• No results found

Anthropogenic drivers for exceptionally large meander formation during the Late Holocene

N/A
N/A
Protected

Academic year: 2021

Share "Anthropogenic drivers for exceptionally large meander formation during the Late Holocene"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Anthropogenic drivers for exceptionally large meander formation during the Late Holocene

Quik, Cindy; Candel, Jasper; Makaske, Bart; Van Beek, Roy; Paulissen, Maurice; Maas,

Gilbert J.; Verplak, Menno; Spek, Theo; Wallinga, Jakob

Published in:

Anthropocene

DOI:

10.1016/j.ancene.2020.100263

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Quik, C., Candel, J., Makaske, B., Van Beek, R., Paulissen, M., Maas, G. J., Verplak, M., Spek, T., &

Wallinga, J. (2020). Anthropogenic drivers for exceptionally large meander formation during the Late

Holocene. Anthropocene, 32, [100263]. https://doi.org/10.1016/j.ancene.2020.100263

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Anthropogenic

drivers

for

exceptionally

large

meander

formation

during

the

Late

Holocene

Cindy

Quik

a,

*

,

Jasper

H.J.

Candel

a

,

Bart

Makaske

a

,

Roy

van

Beek

a,b

,

Maurice

Paulissen

b

,

Gilbert

J.

Maas

c

,

Menno

Verplak

a

,

Theo

Spek

d

,

Jakob

Wallinga

a,e

aSoilGeographyandLandscapeGroup,WageningenUniversity,Wageningen,theNetherlands b

CulturalGeographyGroup,WageningenUniversity,Wageningen,theNetherlands

c

WageningenEnvironmentalResearch,Wageningen,theNetherlands

d

CentreforLandscapeStudies,UniversityofGroningen,Groningen,theNetherlands

e

NetherlandsCentreforLuminescencedating,WageningenUniversity,Wageningen,theNetherlands

ARTICLE INFO Articlehistory: Received16April2020

Receivedinrevisedform7September2020 Accepted9September2020

Availableonline15September2020 Keywords:

Fluvialgeomorphology Lateralmigration Historicallanduse Drift-sand Holocene

Opticallystimulatedluminescence(OSL) dating

ABSTRACT

Large-amplitudemeandersmayforminlow-energyriversdespitegenerallylimitedmobilityintheses systems.Exceptionallylargemeanderswhichevenextendbeyondthevalleysideshavedevelopedinthe OverijsselseVechtriver(theNetherlands)betweenca.1400CE(CommonEra)andtheearly1900s,when channelizationoccurred.Previousstudieshaveattributedtheenhancedlateraldynamicsofthisriverto changesinriverregimeduetoincreaseddischarges,reflectingclimateand/orland-usealterationsinthe catchment. Thispaperfocusesonlocalaspectsthatmayexplainwhyexceptionallylargemeanders developed atspecificsites. Throughanintegrated analysisbasedon archaeological,historical,and geomorphologicaldataalongwithopticallystimulatedluminescencedating,weinvestigatedtherelative impact of three directand indirect anthropogeniccauses forthe local morphologicalchange and enhancedlateralmigrationrates:(1)lackofstrategiestomanagefluvialerosion;(2)astrongincreasein thenumberoffarmsteadsandrelatedintensifiedlocallandusefromtheHighMiddleAgesonwards;and (3)(human-induced)drift-sandactivitydirectlyadjacenttotheriverbends,causingachangeinbank stability.Combined,thesefactorsledlocallytomeanderamplitudeswellbeyondthevalleysides.Lessons learnedatthissitearerelevantformanagementandrestorationofmeanderingriversinsimilarsettings elsewhere,particularlyinmeetingtheneedtoestimatespatialdemandsof(restored)low-energyfluvial systemsandmanagebankerosion.

©2020TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1.Timeperiodsasusedinthispaper

Period Timeframe

LatePalaeolithic 12,500–8800BCE Mesolithicperiod 8800–4900BCE Neolithicperiod 4900–2000BCE Bronzeage 2000–800BCE Ironage 800–12BCE Romanperiod 12BCE–450CE EarlyMiddleages 450–1000CE HighMiddleages 1000–1250CE LateMiddleages 1250–1500CE EarlyModernperiod 1500–1800CE LateModernperiod 1800–1900CE

2.Introduction

Low-energy meandering rivers often show relatively little lateral migration(Kuenen,1944;Eekhout, 2014;Makaske etal., 2016; Candel,2020)becauseoftheirlowspecificstreampower (<10Wm 2)(NansonandCroke,1992).Nevertheless,meanders

with high amplitude may occur in low-energy rivers, with relativelyhighlateralmigrationratescomparedtootherreaches of the same river (e.g. Hooke, 2007). Generally, the lateral migrationratesofrivers stronglydependonlocalbankstrength (Schumm,1960;HickinandNanson,1984;Ferguson,1987;Nicoll and Hickin, 2010). For example, Hudson and Kesel (2000)

compared sectionsoftheMississippiriverandshowed thatthe lowestlateralmigrationratesoccurredinsectionswhere erosion-resistantdepositswerepresent(e.g.clayplugs).

Additionally,anthropogeniceffectsonrivermorphodynamics specificallydeserveattention,astheirinfluencesaremuchmore variedandintensethanpreviouslythought(Gibling,2018).Many

* Correspondingauthorat:P.O.Box47,6700AA,Wageningen,theNetherlands. E-mailaddress:cindy.quik@wur.nl(C.Quik).

http://dx.doi.org/10.1016/j.ancene.2020.100263

2213-3054/©2020TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

ContentslistsavailableatScienceDirect

Anthropocene

(3)

Fig.1.TheOverijsselseVechtriverintheNetherlands.CapitalsA Dindicatepositionofsubfigures(a)-(d).(a)Digitalelevationmodel(DEM)oftheriverreachfrom DalfsentoHardenberg,showingpresent-dayspatialdistributionofarenosols(formerdrift-sandareas,mostarecurrentlyforested).Meandernamesareindicated,city namesarewrittenincapitals.(b)DEMofthestudyareashowingthetwomeanderbends(JunnerKoelandandPrathoek)andthethreedrift-sandlocations(1,2,3). ElevationisinmetersrelativetoDutchOrdinanceDatum(roughlymeansealevel).Thedashedyellowlineindicatesthevalleyside,reconstructedatplaceswherelarge

(4)

riversworldwidehavebeensubjecttosignificantanthropogenic pressure duringthe LateHolocene byland usechanges, partly explaining increased fluvial activity on the entire river-scale (Kondolf et al., 2002; Macklin et al., 2010; Notebaert and Verstraeten,2010;Brownetal.,2018;Candeletal.,2018;Gibling, 2018;Notebaertetal.,2018).Morelocally,humanshavestabilized manyriverchannelsbybankprotection,groynes,dikesandother engineeringworks(Hudsonetal.,2008;Dépretetal.,2017).The potentialdirectandindirectroleofhumansindestabilisingriver bankslocallyhasreceivedlittleattentioninliterature,andisthe maintopicofthispaper.

Formationofexceptionallylargemeandersextendingbeyond valleysideshaspreviouslybeenlinkedtomajorclimatechangesin temperate regions (Alford and Holmes, 1985; Vandenberghe, 1995).AtthetransitionfromthePleniglacialtotheLateGlacial,the climatebecamewarmerandwetterandvegetationre-established. Consequently,sedimentavailabilitydecreasedandriverdischarge increased,resultinginlargeincisingmeanderingrivers( Vanden-bergheand Bohncke,1985; Vandenberghe and VanHuissteden, 1988;Vandenberghe,1995).Largemeandersfromthisperiodare stillvisibleinmanyrivervalleys,suchastheDommel,Roerand NiersvalleysintheNetherlands(Kasseetal.,2005,2017;Candel etal.,2020), TiszavalleyinHungaryand Serbia(Vandenberghe et al., 2018) and Murrumbidgee valley in Australia (Schumm, 1968).

Exceptionallylarge meander bends locally alsooccur in the DutchOverijsselseVechtriver valley,reachingwell beyond the valleysideswithamaximumamplitudeofalmost1.5km(Fig.1). Thisismorethantwiceaslargeaswouldbeexpectedbasedon empiricalestimations for theOverijsselseVecht givenby Hobo (2006),whose calculations are based ondischarge regime and sediment characteristics. Recent geochronological research revealedthattheseremarkablylargemeandersformedbetween ca.1400–1900CE(QuikandWallinga,2018a,b).Duringthisperiod meanderamplitudesincreasedatarelativelysteadyrateof1–3m y 1.Afterca.1900CE,meandermigrationwashaltedastheriver

course was straightened and channelized. Factors that might explaintheexceptionalmeandergrowthbetween1400and1900 CEincluderegimeshifts,bedloadchanges,high-dischargeevents, varying erodibility of bank sediments, or (indirect) human interferencewiththeriversystem.

Candeletal.(2018)demonstratedthattheOverijsselseVecht river experienced a discharge regime change around the 15th century,resultinginashiftfromalaterallystabletoameandering channelpatternandmarkingtheonsetofmeanderformation.The change in palaeodischarge, characterized by increased peak discharges,mayhaveresultedfromclimaticfluctuationsduring theLittleIceAgeandlarge-scalelandusechangeinthecatchment (i.e.peatreclamation).Thiscatchment-scalechangedoeshowever notexplaintheexceptionalmeanderexpansionobservedlocally, and the historical changes of bankfull discharges and bedload reconstructedbyCandel etal.(2018) couldnotaccountfor the ongoinglateralmigrationofthelargemeandersduringthe19th andearly20thcentury.

TheOverijsselseVechtrivervalleypredominantlyconsistsof aeoliancoversanddepositedduringtheLate-Pleniglacial,overlying olderfluvial deposits(Huisink, 2000).Several meanders of the river seem to have been confined in their expansion (Fig.1a,

WolfertandMaas,2007)bythesidesoftheriver’sLate-Pleistocene valley,whereaslocallysomemeandershaveexpandedbeyondthe

valleysides.It hasbeensuggestedthat (human-induced) drift-sandcomplexesthatdevelopedonriverbanksmayhaveenhanced bank erodibilitylocally (Wolfertetal.,1996; Wolfertand Maas, 2007).Alternatively, largemeanderformation maybelinkedto increasedsettlementdensityandanthropogenicpressuresincethe High Middle Ages. Additionally, river management may have played a role in local prevention and/or acceleration of bank erosion.

