• No results found

GaN in XPS the for dynamics probing of surface voltage andphotovoltage Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "GaN in XPS the for dynamics probing of surface voltage andphotovoltage Applied Surface Science"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

XPS for probing the dynamics of surface voltage and photovoltage in GaN

Hikmet Sezen

a

, Ekmel Ozbay

b

, Sefik Suzer

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bDepartmentsofPhysicsandElectricalandElectronicsEngineering,BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received10February2014

Receivedinrevisedform14June2014 Accepted14June2014

Availableonline20June2014

Keywords:

Chargingdynamics Surfacephotovoltage XPS

GaN Doping

a b s t r a c t

WedescribeapplicationoftwodifferentdatagatheringtechniquesofXPSforprobingthedynamicsof surfacevoltageandsurfacephotovoltage(SPV)developedinmicrosecondstosecondstime-domain,in additiontotheconventionalsteady-statemeasurements.Forthelonger(secondstomilliseconds)regime, capturingthedatainthesnapshotfashionisused,butforthefasterone(downtomicroseconds),square wave(SQW)electricalpulsesatdifferentfrequenciesareutilizedtoinduceandprobethedynamicsof variousprocessescausingthesurfacevoltage,includingtheSPV,viathechangesinthepeakpositions.

Thefrequencyrangecoversanywherefrom10−3to105Hzforprobingchangesduetocharging(slow), dipolar(intermediate),andelectronic(fast)processesassociatedwiththeexternalstressesimposed.We demonstrateitspowerbyapplicationton-andp-GaN,anddiscussthechemical/physicalinformation derivedthereof.Inaddition,themethodallowsustodecomposeandidentifythepeakswithrespectto theirchargingnatureforacompositesamplecontainingbothn-andp-GaNmoieties.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

GaNisawideband-gapcompoundsemiconductorwithsupe- rioroptoelectronicpropertiesutilizedinnumerousdevicesforhigh powerlightemittingdiodeandsensorapplications[1].Surfaceand defectstructuresofthematerialsusedcompletelydeterminemany ofthedeviceperformance,hencecontroloverthesepropertiesare ofutmostimportance.Surfacephotovoltage(SPV)[2,3],isoneofthe propertiesmeasuredtoevaluatethequalityandtheperformanceof suchmaterialsanddevices,andhasrecentlybeencombinedwith microscopictechniquessuchastheKelvinProbe(KP)[4,5].SPV measurementsrelateelectricalinformationtobandstructure,as wellastothenatureofsurfacemoieties, andmostimportantly tothenature of impurities and defects.However,even though asuperb (sub-micron)lateralresolutionisachievable,theKPis basedonelectricalmeasurements,hencedoesnothavechemical specificity.Ontheotherhand,X-rayPhotoelectronSpectroscopy (XPS),whichhasalsobeenusedforprobingSPV,providesexcel- lentchemicalinformation,inadditiontotheelectricalpotentials developedonsurfacestructures,althoughtheprecisionformea- suringthelatterismuchlower(∼20meV)whencomparedtothat ofKPmeasurements(∼1meV)[2].

∗ Correspondingauthor.Tel.:+903122901476;fax:+903122664068.

E-mailaddress:suzer@fen.bilkent.edu.tr(S.Suzer).

EarlierSPVmeasurementsweremostlysynchrotronbaseddue totheneededbrightnessofthesource[6–10],butcombinedwithX- raymicrofocusingandfastaccumulationtools,thenewgeneration commercialXPspectrometerscanalsoprovidecriticalinformation aboutsuchmaterialsanddevices[11,12].Inarecentpublication wereportedoncapturingofthetransientsurfacephotovoltagein n-andp-GaNbyXPSwherenewinformation aboutthemecha- nismofthetransientsformedbyilluminationwitha∼50mWviolet (405nm)laserwasbroughtoutanddiscussed[13].However,faster measurementsarenotpossibleinthismode,therefore,wehadto introduceothermodulationtechniques[14–19].

