac- curate.

Fig. 7 compares the NOx adsorption properties of 8(20)Ba/Ti/Al(P1, P2), samples before and after SOx adsorp- tion at323K.The FTIRresultscorrespondingtotheadsorption of NO2 onthefreshsampleswerealready discussed elsewhere [37].Briefly,uponNO2 adsorption,thefreshsamplesurfacesare characterized by adsorption bands due to the presence of the bulk(ionic)Ba-nitrateslocatedat∼1320,∼1440and∼1480cm−1, surface (bidentate) Ba-nitrate features located at 1585, 1565, 1300cm−1andadditionalnitratebandsat1583and∼1630cm−1 thatareassociated withnitratesadsorbedontheTiO2 domains havingbidentateandbridgedconfigurations.AfterSOxpoisoning ofthesampleswithSO2+O2at473K,itisclearlyvisiblethatthe NOx storage capacities decrease significantly. Additionally, the presenceofminorbandsat∼1150and∼1245cm−1 impliesthe existenceofsulfatespeciesonallofthesamples.Formationofsul- fatespeciesonallofthesamplesaftersubsequentNO2adsorption at 323Kdemonstrates theefficient oxidizingcapability of NO2 whichcanreadilyoxidizesulfitespeciesthatareformedduring the SO2+O2 exposure. It is worth mentioning that the similar experimentsperformedon8(20)Ba/Alsamples(datanotshown) revealedqualitativelysimilarresultsindicatingthesuppressionof NOxuptakeuponsulfurpoisoning.

3.5. ThermalstabilityoftheadsorbedNOxspeciesonthe sulfur-poisonedmaterials

In order to have a betterunderstanding of theinfluence of SO2+O2 treatmenton thethermal stability and thedesorption propertiesoftheNOxspecies,TPDexperimentswerepreformed.

Fig.8showstheNOxdesorptionprofilesfromthefreshandSOx

poisoned␥-Al2O3andTiO2(anatase)benchmarksamples.Forclar- ity,onlythem/z=30,m/z=32andm/z=46desorptionchannelsare shown.Forthefreshaluminasurface,twomajorNOandNO2des- orptionfeaturesareobserved,thatisingoodagreementwiththe literaturedata[20,79].ThefirstNOxdesorptionfeatureat387K is associated withthe desorption of monodentate nitrates and weaklyboundN2O3and/orNO+specieswhichdesorbintheform ofNO2andNO(almostwithoutO2).Thesecondmajordesorption bandhasitsmaximumat625Kandisassociatedwiththedesorp- tion/decompositionofbridgedandbidentatenitrateswhichyield agreaterNO2desorptionsignalalongwithNOandO2[20,79].

TheSO2-poisoning ofthealuminasurfacehasastronginflu- enceontheNOxdesorptionfeatures.AsitisseeninFig.8b,sulfur poisoningaltersboththetypeandthequantityofadsorbedNOx

(10)

1000 1200 1400 1600 1800 2000 2200

absorbance (arb.u.)

γ-Al2O3 (a)

1958 1628

1604

1375 1300

1259

1102 10411003

Fresh sample

1564 0.2

Poisoned sample

1200 1400 1600 1800 2000

TiO2 (anatase) (b)

Poisoned Sample Fresh Sample

1627

1578

1550

1359 12821236

1070 1028 0.2

1000 1200 1400 1600 1800 2000 2200

(c) Ti/Al (P1)

wavenumber (cm-1)

Fresh Sample Poisoned Sample

1631

1580

1294 1258

1040 0.2

1200 1400 1600 1800 2000 Ti/Al (P2) (d)

Fresh Sample Poisoned Sample

1640

1584

1237 1212

1360 1100

1040 0.2

Fig.6. FTIRspectramonitoredafterNO2adsorptionat323Konfresh(blackspectra)andpoisoned(redspectra)(a)␥-Al2O3,(b)TiO2(anatase),(c)Ti/Al(P1),(d)Ti/Al(P2) samples.Poisoningwasperformedbyexposingthesamplesto0.6TorrSO2(g)+O2(g)(SO2:O2=1:10)at323K,followedbyheatinginthegaseousmixtureat473Kfor30min andafinalevacuationat323K(Preactor<1×10−3Torr).NOxuptakewasperformedbyexposingthesamplesto8TorrofNO2(g)at323Kfor20min,followedbyevacuation to<1×10−3Torr.Allspectrawereacquiredinvacuumat323K.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

species.Forthepoisonedsample,themajorfeaturearound380K (associatedwiththemonodentatenitratesorweaklyboundN2O3

desorption)appearstoalargerextentthandesorptionofbiden- tate/bridgednitrateat675K.Thisfindingisalsoconsistentwiththe FTIRresultsobtainedforNO2adsorptiononthesulfated␥-Al2O3

surface,yieldingthebandcorrespondingtoadsorbedNO+/N2O3 speciesat 1958cm−1 (Fig.6a).Relativelylower intensityofthe 1958cm−1 band(Fig.5a)incomparisontotheotherNOxbands couldbeassociatedwithitslowIRabsorptioncross-section.Thus, SOx species seem tocompete withthe nitratespecies for sur- faceadsorptionsites.Furthermore,inthepresenceofSOxspecies,

stronglyadsorbednitratesarepartiallyconsumedandconverted intoweaklyboundN2O3(reactions(2)and(7))orNO+ (reaction (3))whilesomeofthesulfitesandchemisorbedSO2speciesarecon- vertedintosulfatesthroughreactionssimilartotheonesproposed above(pathwayII).