Duetoexcellentpreservationof somecut-offmeanders,the availability of detailed geochronological information for the development of two meander bends (Quik and Wallinga, 2018a,b)andapreviouspalaeohydrologicalreconstruction(Candel etal.,2018),weconsidertheOverijsselseVechtriveranidealcase tostudylocal factorsinfluencing lateralmeander migration.To gain insight in these factors and their degree of influence we addressthefollowingresearchquestions:

(1) Whatisthecharacterofhistoricalrivermanagementduring theperiod of meander expansion (i.e. Modern period), and doesthis indicatedirecthumaninterferences withtheriver system that resulted in exceptional meander formation observedlocally?

(2) How did habitation density in the direct vicinity of the floodplain change through time (i.e. prior to and during meanderexpansion),andcouldrelatedlandusechangesfrom theModern period onwards causeenhanced local meander growth?

(3) What was the timing and spatial distribution of (human-induced) drift-sand activity in the study region during the period of meander expansion, and is there evidence for interactionof aeolian and fluvial dynamicsresulting in the localformationofexceptionalmeanders?

Toanswertheseresearchquestionsweperformedanintegrated analysisofarchaeological,historicalandgeomorphological infor-mationandopticallystimulatedluminescence(OSL)dating. 3.Studyarea

TheOverijsselseVecht(Fig.1)isalow-energysand-bedriver originatingwestofMünsterinNorthRhine-Westphalia(Germany) andenteringtheNetherlandssouthofthecityofCoevorden.Itisa rain-fedriverwithacatchmentof3785km2.Theriverhasitsoutlet

intheZwarteWaternearthecityofZwolle,whichdebouchesinto theIJsselmeer(LakeIJssel).Before1932,theIJsselmeerwasstillan inland sea(Zuiderzee), witha smalltidal rangeof about 0.2m (Dirkxetal.,1996;Makaskeetal.,2003).Characterizationsofthe waterlevelsin1850demonstratethattheOverijsselseVechtdid not experiencetidal influences before closure of theZuiderzee (Middelkoopetal.,2003;theirfigures4and5showsnotidalstroke atKampenandKaterveer).IntheDutchpartthevalleygradientis fairlyuniformat1.4*10 4(WolfertandMaas,2007).Accordingto

measurementsintheperiod1995–2015fromadischargestationin theinvestigated sectionof theriver, theaveragedischarge and meanannualflooddischargeare22.8and160m3s 1respectively.

The area is characterized by an average annual rainfall of 800 875mm and an average maximum temperature of 4.9– 5.4C inJanuaryand24.3–24.7CinJuly(KNMI,2019a,2019b).

Through large-scale engineering works between 1896 and the 1930s, theoriginalriverlengthof90kmintheNetherlandshas

meanderbendsoccur.Adetailedviewofthemeandersisprovidedin(c)and(d),showingthetopographicalmapoverlyingthehillshadeDEMwithscrollbarsandswales relief.Maintopographicalelementsareheathland(purple),forest(darkgreen)andmeadows(lightgreen).Digitalelevationmodel(AHN2;horizontalresolution0.5m, verticalresolution0.2m):AHN,2018;VanHeerdetal.,2000;rivercourse1851CEderivedfrom:Kadaster,2018;OpenTopo:VanAalst(2016)(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

(5)

beenreducedto60kmbycuttingoff69meanders(Wolfertand Maas,2007).Revetmentsfixthepositionofriverbanksandthe waterleveliscontrolledbyweirs.

TheDutchpartoftheOverijsselseVechtwassubdividedinto threeriverreachesbyWolfertandMaas(2007)basedonfluvial style.Thecentralreach, stretchingfromthecityof Hardenberg (east) tothe city of Dalfsen (west),is characterized by several conspicuousmeanders(Fig.1a).Forthisstudywefocusontwo presently cut-off meander bends with exceptional amplitudes reaching outside the valley sides named ‘Junner Koeland’ and ‘Prathoek’(Fig.1b),(cf.QuikandWallinga,2018a,b;andCandel etal.,2018),andtheirwiderenvironment(areaofcirca44km). Thesemeanderswerenotcut-offnaturally,butthrough channeli-zationintheearly1900s.

The river banks consist of aeolian coversand on top of fluvioperiglacial deposits. Near the studied bends, the river channel had a width of about 40m in 1848 CE, and the elevationdifferencebetweentheriverbanksanddeepestpart ofthechannelwasapproximately2.3m(StaringandStieltjes, 1848).In the vicinity ofthe floodplain between Hardenberg and Ommen drift-sandcomplexes developed that consist of erodedandre-depositedcoversand.Nearlyallthesedrift-sand areasarenowstabilizedbyforeststhatwereplantedsincethe mid-nineteenth century. Currently several parts of the floodplain and former drift-sand areas are protected nature reserves.

4.Methods

Toidentifypotentialfactorsfortheformationoflargemeanders in the OverijsselseVecht we used a combination of data from differentdisciplines,drawingmethodsfromarchaeology, histori-calgeography,geomorphologyandgeochronology.The methodol-ogyisdividedinthreeparts,consistingofanalysesof(1)historical river management, to understand the type and level of direct interferencewiththeriversystem,(2)habitationhistoryandland usechange,todetectchangingpressuresonthelandscape,and(3) occurrence and activity period of (human-induced) drift-sands near the two investigated meander bends, which may change stability of river banks. All parts are described below, further detailsareavailableintheSupplementaryMaterial.Formethods regardingreconstructionofmeanderformation(lateralmigration rates), palaeodischargeand meandercross sectionswe refer to earlier publications (Quik and Wallinga,2018a,b; Candel et al., 2018).

4.1.Historicalrivermanagement

Following a general literature review (Wieringa and Schelhaas, 1983; Coster, 1999; Neefjes et al., 2011) several governmentallevelswereselectedforcloserstudy:thehigher authoritiesbeing the Dutchgovernment andthe provinceof Overijssel,followedbydikedistricts(after1879continuingas waterboards)andmarks(localcommons(Dutch:'marken'),i.e. LateMedievalandEarlyModernfarmercollectives).Toreconstruct thecharacter and intensityofhistorical rivermanagement two subsequent methods were applied. First, we studied general trendsinrivermanagementfortheDutchpartoftheOverijsselse Vechtcatchmentbyanalysingactivitiesatdifferentgovernmental levels.Informationwasobtainedfromthearchivesofthevarious governmentalinstitutions.Second,wefocusedonriver manage-mentactivitiesinoneofthemarksinthestudyarea(i.e.themark ofArriën),togaindetailedinsightsinlocalmanagement.Arriën waschosen becausethearchives ofthemarkofJunneare lost, whereas thosefrom themarkof Stegerenareobscured bylow readability.

4.2.Habitationhistoryandlandusedevelopment

To identify possible land use related drivers for increased meander expansion we reviewed various archaeological and historical geographical sources. Late prehistoric, Roman and Medievalarchaeologicalsitesfromthestudyareawereinventoried usingthenationalDutcharchaeologicaldatabase(ArchisIII)and published literature. Historical sources provide information on habitation development from the Middle Ages onwards (see SupplementaryMaterialsforfurtherdetails).

Withinthescopeofthepresentstudy,highlydetailedarchival researchontheageofindividualfarmsteadsandthenumbersof farmanimalsperunitsurfaceareawasnotfeasible.Instead,we used(1)numberoffarmsteadsasproxyforlanduseintensity,and (2) a generic retrospective methodtodate thefarmsteads (see Supplementary Materials), based on the historical layering of Medievalpropertyrights(Speketal.,2010;Neefjesetal.,2011).We are aware that the relation between habitation density and increasinglanduseintensityisnotnecessarilylinear,butassumea positivecorrelationascorroboratedbye.g.Bieleman(2008).

Additional information on collective land use was obtained fromthearchiveskeptbythemarks.Toponymicaland etymologi-calpublicationswereusedtoexplainanddatefieldnametypes fromthescroll-barcomplexesintheDutchpartoftherivervalley, tointerpretformerlocallanduse(e.g.Schönfeld,1955,1950;Van BerkelandSamplonius,1989;Malinckrodt,1974).

4.3.Drift-sandactivity

RecentintegrativeanalysesbyPieriketal.(2018)indicatedthat humanpressureonthelandscapewasthepredominantfacilitating conditionforLate-Holocenedrift-sandactivityintheNetherlands. Analysesofdrift-sandsneartheOverijsselseVechtcouldtherefore beconsideredaspartofinvestigationsonhabitationandlanduse development(section4.2).However,asthegeomorphologicaland geochronologicalmethodsthatweappliedtoanalysedrift-sand activity diverge from the methods applied in section 4.2, we present them separately here (similarly in the Results and Discussion). To investigate whether a chronological overlap between drift-sand activity and meander expansion exists and towhatextentdrift-sanddepositionmayhavedestabilizedriver bankswe:(1)analysedsubsequenthistoricalmapstodetermine thesizeoftheareacoveredbyactivedrift-sandsthroughtime;(2) conducteda lithologicalsurveyof twodistinctdrift-sanddunes nearthetwomeanderbends(locationinFig.1a,detailedviewin

Fig.3aand3b)and(3)performedopticallystimulated lumines-cence(OSL)datesonselecteddrift-sandsamplestodeterminethe onset of local drift-sand deposition. These steps are described below.

4.3.1.Useofhistoricalmapstoestimatedrift-sandextent

Weanalysedtheareacoveredbyactivedrift-sandbasedonfive historicalmapsdatingfrom1720to1884CEthatwereusedinthe geochronology developed by Quik and Wallinga (2018a). More details on these maps are available in the Supplementary Materials. We used the area currently classified as arenosols (Dutch:'duinvaaggronden'and'vlakvaaggronden')intheDutchsoil classificationsystem(Alterra,2014)asvalidationtocomparewith thehistoricallyindicateddrift-sandsurface,astheseyoungsoils predominantly formed in stabilized drift-sand areas (Jongmans etal.,2013).Furtherdetailsonthehistoricalmapsandprocedure areprovidedintheSupplementaryMaterials.