XPSisawidelyusedchemicalanalysistechniqueforprobing chemicalandphysicalcompositionofsurfacestructures.Incon- ventionaldatagatheringmodethesampleis grounded,and the positionaswellastheintensityofthepeaksarerecordedinastatic fashion[20].Althoughseveralreportshaveappearedintheliter- aturerelatedtodynamicalXPSmeasurementsinthetwoextreme ends,veryfast(nanosecondstoattoseconds)[21–24],andveryslow (minutestohours)[25–27].Theintermediatedomain(microsec- ondstoseconds)hasbeenoverlooked.Theveryfastmeasurements require either synchrotron facilities and/or specialized instru- mentationwhich arenot easilyaccessibletomany researchers.

Theintermediatedomainisimportantespeciallyfortestingand improvingperformanceofvariousmaterialsanddevicesusedfor charge storage, photovoltaics, ferroelectrics, chemical and bio- chemicalsensing,etc.Recently,ourgroupandothershavereported http://dx.doi.org/10.1016/j.apsusc.2014.06.089

0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

throughvariouspublications,thebasicprinciplesandtechniques forimplementingsuchmeasurementsemployingverysimplemod- ificationtoconventionalinstruments[28–39].

Herein,we reportsuchXPSmeasurementsonn-andp-GaN samples,coveringtimeintervalsfromkilo-seconds(10−3Hz)down tomicrosecond(106Hz),anddiscusstheresultsobtainedpertain- ingtoelectricalpropertiesofthesampleasreflectedbythebinding energyshifts of theGa core-levels. Someof themeasurements includedinthepresentpaperhavealreadybeenpublishedinour previouspapers,buttheyarereproducedhereforthesakeofclar- ityandtoprovideacontinuousflowofthepresentation[13,40].

Thenextsectiondescribestheexperimentaldetailsandisfollowed byourresultsanddiscussions.Wefinishthepresentationbyour conclusions,tobefollowedbyacknowledgementsandreferences.

2. Experimental

GaNsamplesweregrownondoublepolishedc-planesapphire bylow-pressureMOCVD(AIX200/4RF-S).TheMgdopedp-andSi- dopedn-GaNsampleshaveconductivitiesof0.8and58S−1cm−1, respectively.AThermoFisherK-Alphaelectronspectrometerwith monochromatic AlK␣X-rays is used for XPS analysis,which is slightlymodifiedforimposingexternalvoltagestress(D.C.orA.C.) tothesampleduringdataacquisition. Thespectrometerisalso equippedwithalowenergyflood-gunfacilityforchargeneutraliza- tion,utilizingonlyelectronsorbothelectronsandAr+ions.Sample surfaceswerecleanedbysputtering withalowenergy(200eV) Ar+ionbeamforavoidingdamagebytheAr+ions,untiltheC1s peakfellbelowdetectionlimits.Noannealingofthesampleswas performedaftercleaning.Toinducesurfacephotovoltagea50mW 405nm(violet)CrystaLaserlaserisemployedeitherintheC.W.

mode,orthroughachopperwithafrequencyrangeof10−1–103. Forprobingthedynamicsofcharging/dischargingproperties,the dataisgatheredeitherinthefastsnapshotmodewith0.1stime resolutionorthesampleissubjectedtosquarewavepulses(SQW) of±10Vamplitudewithvaryingfrequenciesinthe10−3–105Hz rangeusingaStanfordResearchSystemDS345pulsegenerator, whilethedataisgatheredinnormalscanningmode.Ingeneralthe accuracyofourmeasurementsarebetterthan20meVinthepeak positions.However,sinceweallowthesamplestochargeanddis- charge,throughtheapplicationoftheSQWmodulation,thepeaks arebroader.Eveninsuchcase,wecanstillclaimanaccuracyof 20meV,sincethistimewemeasurethedifferencebetweentwo peakspositions,whichisinherentlymoreaccuratewhencompared toabsolutepeakpositionmeasurements.

3. Resultsanddiscussions

3.1. Photoresponseofn-andp-typeGaN

3.1.1. Steady-statemeasurements

Asurveyspectrumofthep-typeGaNhasanintenseGa2p3/2 peakat 1118.49eVand3s,3p,3dpeaksat161.41, 106.48,and 20.15eV,respectivelyasshowninFig.1.Inaddition,Gahasanum- berofLMMAugerlinesspanningtheintervalfrom380to630eV.

Unfortunately,abroadLMMAugerlineofGaat397eVisoverlap- pingwiththeN1speak,soitisnotpossibletofollowindividual N1sregionwithourXPSinstrumentusingAlK␣X-raysource.We generallyfollowtheGa2pifweneedhighintensity(inthesnapshot mode),buttheGa3dpeakisrecordedforbetterenergyresolution.

