• No results found

B-S(0)-(B)over-bar(S)(0) oscillations as a new tool to explore CP violation in D-S(+/-) decays

N/A
N/A
Protected

Academic year: 2021

Share "B-S(0)-(B)over-bar(S)(0) oscillations as a new tool to explore CP violation in D-S(+/-) decays"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

B-S(0)-(B)over-bar(S)(0) oscillations as a new tool to explore CP violation in D-S(+/-) decays

Fleischer, Robert; Vos, K. Keri

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2017.04.056

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Fleischer, R., & Vos, K. K. (2017). B-S(0)-(B)over-bar(S)(0) oscillations as a new tool to explore CP

violation in D-S(+/-) decays. Physics Letters B, 770, 319-324.

https://doi.org/10.1016/j.physletb.2017.04.056

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

B

0

s

B

¯

0

s

oscillations

as

a

new

tool

to

explore

CP

violation

in

D

±

s

decays

Robert Fleischer

a

,

b

,

,

K.

Keri Vos

a

,

c

,

d aNikhef,SciencePark105,NL-1098XGAmsterdam,Netherlands

bDepartmentofPhysicsandAstronomy,VrijeUniversiteitAmsterdam,NL-1081HVAmsterdam,Netherlands cVanSwinderenInstituteforParticlePhysicsandGravity,UniversityofGroningen,NL-9747AGGroningen,Netherlands dTheoretischePhysik1,Naturwissenschaftlich-TechnischeFakultät,UniversitätSiegen,D-57068Siegen,Germany

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received2December2016

Receivedinrevisedform20April2017 Accepted24April2017

Availableonline27April2017 Editor:G.F.Giudice

CPviolation in B0

sB¯0s oscillations isexpected atthe10−5 level inthe Standard Model butcould be

enhanced by New Physics. Using B0

sDs+

ν

 decays, LHCb has recently reported the new result

(0.39±0.33)×10−2ofthecorrespondingobservableassl.WepointoutthatothercurrentB decaydata implyas

sl= (0.004±0.075)×10−2.Inviewofthisstrongconstraint,weproposetouseBs0→Ds+

ν



and similarflavor-specificdecaysasanew tooltodetermineboththeproductionasymmetrybetween B0s andB¯0s mesons,andtheCPasymmetryinthesubsequentD±s decays.Theformerservesasinputfor

analysesofCPviolationinB0

s channels,withsignificantroomforimprovement,whilethelatteroffersan

excitinglaboratoryforNewPhysics.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

StudiesofCPviolationprovideinterestingtestsoftheStandard Model(SM)ofparticlephysics,wheredecaysofneutralB0

s mesons

playakey roleattheLargeHadronCollider (LHC)[1].These par-ticlesshow B0

sB

¯

0s mixing, whichintheSM isgeneratedthrough

quantum fluctuations. New Physics (NP) may affect B0

sB

¯

0s

mix-ingthroughcontributionsatthetreelevel,mediated,forinstance, through Z bosons,orthroughnewheavyparticlesrunninginthe loopdiagrams[2].

CPviolationinB0sB

¯

0s oscillationsisdescribedbyanobservable

asslandisvanishinglysmallintheSM[3]:

assl

|

SM

= (

2

.

22

±

0

.

27

)

×

10−5

,

(1)

butcould be enhancedby NP.However, inrecentyears,awealth ofexperimentalinformationon B0sB

¯

0s mixingandCPviolationin

B-mesondecayswasobtained,inaccordancewiththeSM.Inview ofthisprogress,thequestionariseshowmuchspaceforNPeffects inassl isactuallyleftby thedata.Thisimportantissue,whichcan in fact be raised formany flavor-physics observables, is the key motivationofthefollowingdiscussion.

*

Correspondingauthor.

E-mailaddress:Robert.Fleischer@nikhef.nl(R. Fleischer).