4.3.2.Lithologicalsurveydrift-sandareas

Alithogeneticsurveyoftwoformerdrift-sandareasadjacentto thetwomeanderbendswasperformedbasedoncoringscovering

(6)

Fig.2.Drift-sandlocation1(a)and2(b),showinglocationsofcoringsandopticallystimulatedluminescencesamplesofthisstudy;drift-sandlocation3(c)showsthe locationofasamplefromearlierwork(Reimannetal.,2016;RotthierandSýkora,2016).Forlocationof(a-c)inthewiderstudyareaseeFig.1.Numbersin(a)and(b)indicate abbreviatedsamplecodes(allshouldbeprecededbyNCL-2415).ElevationisinmetersrelativetoDutchOrdinanceDatum(roughlymeansealevel).Digitalelevationmodel (AHN2;horizontalresolution0.5m,verticalresolution0.2m):AHN,2018;VanHeerdetal.,2000.

(7)

Fig.3. SettlementandlandusepatterninthemarksArriën,Stegeren,JunneandBeerze,showingthesettlementandlandusepatternsintheNeolithictoRoman(a)and MedievaltoEarlyModernPeriods(b).Landusepatternsin(b)representthesituationonthe1832CEcadastralmap.TheDEMin(a)displaysboththepresent-daychannelized rivercourseandcut-offmeandersfromchannelizationintheearly1900s,therivercourseshownin(b)displaysthesituationofcirca1832.Notethattherivercoursewas differentinthevariousperiods.ThelettersSandTarereferredtointhetext.Sources:cadastralmap1832(dataacquiredfromtheHisGISprogramme,https://hisgis.nl/),DEM (AHN2,horizontalresolution5m):AHN,2018;VanHeerdetal.,2000.

(8)

thewidthofadistinctdune.Thedrift-sanddepositsarelocatedon top of coversand deposits. Both sediments are often clearly distinguishablebyapalaeo-podzolthatformedinthetopofthe coversandpriortoburialbydrift-sand.Insomeplacesdrift-sandis founddirectlyontopofcoversandparentmaterial,indicatingthat thepodzolerodedpriortodrift-sanddeposition.Thetwodunes (Fig.1a,2aand2b)wereselectedbasedon(1)theirproximityto theinvestigatedmeanderbendsandpositionsuchthatdrift-sand wouldhaveblowntowardstheriverchannelunderthedominant SW NE wind direction (Koster, 2010), and (2) presence of a palaeo-podzolintheunderlyingcoversanddeposits(atleastatthe leeside ofthedune), tomaximizechancesthatthebaseof the drift-sanddeposit representstheageof firstdrift-sandactivity. Furtherinformationonlithogeneticinterpretationisavailablein theSupplementaryMaterials.Coringswereperformedusingan extendedEdelmanauger toadepth of1.2–3.6m, which wasat most points sufficiently deep to reach the in-situ podzol (if present).Fivecoringsweredonebetweentheabandonedchannel of JunnerKoeland and the adjacentdrift-sand dunetoexclude presenceoffluvialdepositsunderneaththedrift-sandcoveredarea (alsovisibleinFig.2a).Thelocationandelevationofthecorings weredeterminedwithaTopconGlobalNavigationSatelliteSystem (GNSS) receiver, with a horizontal precision of 10mm and verticalprecisionof15mm.

4.3.3.Opticallystimulatedluminescence(OSL)datingofdrift-sands Todeterminetheonsetofdrift-sanddepositionnearthetwo riverbends,sixOSLsampleswerecollectedindrift-sandareas1 and2directlyabovethecoversandpodzols,aimingtodetermine theageof firstdrift-sanddepositionand podzolburial(sample locations:seeFig.2aandbandSupplementaryMaterialsformore details).

Afteraugeringtothedesireddepth,OSLsampleswerecollected ina PVCpipeextensionattachedtotheaugerhead,which was carefullypresseddowntheaugerhole.Atonelocation (sample NCL-2415164)thepipewaspressedintoaverticalexposure.Upon retrievalofthePVCpipebothendswereimmediatelycoveredwith plasticcapsandlight-impermeableblacktape.ForOSL measure-mentsand doseratedeterminationwefollowedtheprocedures describedbyQuikandWallinga(2018a).Statisticalanalysisofthe dating resultswas done using thebootstrapped Minimum Age Model(Galbraith etal.,1999;Cunninghamand Wallinga,2012) withanassumedoverdispersionof0.150.03.

5.Results

5.1.Historicalrivermanagement

Archivalstudydemonstratedthat theOverijsselseVechtwas scarcelymentionedinarchivesofvariousinstitutionsonmultiple governmental levels, indicating that river management was limitedandpoorlycoordinated.Thisismostevidentfromreported conversationsbetweentheDutchgovernmentandtheprovinceof Overijssel,includingarequestfromthegovernmentin1853CEto theprovincetoinvestigatewhichpartywasconcernedwithriver management.Inevitably,theprovinceofOverijsselconcludedthat noparty was concernedwith rivermanagement and that land ownerslocallyappliedrivermanagementpractices(e.g.placement of groynes) without governmental coordination (HCO, 2018a). Additionally, willingness of water boards and dike districts to developregionalrivermanagementwaslimited.Archivalmaterial ofthedykedistricts(HCO,2018b,2018c,2018d,2018e)indicates thattheseinstitutionsweresolelyconcernedwithwatersafetyand relatedreparationworks.Theriverisalsobarelymentionedinthe constitutionsofthelocalwaterboards(HCO,2018f,g). Additional-ly,theprovinceofOverijsselrefusedtocontributefinancially,upon

whichthegovernmentdiscontinueditsfinancialsupportforriver improvements. Complaints about troublesome water levels downstreamofourstudyareaatthemunicipalityofDalfsenwere disregardedbytheprovince,eventuallycausingthemunicipality todirectlyaddressthekinginsearchforhelpin1863CE (HCO, 2018h).

ThemarkbooksofArriën(1549–1826and1765–1835CE)also indicate scarce attention for river management. Some erosion problemsandpreventiondiscussionswererecorded,whichwere solelydirectedatprotectionofthemark’sgreenlands(see4.2.2). Interestingly,theexpansionoftheJunnerKoelandmeander,which migratednorthwarderodinglandintheArriënterritory,wasnot discussedintheArriënmarkbooks(HCO,2018i,j).

5.2.Habitationhistoryandlandusedevelopment 5.2.1.Spatiotemporalpatternsinhabitation

Thestudyareaincludesfourruralvillagesandtheirterritories namedArriën,Junne,StegerenandBeerze(Fig.3).Thesewerefirst mentioned in Late Medieval written sources. However, the frequent occurrence of manorial property rights indicates that allfourvillagesalreadyexistedsinceatleasttheEarlyMiddleAges (Neefjes et al., 2011).They are situated at the lower slopes of coversandridgesnearbytheOverijsselseVecht(Fig.3b)andmay wellbethesuccessorsofearliersettlementsthatweresituatedon the higher parts of the coversand ridges. These areas were inhabited since late prehistory. This is corroborated by the distributionpatternoftheapproximately20archaeologicalsites in the area, includinglate prehistoric,Roman period and Early Medievalfinds(Fig.3a).APleistoceneterraceremnantdirectlyeast oftheJunnerKoelandmeanderwasinhabitedfromlateprehistoric toRomantimesaswell,buthasbeendesertedsincethen(compare

Fig.3a,letterT,withFig.3b).Theculturallandscapepatternsofthe four village territories are rather similar. However, some local differencesoccur.Forexample,theoldestnucleusofStegerenis situatedclosetotheriverfloodplainonthevalleymargin(Fig.3a, letter S), whereas Arriën,Junne and Beerze areslightly further awayfromtheriver.

Fig.4showstheestimatednumberoffarmsteadsatfourdates betweentheendoftheEarlyMiddleAgesand1832CE.Starting fromaverylownumberoffarmsaround1000CE,thereisaclear increaseuntil1300CE,afterwhichthegrowthreducesorstagnates until 1500 CE.The EarlyModern periodshows againa marked

Fig.4.Thetemporaldevelopmentoftheestimatednumberoffarmsteadsinthe fourmarksofthestudyarea.Fortwomarks(Junne,Beerze)datafor1300CEwere notavailable.

(9)

Fig.5. Developmentofriverplanformanddrift-sandareasasderivedfromfivehistoricalmaps.Thedatesmentionedarebasedontherevisiondateor,ifnoneisgiven,on thesurveydate(seeTable2).ForthemapsheetoftheHottingeratlasthesurveycovered3years;weindicatedthemiddleyearin(b).Low-waterchannelcentrelineswere derivedfromtheanalysisbyQuikandWallinga(2018a).Dottedareasin(a-e)indicatetheareacoveredbydrift-sandasdisplayedonhistoricalmaps.Greyshadingindicates theareacurrentlyclassifiedasarenosolsintheDutchsoilclassification('duinvaaggronden'and'vlakvaaggronden'combined).Thegraphin(f)showstherelativearea coveredbydrift-sandthroughtime.SourceDutchsoilmap:Alterra(2014).

(10)

increaseinthenumberoffarmsteads.Thefoundationofvarious newfarmsteads in (especially)the High and Late Middle Ages resultedinamorecompactsettlementpattern,asnewfarmswere builtnearbyolderonesandinsimilarlandscapesettings(Fig.3b). IntheEarlyModernperiodthisdensificationprocessaccelerated. Additionally,newgroupsoffarmsteadswerebuiltatsomedistance fromtheoldersettlementnuclei,mostprominentlyattheedgeof theheathlandzone(Fig.3b).

5.2.2.Spatiotemporalpatternsinlanduse

InlateprehistoryandtheRomanperiod,thearablefieldswere situatednearbythesettlements.Bothwerelocatedonthehigher partsofthelargecoversandridgesalongsidetherivervalley(Van Beek,2009;VanBeekandGroenewoudt,2011).Thepositionofthe arable fields did not change much through time; in the High Medievalperiodthetopsofthecoversandridgeswerereclaimed into open field complexes (arable land; Dutch: ‘essen’), which stayedinuseforagricultureuntilthepresentday(Neefjesetal., 2011; Van Beekand Groenewoudt, 2011). The settlements had graduallymovedtotheirpresent-dayposition,atthelowerslopes ofthecoversandridges,fromtheMedievalperiodonwards.This importantchangeofsettlementlocationledtoalargerfixationor placecontinuityofdifferentlandscapeelements,mostnotablythe hamletsandtheiropenfieldcomplexes.