Whenexposedtoelectromagneticradiation,materialsrespond inavarietyofwaysdependingonthewavelength,intensity,and durationof theexposure. TheGa2p3/2 spectraof then-andp- GaNsamples,recordedwithandwithoutvioletlaserillumination, areshowninFig.2.Thehigheststeady-stateSPVforthen-and

Fig.1.AsurveyXPSspectrumofthep-GaNsampletogetherwiththeexperimental set-up.

p-GaN,aremeasuredas+0.15eVand−0.39eV,respectively,while thefloodgunisnotemployed.Whenthefloodgunisfunctioning, theresponseofespeciallythep-typeGaNissignificantlyaltered andprovidesadditionalinformationabouttheelectricalproperties ofthesemiconductor,aswasdiscussedinourpreviouspaper[13].

Whenthesamplesareintroducedintothespectrometer,elec- tronsflowfromthen-typeandholesfromthep-typeGaNsothat theyarechargeddifferently,duetotheirsignandextentofdoping.

But,thechargesonthesurfacesarescreenedbybandbendingand byaccumulationofopposite-signchargesnearthesurface.When lightwithsufficientenergyisincidentonthesampleadditional chargecarriersareintroducedwhichnormallyreturnthebandsto theirflat-bandcondition[5,10,13,40–45].GaNhasaband-gapof 3.4eV,thereforethevioletlaser,whichhasonlyanenergyof3.1eV isnotexpectedtocauseanyband–bandexcitation.Presenceofsur- facestates,justabovethevalanceband,aswellasdefects,aidedby thermalenergyatroomtemperaturemustbethereasonforthis band-flattening.Asdepictedbytheschematicsshowninthelower panelofFig.2,theseprocessesmustinvolveanexcitationofanelec- tronandaholefromsurfacestatesintobulkforthen-andp-GaN, respectively,resultinginpartialflatteningofthebands.

Fig.2. Ga2p3/2regionofbothsamplesrecordedwithoutandunderillumination withaC.W.VioletLaser(405nm)of∼50mWpower.Thelower panelsshow schematicallyflatteningoftheband-bendingunderillumination.

(3)

Fig.3.VariationofthepositionofGa2p3/2peakofp-GaNwithrespecttothepower oftheilluminationsource,controlledbyNeutralDensityOpticalFilters(NDF).

Wehavealsocarriedoutmeasurementsbyvaryingtheintensity oftheexcitationsourcetoobtainarelationshipbetweenthemea- suredvalueoftheSPVandthelogarithmoftheintensityoflightas giveninFig.3.Themostimportantfindingofthesemeasurements, isthatitrevealsasaturationbehaviortowardthehighintensity regionofthephotoexcitement.Thispowerdependencyofthep- GaNindicatesthattheresponseswemeasuredaremostlydueto surface-statesanddefects’relatedprocesses,whichisalsoingood agreementwithourmechanisticexplanationofthepartialband flatteningphenomenoninvolvingthesub-bandgapexcitations.

3.1.2. Transientmeasurementsusingthesnapshotmode

TheK-Alphaspectrometerallowsustorecord,withreasonably highsignal-to-noiseratio,anarrowspectralregionwithlessthan 0.1sintervals.InFig.4(a)and(b),thetime-resolvedGa2p3/2spectra

areshownforthetwosampleswhilethelaseristurnedonand offevery50s,whereweobservethattheSPVdevelopsinamuch shortertimeinterval(<0.1s)thanweareabletomeasure,butitgets severelyscreenedbytheflood-gunelectronsforthep-GaN.This indicatesthatwhenthefloodgunisoperativeanadditionalmech- anismistriggeredjustafterthechangeofthestateofthelaser,asa resultofinteractionbetweentheelectronsofthefloodgunandthe surfaceofthep-GaNsample.Thiscanbeexplainedasfollows.The p-GaNdevelopsacertainmagnitudeofdownwardband-bending atitssurface.ThisdownwardbandbendingatthelaserOFFstate providesaproperwelltocapturetheflood-gunelectronsatornear theconductionband,asschematicallyshowninFig.4(c)tocause anoppositeshifttolowerbindingenergyasexpectedandmea- sured.WhenthestateofthelaserischangedtoON,thedownward band-bendingis immediatelyflattenedand thewelldisappears.