Theobservableas

slcanbemeasuredthroughsemileptonicB0s

Ds



+

ν

 andB

¯

0s

D+s



ν

¯

decays[4].IntheSM,suchtransitions areflavor-specific:

A

(

B0s

D+s



ν

¯



)

=

A

( ¯

B0s

Ds



+

ν



)

=

0

,

(2) such that the “wrong-sign” decays B0

s

D+s



ν

¯

 and B

¯

0s

Ds



+

ν

 canonlyoccurthroughB0sB

¯

0s mixing.TheLHCb

collabo-rationhasrecentlyreportedtheworld’s bestmeasurementforas

sl [5]:

assl

=

[0

.

39

±

0

.

26

(

stat

)

±

0

.

20

(

syst

)

]

×

10−2

,

(3) whichagreeswiththeSMprediction(1).Theaverageofthe previ-ousresultsisgivenasfollows[6]:

assl

= −(

0

.

48

±

0

.

48

)

×

10−2

.

(4) Here theDØresultassl

= −(

1.33

±

0.58)

×

10−2 [7],whichdiffers

fromtheSMatthe3

σ

levelandledtoattentioninthecommunity (see,e.g.,[1,8]),wasnotincluded.

UsingmeasurementsofB0sB

¯

0s mixingandCPviolationinB

de-cayscausedbyb

ccs processes,

¯

weshowthatasslisconstrained –inamodel-independentway–atthe10−4 level.

Inviewofthisstrongconstraint, weproposeanewmethodto utilizeflavor-specific B0s decays.Itallowsthedeterminationofthe

B0

sB

¯

0s productionasymmetryandopensanewavenuetoexplore

CPviolationinD±s decays,whichistinyintheSMbutmaybe en-hancedthroughNPeffects.TheimpactofpossibleCPviolationin http://dx.doi.org/10.1016/j.physletb.2017.04.056

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

320 R. Fleischer, K.K. Vos / Physics Letters B 770 (2017) 319–324

D±s decayshasnotbeenincludedintheLHCbresult(3).Weshall takethiseffectintoaccountinouranalysistoshowthesensitivity ofthenewstrategy.

2. Acloserlookatas

sl Theobservableas

sltakesthefollowingform[4]:

asls

=









12(s) M(12s)







sin

˜φ

s

=





s



Ms



tan

( ˜

φ

s

),

(5)

where



(12s) and M12(s) are the off-diagonal elements ofthe decay and mass matricesdescribing B0

sB

¯

0s mixing,



Ms and



s are

themassanddecaywidthdifferencesofthe B0

s masseigenstates,

respectively,and

˜φ

s

=

arg

(

M12(s)

/ 

12(s)

)

(6)

is a CP-violating phase difference. As M(12s) isgoverned by short-distancecontributions, NPmayhave asignificant impact. Onthe otherhand,thematrixelement



(12s)

=



f

N

f



B0s

|

f



f

| ¯

B0s

,

(7)

where

N

f isaphase-spacefactor[4],isdominatedbytreedecays

causedby b

c

¯

cs processes,whicharefavoured bytheCabibbo– Kobayashi–Maskawa (CKM) matrix, and is hence expected to be insensitive to NP contributions [4,8,9]. Detailed theoretical stud-ies of



12(s) were performed in [10] and[11,12], where the latter analyseswere motivatedinparticularby theDØresult[7].These studies found smallish room for NPeffects in



12(s), also through poorlyconstrained

(

¯

sb

)(

τ τ

¯

)

operators.

TheParticleDataGroup(PDG)[13]givestheaverages



s



s

=

0

.

124

±

0

.

011

,

xs



Ms



s

=

26

.

81

±

0

.

10

,

(8)

where1/ s

= (

1.510

±

0.005)

×

10−12s istheB0s lifetime.The

ex-perimentalresultsfor



s and



s

/

Ms areconsistentwiththe

SM predictions although the theoretical uncertainties are still at the20%level[3].Foradiscussion ofNPeffectson



s in

multi-Higgsandleft-right-symmetricmodels,see[10].