Notmuchisknownabouttheappearanceandexploitationof theriverfloodplaininlateprehistoryandtheRomanperiod. High-qualityarchaeobotanicalevidenceislacking.Withregardtothe High Middle Ages, archaeobotanical data (macro remains and pollen) were collected at the archaeologically investigated settlementsiteofDalfsen-GernerMarke,situatedapproximately 15kmdownstreamofourstudyareainasimilarlandscapesetting (Van Haaster, 2006).It was demonstrated thatthe investigated coversandridgealongtheOverijsselseVechthadlostmostofits originalwoodlandvegetationbeforetheMiddleAges.IntheHigh MiddleAgesitwaslargelyinuseasarablefields,whererye,flax andprobablybarleyandoatsweregrown.Twodifferenttypesof grasslandswerepresentinthenearbyrivervalley:onetyperelated torelativelydrysoils,thatprobablywasexploitedaspasture,anda typelinkedtowettersoilsthatwasprobablyusedashayland(Van Haaster,2006).Aftertheharvesttheseareasmaytemporarilyhave beenusedforgrazingaswell.Heatherprobablygrewonthelarge coversandplainsatsomedistancefromtheriverandmayhave beenusedforsheepgrazing(Neefjesetal.,2011).

The evidence obtained at Dalfsen corresponds well with information derivedfromhistorical sources, whichindicate the Medievalreclamationoffloodplainsforuseashaylands(Bakker, 1989). Grasslands were essential for local communities. In his researchonfarmingintheprovinceofDrentheintheperiod1600– 1910CE,Bieleman(1987) analysedoldland-taxregisters.These distinguish several types of ‘greenland’ (Dutch: 'groenland') occurringinstreamandrivervalleys,whichwereusedaseither haylandand/orpasture.Eventhoughthevariousgreenlandtypes were taxed differently, the overall value of greenlands was substantial(1.5–2.5timeshigher)comparedtothevalueofarable lands.Hayformedanindispensablecrop,providingwinterfodder fordraughtanimalsthatwereusedtocultivatethearablefields (Franklin,1953;Dirkx,1997).

The Overijsselse Vecht formed the administrative boundary betweenmarksnorthandsouthoftheriver(Fig.3b).Thetypically largefloodplainparcelsdirectlyborderingtheriverwereownedby the marks and consisted of high-quality grasslands that were exceptionally suited for grazing by cattle, which have higher demands regarding food quality than sheep.In these common pastureseverymarkmemberhadrightstograzeaspecificnumber ofcattle(VanEngelenvanderVeen,1924).Thesegreenlandsare oftenindicatedwiththeterms‘mars’or‘maat/maten’.‘Mars’isa

toponymfor‘landbythewater’(VanBerkelandSamplonius,1989) or‘marshland’(DeVriesandDeTollenaere,1995).‘Mat’stemsfrom the word ‘dagmaat’ (Schönfeld, 1950), an old land measure indicatingtheareathatcouldbemownbyonemaninoneday (BielemanandBrood, 1980).Bycustom,pastureswerenamedafter thelivestock typegrazing there(Schönfeld,1950).Forinstance, ‘maat’alsooccursintheeasternNetherlandscombinedwiththe Dutch word for cow (‘koe’), as in ‘Koemaat’ (Ter Laak and Groenewoudt, 2005).Thetwo scroll-barcomplexesinvestigated herearesituatedinthemarksofJunneandStegeren.Thename ‘JunnerKoeland’,literallytranslatesas‘cowlandofJunne’.‘Prathoek’ isa combinationindicating theshape oftheland(‘hoek’means corner, Schönfeld, 1950) and its vegetation (‘prat’ probably originatesfromtheLatinpratum,meaninggrassland,Malinckrodt, 1974).Basedonthecombinationofarchaeological,historicaland toponymical information it is highlylikely that both scroll-bar complexeswereintensivelyusedforcattlegrazingforcenturies, andthatthispracticegoesbacktoatleasttheHighMiddleAges. 5.3.Drift-sandactivity

5.3.1.Drift-sandcoveredareathroughtime

The drift-sand covered area derived from each of the five historicalmapsisdisplayedinFig.5ato5e,combinedwiththe positionoftheriverasindicatedbyeachmap(followingQuikand Wallinga,2018a).ThegraphinFig.5fshowstherelativesurface areaofthedrift-sandthroughtime.Theareacoveredbydrift-sand increasedovertimetoapproximately17%in1851CE,subsequent large-scale afforestation led to a quick drop in the drift-sand covered area. The former drift-sand areas largely overlapwith present-day arenosols, while at a few locations podzols have developed in thedrift-sanddeposits afterstabilization(Alterra, 2008,2014).ForinstanceinthesouthernareasinFig.5c,where thereisnooverlapwitharenosols,podzolshavedevelopedover time.Astheonsetofdrift-sandactivitytookplaceatleastat1500 CE(seebelow),initialdevelopmentofthedrift-sandscouldnotbe derivedfromthemaps.ThespatialpatternsinFig.5clearlyshow thedevelopmentofdrift-sandsdirectlyadjacenttothemeanders ofJunnerKoelandandPrathoek.ThelandusepatterninFig.3b correspondswellwiththeindicateddrift-sandareainFig.5c.

Intrudingsandsformedanuisancefortheinhabitantsofthe OverijsselseVecht valley.Thefirst records ofdefencemeasures againstthedrift-sandinmarkbooksfromtheDutchpartofthe river valley date from the 16th century (Bruins, 1981). Sand-driftingwascontrollede.g.byconstructionoftreegirths(visibleon thehistorical mapof 1720CE inFig.6)ordykes.Consequently drift-sands couldreach theriver only locally.For instance, the drift-sandwestofJunnerKoelandatlocation1probablycaused relativelyfew problems, becausethearable fields ofArriën lay upwindofthepredominantSW-NEwinddirection(Koster,2010). As human-induced barriers were absent, the drift-sand could influencethemeanderatJunnerKoeland.Alargepartofthe drift-sandcomingfromsouthoftheriverwasprobablycaughtinthe treegirthsanddykessurroundingthearablefieldsofJunne. Drift-sand blowingtowards the apex of Prathoek was probably not limitedinthisway,becausenoarablefieldswerepresentdirectly southofthismeander.

5.3.2.Lithologicalsurveydrift-sandareas

Thedrift-sandduneatlocation1hasadiameterofabout30m andvariesinelevationfromcirca6–9abovesealevel(a.s.l.).Atthe coring locations the thickness of the drift-sand layer varies between 10 and 180cm. At location 2 the drift-sand forms a linearstructureborderingthearablefieldsofJunne(Fig.2b).This drift-sandridgehasawidthofabout60mandalengthofcirca 1km.It variesinelevationfromcirca8ma.s.l.atitsbordersto

(11)

about16ma.s.l.atitshighestpoint.Coringsshowedthatthickness ofthedrift-sandlayervariesbetween120and350cm(herethe maximum thickness of the drift-sand layer is at least 350cm; augeringdepthwasnotsufficienttoreachthecoversanddeposits at the centre of the ridge). The five corings that were placed between the abandoned channel of Junner Koeland and the adjacentdrift-sanddune(Fig.2a)demonstratedthatthese drift-sandsareunderlainbycoversand,indicatingabsenceofHolocene fluvialdepositsunderneaththedrift-sands.Thetwocoringsatthe westendofthistransectprovedthattheboundarybetweenfluvial deposits and the drift-sand area is abrupt, which matches geomorphologicalobservationsbased ontheDEM(Fig.2a)and inthefield.

5.3.3.Opticallystimulatedluminescence(OSL)datingresults TheOSLdatingresultsarelistedinTable1.Atdrift-sandlocation 1theOSLresultsshowthatthesampletakeninthemiddleofthe duneistheoldest(183720CE).Thesamplefromtheleesideis somewhat younger(191913CE)and thestoss side sample is youngest(198310CE).Asimilarpatternwasfoundforlocation2, wherethesamplecollectednearthemiddleoftheduneisoldest (150031CE),theleesidesampleisyounger(162048CE)and the stoss side sample is youngest (182045 CE). These ages indicate that growth of the dunes was directed against the dominantwinddirection,perhapswithsomesedimentblowing overthedunetotheleesideduringstormyweather.Atlocation1, where some bare patches are present today and the dating

Table1

Opticallystimulatedluminescence(OSL)datingresultsforthedrift-sandsamples.Thecolumn‘Podzol’referstopresenceorabsenceofaspodichorizoninthecoversand thatunderliesthedrift-sand.RD=Dutchcoordinatesystem,NA=notavailable.ForallsamplesthepalaeodosesandagesarebasedonthebootstrappedMinimumAge Model(CunninghamandWallinga,2012).SourceofsampleNCL-2112028:Reimannetal.(2016);RotthierandSýkora(2016).

Sample Duneside Podzol Location (RDcoordinates)

Sampledepthbelow surface(m)

Palaeodose(Gy) Totaldoserate(Gy/ka) OSLage (ka)

OSLage (yearCE) Code Site x y Upperlimit Lowerlimit m s m s m s m s NCL-2415164 1 Stoss Yes 228798 505,776 0.15 0.2 0.04 0.01 1.18 0.04 0.03 0.01 1983 10 NCL-2415165 1 Middle Yes 228814 505,790 0.39 0.64 0.19 0.02 1.08 0.04 0.18 0.02 1837 20 NCL-2415166 1 Lee Yes 228824 505,798 0.15 0.4 0.10 0.01 1.08 0.04 0.10 0.01 1919 13 NCL-2415167 2 Stoss No 230201 503,787 3.00 3.19 0.15 0.03 0.76 0.02 0.20 0.05 1820 45 NCL-2415168 2 Lee Yes 230190 503,813 3.09 3.26 0.42 0.02 0.82 0.03 0.52 0.03 1500 31 NCL-2415169 2 Lee Yes 230194 503,815 1.24 1.42 0.34 0.04 0.87 0.03 0.40 0.05 1620 48 NCL-2112028 3 NA NA 229096 505,375 0.28 0.43 0.46 0.06 1.31 0.04 0.35 0.05 1659 51 Fig.6.SectionofthemapdrawnbyPieterdelaRivearound1720CE.Variousareasarecharacterizedbysanddunes.Arablefieldsareoftenborderedbytreegirthsfor protectionagainstdrift-sand.Thedominantwinddirectionandpositionwheredrift-sandcouldblowtowardstheriverareindicatedbyarrows.Sources:AlgemeenRijks Archief(1996);Wolfertetal.(1996);Box(2007).