Hence,theaccumulatedelectronsduring thepreviousstateare quicklysweptawaytothebulk,becausenowtheconductionband ofthebulkhasmanyfavorableenergylevelsfortheelectronsas alsoindicatedinFig.4(c).Thiseventisobservedasafurthershiftto ahigherbindingenergy.Moreover,thetimeconstantsofelectron accumulationandelectronsweepingawayfromthesurfaceofthe p-GaNsamplearedifferentandare6.3and0.85s,respectively.This differencearisesfromthedifferentnatureofthetwomechanisms.

Theimpingingelectronstakelongertime tobeaccommodated, sinceeachaccumulatedelectroncontributestothebuild-upofthe negativesheetofchargeatthesurface,whichinturnsuppresses the rate of accumulation of further negative charge. However, whenthelaseristurnedon,thesweepingofaccumulatedelectrons tothebulkisveryeffectiveandquickduetoitslargevolumeof thebulkcomparedtothesurface.Noteinpassingthatwhenthe flood-gunisoperativetheSPVaresmearedout,andundercertain conditions, might be completely unobservable by the normal scanning mode of the spectrometer due to the time-averaged dataacquisition.Only,throughthecarefulimplementationofthe

Fig.4.VariationsofthecenteroftheGa2p3/2peaksrecordedwith0.1sintervalsusingthesnapshotmode,asthelaseristurnONandOFF,withtheflood-gunturned-offand on;for(a)n-GaN,and(b)p-GaN.(c)SchematicsofformationoftheSPVtransientsforthep-GaN,andtheexponentialfitsaregivenfortheLaserONandOFFperiods.

(4)

Fig.5.Ga3dpeakofthen-andp-GaNsamplerecorded;(i)grounded,andunder theSQWmodulationat(ii)2MHz,and(iii)10kHzfrequencies,withoutandunder photoillumination.

snapshotmodewithrespecttothetimewindowsweusedwere weableustorecoverthefullmagnitudeoftheSPV[13].

3.1.3. ApplicationofSQWpulses

Sinceneitherthesnap-shotmodenorutilizationof anopti- calchoppercanbeusedintheshortermicrosecondsregime,we makeuseofapplicationofelectricalvoltagestressesintheform ofSQWpulses.InFig.5,wedisplaytheGa3dpeakofthen-and thep-GaNsamplerecordedwhilethesamplesaregrounded,as wellasunder2MHzand10kHzSQWmodulations,andwithout andwithvioletlaserillumination.SQWmodulationofthesample resultsintwinningofallthepeaks,sincethesamplesexperience either+10Vor−10Velectricalstressduringtheup(positive)and thedown(negative)cycles,respectively.Ifthesampleisconduct- ingtheresultistrivialshiftsofthepeakpositionsto+10.00and

Fig.6. Measuredpeakpositionsat+10Vand−10VcyclesoftheGa3dpeakasa functionofthefrequencyoftheappliedSQWexcitation,withoutandunderphoto- illumination.Thelowerpartplotsthedifferencebetweenthetwinnedpeaks.

−10.00eV,respectively,andwithabindingenergydifferencemea- surementofexactly20.00eVbetweenthem.However,ifthesample is poorly conducting,a difference of less than 20.00eV results, sincechargeneutralizationisdifferentunder+10and−10Vbiasing cycles[14–19].Thismeasurednegativedeviationfromthe20.00eV islargeratlow frequenciessincemoretimeis allocatedforthe sampletochargeordischarge,andapproacheszeroastheSQW modulationfrequencyincreases,dependingonthemechanismof theoperatingprocesses. Hence,aplotof themeasuredbinding energydifferenceasafunctionoftheappliedSQWfrequenciesis highlyinformative(seebelowFig.6)[14–19].

Accordingly,asshowninFig.5,thebindingenergydifference iscloserto20.00eV,yetslightlylowerat2MHz,fromwhichwe

Fig.7. Ga3dpeakofacompositesampleformedbyplacingthen-andp-GaNsamplesside-by-side,recorded;(i)grounded,andundertheSQWmodulationat(ii)2MHz, and(iii)10kHzfrequencies,withoutandunderphotoillumination.Theinsetdepictstheexperimentalset-up.