Fig.8canddshowstheTPDprofilesforNOxdesorptionfrom freshandSOxpoisonedTiO2(anatase)samples.FreshTiO2sample presentsaweakshoulderat455Kandtwobroadfeatureslocated at610and900KinNOdesorptioncurve.Inthelightoftheformer studies[74–77]theshoulderat455Kcanberelatedtomolecu- larlyboundNO2 speciesandmonodentatenitrates.Thebandat

(11)

1000 1200 1400 1600 1800 2000 2200

8Ba/Ti/Al (P2) 8Ba/Ti/Al (P1)

absorbance (arb.u.)

(a)

1630 1440 1310

1240

1150 1040

Fresh sample

1570 0.2

Poisoned sample

1200 1400 1600 1800 2000

1450

(b)

Poisoned Sample Fresh Sample

1635

1580

1485 13051260

1150 1040 0.2

1000 1200 1400 1600 1800 2000 2200

1040 1440

20Ba/Ti/Al (P1) (c)

wavenumber (cm

-1

)

Fresh Sample Poisoned Sample

1630 1570

1320

1250

1150 0.2

1200 1400 1600 1800 2000

1320

1440

1570 1630

20Ba/Ti/Al (P2) (d)

Fresh Sample Poisoned Sample

1250

1155 1040 0.2

Fig.7.FTIRspectramonitoredafterNO2adsorptionat323Konfresh(blackspectra)andpoisoned(redspectra)(a)8Ba/Ti/Al(P1),(b)8Ba/Ti/Al(P2),(c)20Ba/Ti/Al(P1),(d) 20Ba/Ti/Al(P2)samples.Poisoningwasperformedbyexposingto0.6TorrSO2(g)+O2(g)(SO2:O2=1:10)at323K,followedbyheatinginthegaseousmixtureat473Kfor 30minandafinalevacuationat323K(Preactor<1×10−3Torr).NOxuptakewasperformedbyexposingthesamplesto8TorrofNO2(g)at323Kfor20min,followedby evacuation.Allspectrawereacquiredinvacuumat323K.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

610Kisattributedtothedesorption/decompositionofthebridged andbidentatenitrates.Thehightemperaturedesorptionfeatureat 900Kcanbeattributedtothedesorptionofstronglyboundnitrates.

Itisknown[23]thatphasetransitionfrombulkanatasetobulk rutilestartsatT>800K.ThereforethestrongNOxdesorptionsig- nalat900KinFig.8ccouldbeassociatedwiththedrasticdecrease inthesurfaceareaofTiO2asaresultofthephasetransitionfrom anatasetotherutilephase.Notethatduringtheactivationofthe freshandpoisonedanatasesurfacesbeforetheTPDexperiments, TiO2sampleswerenotexposedtotemperatureshigherthan623K inordertopreservetheanatasephasepuritythus,theactivation wasperformedviaO2(g)ratherthanNO2(g).

The poisoned TiO2 sample shows an additional minor des- orption feature at 345K (Fig. 8d). We attribute this feature to thedesorptionofweaklyadsorbedN2O3/NO+ (desorptionoccurs mainlyintheformofNO+NO2).Thedesorptionfeatureat450Kis associatedwithweaklyadsorbedmolecularspeciesand/orwith monodentatenitrates. TPDprofileof thepoisoned TiO2 sample (Fig.8d)revealsa decreasein the450K desorptionsignalwith respecttothatofthefreshsample(Fig.8c)inagreementwiththe FTIRdata(Fig.6b)indicatinga suppressionofthemonodentate nitratesignalsat1550and1282cm−1 uponpoisoning.Themain desorptionbandforthepoisonedTiO2sampleoccursat615Kindi- catingthatonthepoisonedanatase,NO2adsorbspredominantlyin

Referenties

GERELATEERDE DOCUMENTEN

Ambtelijk Contact Reformatorisch Dagblad De Saambinder Daniël De wachter Sions De Waarheidsvriend Bewaar het pand De

Daarom steekt hij een sterretje aan en stopt dat, met de aangestoken kant naar beneden, in een smalle open fles.. Hij doet de

Omdat sacharose gehydrolyseerd kan worden door een oplossing ervan te koken, lost hij een deel van de witte vaste stof op in water en kookt de verkregen oplossing enige tijd. proef

Het gezamenlijke volume van de gassen die zijn ontstaan bij de explosie is veel groter dan het volume van de vaste stof die aanwezig was voor de explosie.. Dit is de

e) Zoek uit welk getal je moet veranderen in de vergelijking om het laagste punt één hokje omhoog te schuiven. Geef de nieuwe vergelijking.. a) Neem de tabel over, reken

To compute critical values for the Normal distribution, create the NCRIT program for your TI-83 (or

3p 9 Geef de vergelijking van de reactie van calciumcarbonaat met opgelost salpeterzuur waarbij onder andere CO 2 en opgelost calciumnitraat ontstaan. In het experiment in

[r]