(12)

indicatedveryrecentsedimentation,anincreasingimportanceof NE windsin currentlyactivedrift-sands(Jungeriusand Riksen, 2010)couldalsohaveplayedarole.Accordingtothecadastralmap (Fig.3b)drift-sandlocation1wascoveredbyheatherin1832CE, howevertheOSLdatesindicatethatthedrift-sandremainedactive until1983.Thelargestpartofthedrift-sandridgeatlocation2had beenstabilizedbyaforestcoverin1851CE(Fig.5d).OneOSLdate wasavailablefromearlierwork(Reimannetal.,2016;Rotthierand Sýkora,2016)anddenotedasdrift-sandlocation3(Fig.1b,Fig.2c, listedatthebottomofTable 1).Thissamplewascollectedata depthof0.28 0.43metersbelowthesurfaceinaeoliandeposits foundontopofaPleistoceneterraceremnantinJunnerKoeland.It wasdatedat146328CE(Reimannetal.,2016),matchingwith theagesfoundatdrift-sandlocation2,wheretheoldestsample wasdatedat150031CE.

6.Discussion 6.1.Rivermanagement

Theconsultedarchivalmaterialdemonstratedthattherewasno specificauthorityconcernedwithregionalcoordinationofriver managementoftheOverijsselseVecht.Locally,farmersandland ownersconcernedwithprotectionoftheirpropertyapplied small-scale practices such as placement of groynes. However, this happenedonlytoalimiteddegreeasappearsfromthelownumber ofrecords.Thealoofnessofhigherauthoritiesandresultinglackof regionalmanagementstrategiesprovidedfreereinforlocalland useanddrift-sandactivitytoaffectmeanderdevelopment. 6.2.Settlementpatternandlanduse

The chronological development of theestimated number of farmsteads(Fig.4,Fig.7)followsthecommontrendinNorthwest Europe (Bieleman, 2008; Persson and Sharp, 2015). A gradual

increase in settlement size during the Early Middle Ages was followedbyastrongpopulationgrowthandreclamationactivity betweenc.1100– c.1350,followed bya stabilizationphase or period of reduced growth betweenc.1350–1500, and a strong renewedgrowthafter1500CE.Thefarmsteadnumbersfor1832 areexactastheywerederivedfromthefirstnationalCadastre.The numbers for all other time points should be considered as conservativeestimates, sincetheremayhavebeenyeomenand peasants owning farms that wereunrecorded in theused Late Medievalsources.

Historicalsourcesindicatethatdrift-sandbecameexceedingly problematicneartherivervalleysinceatleastthe16thcentury, andthatdifferentmeasuresweretakentorestrainthem(Bruins, 1981).Thistrendcoincideswiththestronggrowthinfarmstead numbers from1500 CE onwards(Fig.4).It is highlylikely that intensified land use led toincreased drift-sand activity (Castel etal.,1989;Pieriketal.,2018),ascorroboratedbytheOSLdating resultsindicatingdrift-sanddepositionfromthebeginningofthe 16thcenturyCEonwards(Table1).Wepreviouslyshowedthatthe shift of the Overijsselse Vecht from a laterally stable to a meandering channel patterntookplace duringtheLateMiddle Ages,caused byanincrease ofpeak discharges(1400–1500CE,

Fig.7;Candeletal.,2018).Theperiodoflargemeanderformation locally (roughly 1400–1900 CE, Quik and Wallinga, 2018a,b) overlapswithstronggrowthinthefarmsteadnumbersandthe activityperiodofdrift-sandsdirectlyadjacenttothemeandersof Junner Koeland and Prathoek (Fig. 7). It seems reasonable to assumethattheincreaseinfarmsteadnumbersresultedinnew reclamations, higher land use intensity and indirectly affected activityandexpansionofdrift-sands.

Thegrasslandsonthescroll-barcomplexes(Fig.3b)wereused for grazing (and possibly hay-making)from (atleast) the High MiddleAgesonwards(cf.VanHaaster,2006).Itremainshowever difficulttoassesswhetherrelatedlanduseeffectshadasignificant impact on meander development, as land use on scroll-bar complexesofmeandersexpandingbeyondthePleistocenevalley mayhavebeensimilarinmeandersthatremainedconfinedbythe valley side. Detecting land use changes at this scale would consequentlyrequirearchivalstudyatthelevelofindividualfarms. We hypothesize that (1) cattle may have enhanced local bank erosion through trampling (Trimble and Mendel, 1995), with shallowwaterlevelsintheOverijsselseVecht(StaringandStieltjes, 1848)potentiallyaidingaccessofcattletotheconcaveriverbank; (2)thehighvalueofthegrasslandsandthefunctionoftheriveras administrativeborderbetweenthemarkssuggestsaneconomic incentivefordeliberatehuman-inducedbankdisruptionoractions promotingerosionof theconcavebendand point-bar develop-mentalongtheconvexbend.Themarkaffectedbyerosionwould loseonlydrift-sandcoveredterritoryoflowvalue.Wehave,sofar, not been able to identify historical sources to test these hypotheses. Highlydetailed archival studies mayshed light on therelevanceoftheseprocesses.

6.3.Drift-sand

Ourdatingresultsindicateachronologicalconformitybetween lateralmeanderexpansion(ca.1400–1900CE,QuikandWallinga, 2018a,b)andnearbydrift-sandactivity(Fig.7).Theoldest drift-sandsamplewas datedat150031CE.Thisdateindicatesthe startoftheformationofthedrift-sanddykesurroundingthearable fields of Junne. Activity of drift-sands must have started even earlier,asconstructionofthisdykesignifiesaresponsetothe drift-sandsthreateningthearableland.

Previousstudiessuggestedthatbank stabilityofouterbanks maydecreaseastheybecomecoveredbydrift-sand(Wolfertetal., 1996;WolfertandMaas,2007).Depositiononthebanksmaycause

Fig.7. Multidisciplinaryoverviewofdevelopmentsinthestudyarea.Top:average numberoffarmsteads(i.e.averagedforthemarksArriën,Beerze,Junne,Stegeren, seeFig. 4). Upper middle:period ofactivity of drift-sandareas 1and 2 as determinedwithOSLdatingandrelativedrift-sandareaasderivedfromhistorical maps(seeFig.5).Lowermiddle:shiftfromalaterallystabletoameandering channelpattern(circa1400–1500CE,setto1450inthegraph,dataderivedfrom

Candeletal.,2018)anddevelopmentofmeanderamplitudeofPrathoekandJunner Koeland(dataderivedfromQuikandWallinga,2018a).Bottom:reconstructed meanbankfulldischarge(dataderivedfromCandeletal.,2018).Forthesakeof clarityuncertaintiesarenotshownhere.

(13)

riparian vegetation to cease, diminishing the bank erosion-resistance.Additionally,thedrift-sandcoveritselfconsistsofvery non-cohesivematerialthatispronetofluvialerosion.Historical mapsshowthatthedrift-sandsweresituateddirectlyadjacentto themeandersofJunnerKoelandandPrathoek(Fig.5),andoriented such that sand would blow towards the river under the predominantwind direction(Fig. 6). Protectionmeasures such asthedykeofJunne(drift-sandlocation2)locallyinhibit drift-sandsfromreachingtheriver.Lackingprotectivestructuresleave the apex of Prathoek fully exposed. Consequently drift-sand deposition will have affected bank stability of this meander’s apex. Additionally, as Prathoek is located directly upstream of JunnerKoeland,blown-insandsmayhaveaffectedJunnerKoeland aswellpriortodrift-sandactivitywestofthismeander(at drift-sandlocation1).AccordingtoourOSLdatesdrift-sandswereactive herefrom183720CEonwards.However,historicalmapspoint towardsdrift-sandactivityatthis sitefromasearlyas1720 CE (Fig. 5a). Drift-sand activity at location 1 overlaps partly with meanderformationatJunnerKoeland,andfullywithformationof theskewed apex.Drift-sandsthatwerepresentnorthofJunner Koeland, asvisible onthehistorical mapof 1720 (Fig. 5a), will graduallyhavebeenerodedbytheriver.Drift-sandinthisposition wouldnotblowtowardstheriverunderthepredominantwind direction, but the drift-sand cover probably resulted in lower stabilityofthenorthernbankandhencewaspronetoerosionby the expanding Junner Koeland meander. In addition, coring evidence from drift-sand location 1 shows a sharp boundary between fluvial and drift-sand deposits which points towards fluvialerosionofdrift-sand-coveredterrain(Fig.2a).

Interactions betweenfluvialand aeolian geomorphologyare widespreadbutareoftennotstudiedincombination,hencethe underlying mechanisms are less well understood (Liu and Coulthard,2015).Our observationssupportareduction ofbank stabilityfollowingdrift-sanddepositionasdiscussedbyWolfert etal.(1996)andWolfertandMaas(2007)asactivegeomorphic process. Additionally, drift-sands can act as an extra sediment supplytotheriver,alteringitsmorphodynamicsbyenhancingthe rateofscrollbargrowthand thereforetherate ofbankerosion (Ferguson,1987;NansonandCroke,1992).Thecollapseof drift-sandcoveredbanksuponfluvialerosionwillalsoleadtoadditional sedimentsupplytotheriver,whichmayaffectriver morphody-namics.Cross-sections byCandel et al.(2018) showedthat the channel deposits did not incise since 1400/1500 CE, but that the river bed in fact slightly aggraded during the meandering phase.Thismaypointtowardshighsedimentsupplyduetothe drift-sands.