(5)

cannowdeducethatn-GaNismuchmoreconductingcomparedto thep-GaNsample,inagreementwiththemeasuredvaluesgiven intheexperimentalsection.Thissimpleagreementisactuallyan importantproofofthevalidityofourmethodology,whichcould leadtonumerousanalyticalapplicationsforharvestingdielectric propertiesofbothsimpleandcompositesurfacestructures[28,46].

Inaddition,themeasureddifferenceof19.81eVatthelowerfre- quencyof2MHzislowerthan19.98eVmeasuredat10kHz,while thelatteriswithintheexperimentaluncertaintyofthetheoreti- calvalueof20.00eV.Thesituationisverydifferentforthep-GaN, whichisdrasticallycharged,andthemeasuredvalueis16.74eV at2MHz, and approaches(19.93eV)to thetheoreticalvalueat 10kHz,butdoesnotquitereachit.Whatonelearnsfromthesemea- surementsisthat,especiallyforthep-GaN,charging/discharging propertiesarestronglyaffectedbyamultitudeofprocessesopera- tiveinthemicrosecondsallthewayupsecondsrange.

Inthesamefigure,datarecordedunderlightilluminationare alsogiven.For then-GaN,themagnitude ofthephotoresponse issmall,andisthesameirrespectiveofthemodeofdatagath- ering,whichrevealsthat photoresponseof thesampleis much faster(<10␮s)thanwecanmeasureevenifweemploytheSQW modulationuptothefrequencyof105Hz.Themagnitudeofthe photoresponseofthep-GaNismuchlarger,and,similartothecase oftheelectricalcharging,hasmultiple(slow,intermediateandfast) components,ascanbededucedfromthefactthatevenat10kHz modulation,themeasuredbindingenergydifferenceof19.97eV, underilluminationislargerthanthat(19.93eV)withoutit.

Acomprehensivesetof measurementsfor thep-GaNisdis- played in Fig.6, where themeasuredpositions of thetwinned peaksoftheGa3dpeak,aswellasthedifferencebetweenthem areplottedasafunctionoffrequencyoftheSQWpulses,bothwith andwithoutC.W.violetlaserillumination.Themeasuredcharging shiftsaresignificantlyalteredintwodomains;(i)0.2–20Hz,and (ii)0.2–10kHz,andcontinuetopersistevenathigherfrequencies.

Wemustemphasizethatallthechargingshiftswehavereportedso farinourpreviousstudiesonvariousdielectricmaterialslikeSiO2, CdSandpolymershavealwaysbeeninthelowerfrequencyrangeof 10−1–102Hz,andthisisthefirsttimeweareabletorecordthemin thekHzrange,whicharetoofastfortheusualchargecompensation processesinvolvingseveralcascadingprocesses,andmustsome- howberelatedwithelectronicprocesses.Accordinglywepropose thatatleastforthep-GaN,wehavesuccessfullydemonstratedthat withacombinationofthesnap-shotmeasurementsandutilization ofSQWpulses,XPSisabletoprobeanddistinguishamongtheslow (ionic),intermediate(dipolar),andthefast(mostlikelyduetoelec- tronic)chargingprocessesofmaterialsandtheirphotoresponses.

Asimple analyticalextensionofourmethodisdemonstrated inFig.7,whereweanalyzeacompositeregionconsistingofboth n-andp-GaNsamplesplacedside-by-sideinanad-hocp–njunc- tionfashion.TheGa3dpeakofthecompositesampleappearsas a singleone,when recorded withthesampleis grounded, and thephotoresponseisnotstrongenoughtodistinguishbetween thedifferentlydopeddomains.However,whentheSQWpulses with10kHzmodulationareapplied,thepeaksdecomposetotwo distinctcomponents,assignabletothen-orthep-domains,respec- tively.Atthelowerfrequencythedecompositionhappensonlyfor the+10Vcycle,whilestillonlyoneoverlappingcompositepeakis observableinthe−10Vcycle.Thephotoresponsesofthen-and thep-componentsare notasstrong,but neverthelessarealso indicativeofthenatureofthedopingascanalsobeseenfromfigure.

4. Conclusions

Byutilizingdifferentopticaland/orelectricalmodulationtech- niques, XPS spectroscopy, which is conventionally used in the

staticscanningfashion,canalsobeusedforprobingthedynam- ics of surface structures. A combination of time-resolved XPS with0.1sintervals,incorporationofSQWmodulation,anduseof photoilluminationprovidesusnewwaysofinvestigatingsurface electronicstructureandothersurfacepropertiesofsemiconduct- ing and dielectric materials in a chemically specificfashion, in themicrosecondstosecondstimedomains,which hasnotbeen reportedbefore.Oneparticularadvantageofthemethodisitsabil- itytodistinguishandidentifythepeaksrepresentingtheirdoping natureforcompositesurfacestructures,usingtheirresponsesto electrical,electromagneticstresses,aswellastoacombinationof both.

Acknowledgements

ThisworkwassupportedbytheScientificandTechnological ResearchCouncilofTurkey(TUBITAK)GrantNo:212M051.

References

[1]M.Kocan,A.Rizzi,H.Luth,S.Keller,U.K.Mishra,Phys.StatusSolidiB234(2002) 773.

[2]L.Kronik,Y.Shapira,Surf.Sci.Rep.37(1999)1.

[3]D.K.Schroder,Meas.Sci.Technol.12(2001)R16.

[4]M.Foussekis,J.D.Ferguson,A.A.Baski,H.Morkoc,M.A.Reshchikov,Phys.B404 (2009)4892.

[5]M.A.Reshchikov,M.Foussekis,A.A.Baski,J.Appl.Phys.107(2010)113535.

[6]J.E.Demuth,B.N.J. Persson,A.J. Schell-Sorokin,Phys.Rev.Lett.51(1983) 2214.

[7]J.E.Demuth,W.J.Thompson,N.J.DiNardo,R.Imbihl,Phys.Rev.Lett.56(1986) 1408.

[8]A.Schellenberger,R.Schlaf,C.Pettenkofer,W.Jaegermann,Phys.Rev.B45 (1992)3538.

[9]R.Schlaf,A.Klein,C.Pettenkofer,W.Jaegermann,Phys.Rev.B48(1993) 14242.

[10]M.Moreno,H.Yang,M.Horicke,M.Alonso,J.A.Martin-Gago,R.Hey,K.Horn, J.L.Sacedon,K.H.Ploog,Phys.Rev.B57(1998)12314.

[11]H.Shpaisman,E.Salomon,G.Neher,A.Vilan,H.Cohen,A.Kahn,D.Cahen,J.

Phys.Chem.C113(2009)3313.

[12]S.Schafer,S.A.Wyrzgol,R.Caterina,A.Jentsy,S.J.Schoell,M.Havecker,A.Knop- Gericke,J.A.Lercher,I.D.Sharp,M.Stutzmann,J.Am.Chem.Soc.136(2012) 12528.

[13]H.Sezen,E.Ozbay,O.Aktas,S.Suzer,Appl.Phys.Lett.98(2011)111901.

[14]H.Sezen,G.Ertas,A.Dana,S.Suzer,Macromolecules40(2007)4109.

[15]S.Suzer,H.Sezen,A.Dana,Anal.Chem.80(2008)3931.

[16]S.Suzer,H.Sezen,G.Ertas,A.Dana,J.ElectronSpectrosc.Relat.Phenom.176 (2010)52.

[17]H.Sezen,G.Ertas,S.Suzer,J.ElectronSpectrosc.Relat.Phenom.178-179(2010) 373.

[18]H.Sezen,S.Suzer,J.Vac.Sci.Technol.A28(2010)639.

[19]H.Sezen,S.Suzer,Surf.Sci.Lett.604(2010)L159.

[20]D.Briggs,M.P.Seah,PracticalSurfaceAnalysis,2nded.,Wiley,Chichester,1999.

[21]M.Marsi,R.Belkhou,C.Grupp,G.Panaccione,A.Taleb-Ibrahimi,L.Nahon,D.

Garzella,D.Nutarelli,E.Renault,R.Roux,M.E.Couprie,M.Billardon,Phys.Rev.

B61(2000)R5070.

[22]M.Marsi,M.E.Couprie,L.Nahon,D. Garzella,R. Bakker,A.Delboulbe,D.