6.4.Reflectiononrelativeimportanceofdrivers

FormationoftheJunnerKoelandmeanderstartedat143392 CE(Quikand Wallinga,2018a,b).Followingthechannelpattern changefromlaterallystabletomeandering,theinitialformationof meanderswaspartofthenaturalregimeoftheriver(Candeletal., 2018).Thisinitialmeanderformationwasnotcausedorinfluenced by local allogenic drivers, but by a catchment-scale discharge regimechange.However,thecontinuousgrowthofmeanderslike JunnerKoelandandPrathoekwhichmigratedbeyondtheriver’s valleysidesreachingamplitudesovertwicetheirexpectedsizeis remarkable.Lackofregionalrivermanagementstrategiesledtoa situationwheretherivercouldmeanderfreely.Risingnumbersof farmsteadsinthestudyareacreatedlandusepressuresthatwere hitherto unprecedented. A consequence of this high land use intensitywasformation oflocal drift-sands(Castel etal.,1989;

Pieriketal.,2018),anddrift-sanddepositiononriverbankswill have loweredtheirresistance tofluvial erosion(Wolfertet al., 1996; Wolfert and Maas,2007).Our data showthat drift-sand

influencewaspresentduringtheentireperiodofmeandergrowth atPrathoek,andfrom1720CEonwardsforJunnerKoeland.Based onourmultidisciplinaryanalysisweconsiderdrift-sandactivityas the most prominent effect to cause the exceptional meander expansionobservedatJunnerKoelandandPrathoek.Sand-drifting isinitselfaconsequenceofthehighpopulationdensityandland use pressure. Lacking fluvial management left the boundary conditions for meandering unchanged and allowed drift-sands that locally affected the river to exert their influence on river dynamics.

6.5.Implications

During the Late-Holocene, fluvial activity of rivers generally increaseddue tocatchment-scale landusechangesbyhumans, changingriversintomoreactivelylaterallymigratingriversdueto enhanced sediment load and discharges (e.g. Notebaert and Verstraeten,2010; Brownet al., 2018; Gibling, 2018; Notebaert etal.,2018).Hereweshowthathumaninfluencedidnotonlyoccur at the catchment-scale, but also contributed to exceptional morphodynamicsatthelevelofindividualmeanderbends.

Thelessonslearnedatthis sitearerelevantfor management andrestorationofmeanderingriversinsimilarsettingselsewhere, particularlyconsideringtheneedtoestimatespatialdemandsof (restored)low-energyfluvialsystemsandtoadequatelymanage bankerosionandrelatedhazardrisks(e.g.Piégayetal.,2005).In manyparts of theworld,low-energyrivers arepresentlybeing restoredfromtheirchannelizedstatetoriversthatareallowedto freelyerodetheirbanks(Wohletal.,2005).Restorationgoalsare oftenbasedonthechannelplanformprecedingchannelizationand aiming to resemble the river course from historical maps. Consequently palaeochannels are reconnected to redesign the river channel (Kondolf, 2006). However, meandering activity stronglyrelates tostreampower(Candelet al.,2018)and local land use, which changeover time. Hence,rivers shouldnot be restoredtoa certainhistoricalreference,astheconditions that allowed this planform to develop mayno longer be valid and impossibletoreturnto(DufourandPiégay,2009).Instead,priority should be given to characterizing the current and future morphologicalconditionspriortosettinggoalsforriver restora-tion. We have shown that local changes of morphological conditionsmayresultinexceptionalchangesofriverdynamics. Thismayleadtounwantedandunexpected erosionoflandand infrastructure.Henceafurtherdevelopmentofourunderstanding of small-scale human-landscapeinteractions in fluvial environ-mentscouldbeofgreatpracticalvaluefortherestorationof low-energyriversandpredictingfuturechange.

7.Conclusion

We identified potential direct and indirect anthropogenic drivers forthedevelopment ofexceptionally largemeandersin lowlandrivers.Ourmultidisciplinaryandin-depthanalysisofthe OverijsselseVechtriver:

(1) Indicates lacking regional management of the river system throughouttheEarlyandLateModernperiod,whichcreateda situationwherelocallanduseanddrift-sanddepositioncould interferewithriverdynamics;

(2) Shows a strong increase in the number of farmsteads and relatedintensificationoflocal landusestarting inthe High MiddleAgesandcontinuingthroughtheEarlyandLateModern period.Thisincreaseinhabitationdensitymatcheswiththe periodofmeandergrowth;

(3) Revealsachronologicalconformitybetweenlateralmigration of two exceptionally largemeanders and (human-induced)

(14)

drift-sanddepositionontheirouterbanks.Ourresultsindicate that this interactionmayhave caused exceptionalmeander expansionbeyondthevalleysides.

Dataavailability

AlldatafromthisstudyareavailableunderCC BY4.0license atthe4TU.CentreforResearchData;seeQuiketal.(2020).Details oftheOSLdatesofthemeanderbendsareavailableinQuikand Wallinga (2018a, 2018b) and additional information on the palaeohydrologicalreconstruction canbefoundinCandel etal. (2018).

Authorcontributions

BM, GM, JW and CQ proposed the initial outline of the researchandselectedthefieldsites.CQperformedthecoringsin thedrift-sandareasfollowedbyOSLsamplecollectionbyCQ,JC, andBM.CQassistedwithpreparationoftheOSLsamplesinthe laboratory,OSLresultswereanalysedbyJW.RvBcollectedand analysedthearchaeologicaldata.MP,RvBandTSperformedthe analysesof Medievalfarmsteads. MVanalysed historicalriver managementbasedonarchivalstudyunderthesupervisionof RvB, MP and JC. CQ wrote the initial manuscript, with main additions by JC, RvB, and MP. The draft was finalized by all authors.

DeclarationofCompetingInterest

The authors declare that they have no known competing financial interests or personal relationships that could have appearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

This research is part of the research programme RiverCare, supportedbytheNetherlandsOrganizationforScientificResearch (NWO) and the Dutch Foundation of Applied Water Research (STOWA),andispartlyfundedbytheMinistryofEconomicAffairs undergrantnumberP12-14(perspectiveprogramme).Wethank StaatsbosbeheerVechtdalandLandgoedJunneforaccesstoand insideknowledgeofthefieldsites;Peter,SylviaandJimQuikfor their assistance with the field work; the Laboratory of Geo-informationScienceandRemoteSensing(WageningenUniversity) fortheprovisionofGNSS-equipment;AliceVersendaalandErna VoskuilenofTheNetherlandsCentreforLuminescencedatingfor theireffortsinthelaboratory;JeroenZomeroftheDutchCultural HeritageAgencyfor thekind supplyof a databaseof Medieval farmsteadsinthestudyarea;HansMol(HisGIS)formakingthe 1832cadastraldataofOverijsselavailabletoourstudy;Erikvan denBergandLucJeheefortheirhelpwithhistoricalsources.We thanktwo anonymousreviewersfor theirhelpfulcomments to improveourmanuscript.

AppendixA.Supplementarydata

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j. ancene.2020.100263.

References

AHN,2018.DedetailsvanhetActueelHoogtebestandNederland[DetailsoftheDigital ElevationModelofTheNetherlands]. Availableat:http://ahn.maps.arcgis.com/

apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed

[Accessed22February2018].

Alford,J.L.,Holmes,J.C.,1985.Meanderscarsasevidenceofmajorclimatechangein southwestLouisiana.Ann.Assoc.Am.Geogr.75,395–403.

AlgemeenRijksArchief,1996.LimitentussenBentheimenOverijsselbyPieterdela Rive,Genie-archief,Situatiekaart07..

Alterra,2008.GeomorfologischekaartvanNederland.1:50.000,versie2008 [Digitalfile].WageningenUR–Alterra,theNetherlands..

Alterra,2014.BodemkaartvanNederland. 1:50.000,versie2014[Digitalfile]. WageningenUR–Alterra,theNetherlands..

Bakker,J.P.,1989.NatureManagementbyGrazingandCutting:ontheEcological SignificanceofGrazingandCuttingRegimesAppliedtoRestoreFormer Species-richGrasslandCommunitiesintheNetherlands.KluwerAcademicPublishers, Dordrecht.

Bieleman,J.,1987.BoerenophetDrentseZand1600-1910:Eennieuwevisieopde oudelandbouw.LandbouwuniversiteitWageningen.

Bieleman,J.,2008.BoereninNederland.Geschiedenisvandelandbouw1500-2000. Boom:Amsterdam..

Bieleman,J.,Brood,P.,1980.Zeventiende-eeuwseDrentselandmatenenhun gebruik.Geog.Tijdschrift14(2),112–119.

Box,L.,2007.PieterdeLaRive(1694-1771)‘DirecteurderFortificatiënvan Maastricht’.CaertThresoor-TijdschriftvoordeGeschiedenisvandeCartografie 3,65–69.

Brown,A.,Lespez,L.,Sear,D.,Macaire,J.,Houben,P.,Klimek,K.,Brazier,R.,VanOost, K.,Pears,B.,2018.NaturalvsanthropogenicstreamsinEurope:history,ecology andimplicationsforrestoration,river-rewildingandriverineecosystem services.Earth.Rev.180,185–205.doi:http://dx.doi.org/10.1016/j. earscirev.2018.02.001.

Bruins,H.,1981.Vechtentegenhetzand-Stuifzandbestrijdingindemarkenlangs deVecht.In:Aalbers,J.(Ed.),BijdragenUitHetLandVanIJsselEnVecht:4e BundelIJsselakademie.Waanders,Zwolle,pp.7–22.

Candel,J.,2020.AheadoftheCurve-ChannelPatternFormationofLow-energy Rivers.WageningenUniversity.

Candel,J.H.J.,Kleinhans,M.G.,Makaske,B.,Hoek,W.Z.,Quik,C.,Wallinga,J.,2018. LateHolocenechannelpatternchangefromlaterallystabletomeandering–a palaeohydrologicalreconstruction.EarthSurf.Dyn.6(3),723–741.doi:http:// dx.doi.org/10.5194/esurf-6-723-2018.

Candel,J.,Makaske,B.,Kijm,N.,Kleinhans,M.,Storms,J.,Wallinga,J.,2020. Self-constrainingoflow-energyriversexplainslowchannelmobilityandtortuous planforms.Depos.Rec.00,1–22.doi:http://dx.doi.org/10.1002/dep2.112.

Castel,I.,Koster,E.,Slotboom,R.,1989.MorphogeneticaspectsandageofLate HoloceneeoliandriftsandsinNorthwestEurope.Zeitschriftfur Geomorphologie33(1),1–26.

Coster,W.,1999.OmtrentdeVechtlanden:waterschapsgeschiedenisinNoordoost Overijssel.Waanders,Zwolle.

Cunningham,A.C.,Wallinga,J.,2012.Realizingthepotentialoffluvialarchivesusing robustOSLchronologies.Quat.Geochronol.12,98–106.doi:http://dx.doi.org/ 10.1016/j.quageo.2012.05.007.

DeVries,J.,DeTollenaere,F.,1995.EtymologischWoordenboek.HetSpectrum.

Dépret,T.,Gautier,E.,Hooke,J.,Grancher,D.,Virmoux,C.,Brunstein,D.,2017.Causes ofplanformstabilityofalow-energymeanderinggravel-bedriver(CherRiver, France).Geomorphology285,58–81.doi:http://dx.doi.org/10.1016/j. geomorph.2017.01.035.

Dirkx,G.H.P.,1997.Endemensalvaneenerveendegoedtnietmeerdaneentrop schaepeholden.Historischebegrazingvangemeenschappelijkeweidegronden inGelderlandenOverijssel, Wageningen.

Dirkx,G.H.P.,PWFM,Hommel,Vervloet,J.A.J., 1996.Kampereiland:eenwereldopde grensvanzoutenzoet. Matrijs:Utrecht..

Dufour,S.,Piégay,H.,2009.Fromthemythofalostparadisetotargetedriver restoration:forgetnaturalreferencesandfocusonhumanbenefits.RiverRes. Appl.25(5),568–581.doi:http://dx.doi.org/10.1002/rra.1239.

Eekhout,J.P.C.,2014.MorphologicalProcessesinLowlandStreams-Implicationsfor StreamRestoration.WageningenUniversitydoi:http://dx.doi.org/10.1017/ CBO9781107415324.004.

Ferguson,R.I.,1987.Accuracyandprecisionofmethodsforestimatingriverloads. EarthSurf.Process.Landf.12(1),95–104.doi:http://dx.doi.org/10.1002/ esp.3290120111.

Franklin,T.B.,1953.BritishGrasslandsfromtheEarliestTimestothePresentDay. FaberandFaber,London.

Galbraith,R.F.,Roberts,R.G.,Laslett,G.M.,Yoshida,H.,Olley,J.M.,1999.Optical datingofsingleandmultiplegrainsofquartzfromJinmiumrockshelter, NorthernAustralia:partI,Experimentaldesignandstatisticalmodels. Archaeometry41(2),339–364.doi:http://dx.doi.org/10.1111/j.1475-4754.1999. tb00987.x.

Gibling,M.R.,2018.RiversystemsandtheAnthropocene:aLatePleistoceneand Holocenetimelineforhumaninfluence.Quaternary1(21),1–37.doi:http://dx. doi.org/10.3390/quat1030021.

HCO,2018a.RijkswaterstaatinOverijssel:Stukkenbetreffendedeverbeteringvan derivier,1853-1855,1860-1863.HistorischCentrumOverijssel,0140.1,Inv.nr. 676:Zwolle.

HCO,2018b.DerdeDijkdistrictVanOverijssel:RegistersHoudendeNotulenVanHet Dijksbestuur,1836-1872.HistorischCentrumOverijssel,WS-20,Inv.nr.3: Zwolle.

HCO,2018c.WaterschapDeZuiderVechtdijken(ZesdeDijkdistrictVanOverijssel): RegisterVanNotulenVanDeVergaderingenVanHetVerenigdCollegeEnHet Dijkbestuur,1836-1849.HistorischCentrumOverijssel,WS-15,Inv.nr.1:Zwolle.

(15)

HCO,2018d.WaterschapDeZuiderVechtdijken(ZesdeDijkdistrictVanOverijssel): RegisterVanNotulenVanDeVergaderingenVanHetVerenigdCollegeEnVan HetDijkbestuur,1849-1883.HistorischCentrumOverijssel,WS-15,Inv.nr.2: Zwolle.

HCO,2018e.WaterschapDeZuiderVechtdijken(ZesdeDijkdistrictVanOverijssel): BestekkenEnAktenVanAanbestedingenVanWerkzaamhedenAanDeDijken EnKadenEnDeKrib-EnPakwerken,1836-1855.HistorischCentrumOverijssel, WS-15,Inv.nr.147:Zwolle.

HCO,2018f.DerdeDijkdistrictVanOverijssel:StukkenBetreffendeDeVaststelling VanHetGrondreglementVoorDeWaterschappeninOverijssel,1879-1883. HistorischCentrumOverijssel,WS-20,Inv.nr.18:Zwolle.

HCO,2018g.DerdeDijkdistrictVanOverijssel:StukkenBetreffendeHet Concept-reglementVoorHetWaterschapDeNoorderVechtdijken,1883.Historisch CentrumOverijssel,WS-20,Inv.nr.19:Zwolle.

HCO,2018h.GemeenteDalfsen,Gemeentebestuur:StukkenBetreffendeHet OnderhoudAanEnDeVerbeteringVanDeBevaarbaarheidVanDeVecht,Met Tekeningen,1856-1866,1905-1908.HistorischCentrumOverijssel,0624,Inv. nr.1023:Zwolle.

HCO,2018i.MarkenindeprovincieOverijssel:Markeboek,1549-1826.Historisch CentrumOverijssel,0157,Inv.nr.29:Zwolle.

HCO,2018j.MarkenindeprovincieOverijssel:Markeboeken,1765-1835.Historisch CentrumOverijssel,0157,Inv.nr.33:Zwolle.

Hickin,E.J.,Nanson,G.C.,1984.Lateralmigrationratesofriverbends.Journalof HydraulicEngineering1110(11),1557–1567.

Hobo,N.,2006.Hydraulischeeffectenvanverschillendeinrichtingsscenariosvoor deOverijsselseVecht;eenverkennendestudiemetbehulpvaneen SOBEK-model. Wageningen..

Hooke,J.M.,2007.Spatialvariability,mechanismsandpropagationofchangeinan activemeanderingriver.Geomorphology84(3–4),277–296.doi:http://dx.doi. org/10.1016/j.geomorph.2006.06.005.

Hudson,P.,Kesel,R.,2000.Channelmigrationandmeander-bendcurvatureinthe lowerMississippiRiverpriortomajorhumanmodification.Geology28(6), 531–534.

Hudson,P.,Middelkoop,H.,Stouthamer,E.,2008.Floodmanagementalongthe LowerMississippiandRhineRivers(theNetherlands)andthecontinuumof geomorphicadjustment.Geomorphology101(1–2),209–236.doi:http://dx. doi.org/10.1016/j.geomorph.2008.07.001.

Huisink,M.,2000.ChangingriverstylesinresponsetoWeichselianclimatechanges intheVechtvalley,easternNetherlands.Sediment.Geol.133,115–134.

Jongmans,A.G.,VandenBerg,M.W.,Sonneveld,M.P.W.,GJWC,Peek,VandenBerg vanSaparoea,R.M.,2013.LandschappenvanNederland-Geologie,Bodemen Landgebruik.WageningenAcademicPublishers,Wageningen.

Jungerius,P.D.,Riksen,M.J.P.M.,2010.Contributionoflaseraltimetryimagestothe geomorphologyoftheLateHoloceneinlanddriftsandsoftheEuropeanSand Belt.Baltica23(1),59–70.

Kadaster,2018.TopographischeenMilitaireKaartvanhetKoninkrijkder Nederlanden,1:50000,mapsheet22(publicationdate1859),Digitalfile. CC-BYKadaster,Apeldoorn,TheNetherlands..

Kasse,C.,Hoek,W.Z.,Bohncke,S.J.P.,Konert,M.,Weijers,J.W.H.,Cassee,M.L.,Vander Zee,R.M.,2005.LateGlacialfluvialresponseoftheNiers-Rhine(western Germany)toclimateandvegetationchange.J.Quat.Sci.20(4),377–394.doi: http://dx.doi.org/10.1002/jqs.923.

Kasse,C.,VanBalen,R.,Bohncke,S.J.P.,Wallinga,J.,Vreugdenhil,M.,2017. Climateandbase-levelcontrolledfluvialsystemchangeandincision duringthelastglacial–interglacialtransition,Roerriver,theNetherlands –westernGermany.Geol.EnMijnb.96(2),71–92.doi:http://dx.doi.org/ 10.1017/njg.2016.50.

KNMI,2019a.MaandoverzichtvanhetweerinNederland-Januari2019. DeBilt...

KNMI,2019b.MaandoverzichtvanhetweerinNederland-Juli2019. DeBilt...

Kondolf,G.M.,2006.Riverrestorationandmeanders.Ecol.Soc.11(2),42.

Kondolf,G.,Piégay,H.,Landon,N.,2002.Channelresponsetoincreasedand decreasedbedloadsupplyfromlandusechange:contrastsbetweentwo catchments.Geomorphology45(1–2),35–51.doi:http://dx.doi.org/10.1016/ S0169-555X(01)00188-X.

Koster,E.A.,2010.OriginanddevelopmentofLateHolocenedriftsands.In:Fanta, J.,Siepel,H.(Eds.),InlandDriftSandLandscapes.KNNVPublishing,Zeist,pp. 25–48.

Kuenen,P.,1944.TheDrentseriviertjesenhetmeander-vraagstuk:Overdrukuit GedenkboekP.Tesch..

Liu,B.,Coulthard,T.,2015.Mappingtheinteractionsbetweenriversandsanddunes: implicationsforfluvialandaeoliangeomorphology.Geomorphology231,246– 257.doi:http://dx.doi.org/10.1016/j.geomorph.2014.12.011.

Macklin,M.,Jones,A.,Lewin,J.,2010.RiverresponsetorapidHolocene environmentalchange:evidenceandexplanationinBritishcatchments.Quat. Sci.Rev.29(13–14),1555–1576.doi:http://dx.doi.org/10.1016/j.

quascirev.2009.06.010.

Makaske,B.,VanSmeerdijk,D.,Peeters,H.,Mulder,J.,Spek,T.,2003.Relative water-levelriseintheFlevolagoon(theNetherlands),5300-2000cal.yrBC:An evaluationofnewandexistingbasalpeattime-depthdata.Geologieen Mijnbouw/NetherlandsJ.Geosci.82(2),115–131.doi:http://dx.doi.org/10.1017/ S0016774600020680.

Makaske,B.,vanderDeijl,E.,Kleinhans,M.,2016.Hetnatuurlijkepatroonvan beken.Landschap33,185–193.

Malinckrodt,H.H.,1974.LatijnsNederlandsWoordenboek.UItgeverijHetSpectrum, Utrecht/Antwerpen.