Nutarelli,R.Roux,B.Visentin,C.Grupp,G.Indlekofer,G.Panaccione,A.Taleb- Ibrahimi,M.Billardon,Nucl.Instrum.MethodsPhys.Res.A393(1997)548.

[23]M.Marsi,M.E.Couprie,L.Nahon,D.Garzella,T.Hara,R.Bakker,M.Billar- don,A.Delboulbe,G.Indlekofer,A.Taleb-Ibrahimi,Appl.Phys.Lett.70(1997) 895.

[24]M.Marsi,L.Nahon,M.E.Couprie,D.Garzella,T.Hara,R.Bakker,M.Billar- don,A.Delboulbe,G.Indlekofer,A.Taleb-Ibrahimi,J.ElectronSpectrosc.Relat.

Phenom.94(1998)149.

[25]K.Hirose,M.Yamawaki,K.Torii,T.Kawahara,S.Kawashiri,T.Hattori,Appl.

Surf.Sci.237(2004)411.

[26]K.Hirose,H.Nohira,K.Azuma,T.Hattori,Prog.Surf.Sci.82(2007)3.

[27]K.Hirose,J.ElectronSpectrosc.Relat.Phenom.176(2010)46.

[28]S.Suzer,Anal.Chem.75(2003)7026.

[29]F.Karadas,G.Ertas,S.Suzer,J.Phys.Chem.B108(2004)1515.

[30]S.Suzer,A.Dana,J.Phys.Chem.B110(2006)19112.

[31]G.Ertas,U.K.Demirok,A.Atalar,S.Suzer,Appl.Phys.Lett.86(2005)183110.

[32]G.Ertas,U.K.Demirok,S.Suzer,Appl.Surf.Sci.249(2005)12.

[33]S.Suzer,A.Dana,G.Ertas,Anal.Chem.79(2007)183.

[34]C.P.Conger,S.Suzer,Langmuir25(2009)1757.

[35]H.Cohen,R.Maoz,J.Sagiv,NanoLett.6(2006)2462.

[36]H.Cohen,S.K.Sarkar,G.Hodes,J.Phys.Chem.B110(2006)25508.

[37]A.Samokhvalov,R.W.Gurney,M.Lahav,S.Cohen,H.Cohen,R.Naaman,J.Phys.

Chem.B107(2003)4245.

[38]S.K.Sarkar,G.Hodes,L.Kronik,H.Cohen,J.Phys.Chem.C112(2008)6564.

(6)

[39]H.Cohen,J.ElectronSpectrosc.Relat.Phenom.176(2010)24.

[40]H.Sezen,S.Suzer,J.Spectrosc.Dyn.2(2012)3.

[41]N.J.Halas,J.Bokor,Phys.Rev.Lett.62(1989)1679.

[42]J.P.Long,H.R.Sadeghi,J.C.Rife,M.N.Kabler,Phys.Rev.Lett.64(1990)1158.

[43]J.P.Long,V.M.Bermudez,Phys.Rev.B66(2002)121308.

[44]E.A.Kraut,R.W.Grant,J.R.Waldrop,S.P.Kowalczyk,Phys.Rev.Lett.44(1980) 1620.

[45]S.A.Ding,S.R.Barman,K.Horn,H.Yang,B.Yang,O.Brandt,K.Ploog,Appl.Phys.

Lett.70(1997)2407.

[46]M.T.Camci,S.Suzer,J.Vac.Sci.Technol.A32(2014)021510.

Referenties

GERELATEERDE DOCUMENTEN

As mentioned in by the NKL (n.d.), it is advisable for municipalities to take on a stimulating, facilitating and coordinating role concerning the realisation of

A discrete choice experiment on user preferences for slow, fast and ultrafast

Both methods may have their advantages and disadvantages depending on the usage and many examples for both are available in literature [9–12]. An efficient approach, used for

We suggest reduced band-bending due to x-ray in- duced photovoltage and excitation of charge carriers over the surface potential barrier by absorbed x-rays as possible mechanisms

Abstract: This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency

Numerous successful reports have also appeared for probing potential variations across a p-n junction device using PEEM (photoemission electron microscopy), a variant of

Title: Chemical functionalization of the graphene surface for electrical and electrochemical sensing applications. Issue

The focus of the analysis is to investigate the question to what extent the specification of sea surface temperature (SST) in coupled model integration can impart realistic evolution