Middelkoop,H.,Stouthamer,E.,Schoor,M.M.,Wolfert,H.P.,Maas,G.J.,2003. Kansrijkdomvoorrivierecotopenvanuithistorisch-geomorfologisch perspectief;Rijntakken-Maas-Benedenrivieren.NCR,Delft.

Nanson,G.C.,Croke,J.C.,1992.Ageneticclassificationoffloodplains.

Geomorphology4(6),459–486.doi:http://dx.doi.org/10.1016/0169-555X(92) 90039-Q.

Neefjes,J.,Brinkkemper,O.,Jehee,L.,VandeGriendt,W.,2011.Cultuurhistorische AtlasvandeVecht:BiografievanNederlandsgrootstekleinerivier.WBOOKSi.s. m.provincieOverijsselenRijksdienstvoorhetCultureelErfgoed..

Nicoll,T.J.,Hickin,E.J.,2010.Planformgeometryandchannelmigrationofconfined meanderingriversontheCanadianprairies.Geomorphology116(1–2),37–47. doi:http://dx.doi.org/10.1016/j.geomorph.2009.10.005.

Notebaert,B.,Verstraeten,G.,2010.SensitivityofWestandCentralEuropeanriver systemstoenvironmentalchangesduringtheHolocene:areview.Earth.Rev. 103(3–4),163–182.doi:http://dx.doi.org/10.1016/j.earscirev.2010.09.009.

Notebaert,B.,Broothaerts,N.,Verstraeten,G.,2018.Evidenceofanthropogenic tippingpointsinfluvialdynamicsinEurope.Glob.Planet.Change164,27–38. doi:http://dx.doi.org/10.1016/j.gloplacha.2018.02.008.

Persson,K.,Sharp,P.,2015.AnEconomicHistoryofEurope:Knowledge,Institutions andGrowth,600tothePresent.CambridgeUniversityPress,Cambridge.

Piégay,H.,Darby,S.E.,Mosselman,E.,Surian,N.,2005.Areviewoftechniques availablefordelimitingtheerodiblerivercorridor:Asustainableapproachto managingbankerosion.RiverRes.Appl.21,773–789.doi:http://dx.doi.org/ 10.1002/rra.881.

Pierik,H.J.,Lanen,R.J.V.,MTIJ,Gouw-bouman,Groenewoudt,B.J.,Wallinga,J.,Hoek, W.Z.,2018.ControlsonLate-Holocenedrift-sanddynamics:thedominantrole ofhumanpressureintheNetherlands.Holocene28(9),1361–1381.doi:http:// dx.doi.org/10.1177/0959683618777052.

Quik,C.,Wallinga,J.,2018a.Reconstructinglateralmigrationratesinmeandering systems;anovelBayesianapproachcombiningOSLdatingandhistoricalmaps. EarthSurf.Dyn.6,705–721.doi:http://dx.doi.org/10.5194/esurf-6-705-2018.

Quik,C.,Wallinga,J.,2018b.Datafrom:Reconstructinglateralmigrationratesin meanderingsystems;anovelBayesianapproachcombiningOSLdatingand historicalmaps.4TU.CentreforResearchDatadoi:http://dx.doi.org/10.4121/ uuid:1ca25393-aa99-48dc-b382-0506322bc449.

Quik,C.,Candel,J.H.J.,Makaske,B.,van,BeekR.,Paulissen,M.,Maas,G.J.,Verplak,M., Spek,T.,Wallinga,J.,2020.Datafrom:Anthropogenicdriversforexceptionally largemeanderformationduringtheLateHolocene.4TU.CentreforResearch Data doi:http://dx.doi.org/10.4121/uuid:c9c892de-4f3f-4c1b-b684-17c700b02f31.

Reimann,T.,Versendaal,A.,Wallinga,J.,2016.LuminescenceDatingReport -Stroomdalgrasland(projectnumber2112). Wageningen..

Rotthier,S.,Sýkora,K.,2016.Zandafzetting,standplaats,beheerenbotanische kwaliteitvanstroomdalgrasland.KNNVUitgeverij/Publishing,Driebergen.

Schönfeld,1950.VeldnameninNederland.Noord-HollandscheUitgevers Maatschappij,Amsterdam.

Schönfeld,1955.NederlandseWaternamen.Noord-HollandscheUitgevers Maatschappij,Amsterdam.

Schumm,S.A.,1960.Theshapeofalluvialchannelsinrelationtosedimenttype. UnitedStatesGovernmentPrintingOffice,Washington.

Schumm,S.,1968.Riveradjustmenttoalteredhydrologicregimen.Murrumbidgee Riverandpaleochannels.USGovernmentPrintingOffice,Australia.

Spek,T.,VanderVelde,H.,Hannink,H.,Terlouw,B.,2010.Mensenlandinhethart vanSalland.Bewonings-enlandschapsgeschiedenisvanhetKerspelRaalte, Matrijs:Utrecht..

Staring,W.,Stieltjes,T.,1848.DeOverijsselscheWateren. Zwolle..

TerLaak,J.,Groenewoudt,B.J.,2005.Detaalvanhetlandschap:pilotproject toponiemenindeBerkelstreek:eenverkennendonderzoeknaarde bruikbaarheidvangeografischenamenvoorhetreconstruerenvande geschiedenisvanhetOost-Nederlandselandschap. Amersfoort..

Trimble,S.W.,Mendel,A.C.,1995.Thecowasageomorphicagent-Acriticalreview. Geomorphology13,233–253.doi:http://dx.doi.org/10.1016/0169-555X(95) 00028-4.

VanAalstJ.W.2016.www.opentopo.nl.

VanBeek,R.,2009.Reliëfintijdenruimte-Interdisciplinaironderzoeknaar bewoningenlandschapvanOost-Nederlandtussenvroegeprehistorieen middeleeuwenn.PhD-thesis.WageningenUniversity.

VanBeek,R.,Groenewoudt,B.,2011.AnOdysseyalongtheriverVechtinthe Dutch-Germanborderarea:AregionalanalysisofRoman-periodsitesinGermania Magna.Germania89,157–190.

VanBerkel,G.,Samplonius,K.,1989.Hetplaatsnamenboek:deherkomsten betekenisvanNederlandseplaatsnamen.VanHolkemaenWarendorf,Houten.

VanEngelenvanderVeen,G.,1924.In:DeJongevanEllemeet,B.(Ed.),Markenin Overijsel.IndeMarkenvanDrente,Groningen,Overijsel,GelderlandenUtrecht. GeschiedkundigeAtlasvanNederland(5Volumes,1920-1925).Nijhoff:’ s-Gravenhage.

VanHaaster,H.,2006.Archeobotanie.In:Blom,E.,Wyns,S.,VanderVelde,H.(Eds.), Dalfsen‘DeGernerMarke’.SporenvanbewoninguitdeIJzertijd,Romeinsetijd enmiddeleeuwenopeendekzandruglangsdeOverijsselseVecht,,pp.149–157 ADC-rapport766:Amersfoort.

VanHeerd,R.M.,Kuijlaars,E.A.C.,Teeuw,M.P.,Van’tZand,R.J.,2000. ProductspecificatieActueelHoogtebestandNederland.Rapportnummer MDTGM2000.13.RijkswaterstaatMeetkundigeDienst,Delft.

Vandenberghe,J., 1995.Timescales,climateandriverdevelopment.Quat.Sci.Rev. 14 (6),631–638.

(16)

Vandenberghe,J.,Bohncke,S.J.P.,1985.TheWeichselianLateGlacialinasmall lowlandvalley(Markriver,BelgiumandtheNetherlands).Bulletinde l’Associationfrançaised’Etudesquaternaires2–3,167–175.

Vandenberghe,J.,VanHuissteden,J.,1988.Fluvio-aeolianinteractioninaregionof continuouspermafrost.ProceedingsoftheVInternationalConferenceon Permafrost,Trondheim,Norway,pp.876–881.

Vandenberghe,J.,Kasse,C.,Popov,D.,Markovic,S.,Vandenberghe,D.,Bohncke,S., Gabris,G.,2018.Specifyingtheexternalimpactonfluviallowlandevolution:the lastglacialTisza(Tisa)catchmentinHungaryandSerbia.Quaternary1,14.

Wieringa,H.,Schelhaas,H.,1983.WaterstaatinOverijssel. ProvincieOverijssel: Zwolle..

Wohl,E.,Angermeier,P.L.,Bledsoe,B.,Kondolf,G.M.,MacDonnell,L.,Merritt, D.M.,Palmer,M.A.,LeRoyPoff,N.,Tarboton,D.,2005.Riverrestoration. WaterResour.Res.41(10),1–12.doi:http://dx.doi.org/10.1029/ 2005WR003985.

Wolfert,H.P.,Maas,G.J.,2007.Downstreamchangesofmeanderingstylesinthe lowerreachesoftheRiverVecht,theNetherlands.GeologieenMijnbouw/ NetherlandsJ.Geosci.86(3),257–271.

Wolfert,H.P.,Maas,G.J.,Dirkx,G.H.P.,1996.HetmeandergedragvandeOverijsselse Vecht:Historischemorfodynamiekenkansrijkdomvoornatuurontwikkeling. DLO-StaringCentrum,Wageningen..

Referenties

GERELATEERDE DOCUMENTEN

The results showed that the average waiting times, cycle times (of the traffic light) and emissions increased more significantly during rush hours compared to

What are the probable long-term physical effects, caused by large-scale sand extraction on the Zeeland ridges, which affect the coastal user functions: coastal safety and

9 Maak een keuze Is er ruimte voor wolven in Nederland.. Beargumenteerd standpunt over wolven in

• To relate local (i.e., on the beach) to regional wind data using field measurements at a high and steep foredune and.. • to quantify the effect of using local versus

competition, loyalty to the substantive accuracy of legal texts should always trump the drive to instil aesthetic elegance in one’s writing. The harsh reality of legal practice

Given the quality of Horace’s work and the fact that he consistently and in different ways reminds his audience of his Greek predecessors (and of his own time) it

&amp; Thekisoe, O., 2017, ‘Occurrence of Coxiella burnetii, Ehrlichia canis, Rickettsia species and Anaplasma phagocytophilum- like bacterium in ticks collected from dogs and cats

The reasons for choosing a species of butterfly are described together with the methodology used in the population cage experiments Replicated lines founded by single pairs and