Inthefollowingdiscussion,we donot havetorelyon calcula-tions of



s in theSM orNPmodelsbutshallratherutilizethe

measuredvalueofthisquantity.Insertingtheexperimentalresults in(8)into(5)yields asls

=



(

0

.

46

±

0

.

04

)

×

10−2



×

tan

( ˜

φ

s

).

(9)

Itis interesting tonote that thenumerical pre-factorpushesthis observablealreadyintotheregimeof(3).

LetusnowexploitmeasurementsofCPviolationinB0s decays.

Using (6)and (7), andwritingthe B

¯

0

s

f decayamplitudes for

afinal state f

=

J

/ψφ,

DsD+s

,

...

causedbyb

ccs processes

¯

in thefollowinggeneralway

¯

Af

= | ¯

Af

|

ei[arg(VcbVcs)+ ¯ψf]

,

(10) weobtain asls

=





s



Ms



tan

(

s

 + ).

(11)

Thephase

s



istheaverageof

φ

f

= φ

SMs

+ φ

NPs

+ ψ

f

,

(12)

where

φ

sSM

= −(

2.1

±

0.1)◦ [3],

φ

NPs originatesfrom CP-violating

NPcontributionstoM(12s),and

f

≡ ψ

f

− ¯ψ

f,wherethesignsof

the CP-violatingphasesentering

ψ

f arereversed withrespect to

¯ψ

f. Measurementsofmixing-induced anddirectCP asymmetries

allowtheextractionof

φ

f [14]:

A

mix

CP

(

Bs

f

)



1

A

dirCP

(

Bs

f

)

2

=

η

fsin

φ

f

,

(13)

where

η

f istheCPeigenvalueofthefinalstate.Inorderto

deter-mine

s



fromtheexperimentaldata,weuse

s

 =

f

φ

f

/

σ

2f

f1

/

σ

2f

±



f 1

/

σ

2f



−1/2

,

(14)

wherethemeasured valuestaketheform

φ

f

±

σ

f [13].The

pro-cessdependenceof

φ

f entersthrough

f

= ψ

SMf

+ ψ

NPf

,

(15)

wheretheSMpiece

SMf iscausedbydoublyCabibbo-suppressed penguin topologies,while

NPf originatesfromNPcontributions to b

ccs processes.

¯

Using data for control channels,

SMf is constrained to be at most

O(0.5

)

for B0s

J

/ψφ

[15] and

−(

1.7+11..74

)

◦forB0

s

DsD+s [16].Thephaseshift



isgivenby



=

arg



f

η

fwfei(φf−φs)

(16) with wf

= (

B0s

f

)



1

A

dirCP

(

Bs

f

)

1

+

A

dir CP

(

Bs

f

)

,

(17) where

(

B0

s

f

)

is therateofthecorresponding decay.As

dis-cussedin[4],anyfinalstate

|

f



canbedecomposedinitsCP-even and CP-oddcomponents

|

fCP+



and

|

fCP−



, respectively, and the sumactuallyrunsonlyoverthesestates,i.e.interferenceterms in-volving



fCP+

|

B0s



and



fCP−

|

B0s



dropoutinthesum.

Decays of B

¯

0

s mesons caused by b

cus

¯

,

ucs processes

¯

give

sub-leadingcontributionsto(7),withtheratioofthe correspond-ing CKM factors given by

λ

2Rbeiγ

0.02

×

ei70

,where

λ

0.2 istheWolfensteinparameter, Rb

0.4 isonesideoftheUnitarity

Triangle,and

γ

oneofitsangles.Theimpactofthesecontributions on thephase in(6)ishence of

O(

1◦

).

The difference

˜φ

SMs

− φ

sSM actually probes these terms [3], and the calculated SM value at the 2◦ level agrees with our general expectation. Assuming CP-violatingNPcontributionstothesub-leadingtreeB

¯

0s decaysatthe 10% levelgivesatinyphaseshiftof

˜φ

satthe

O(

0.1◦

)

level,which

isirrelevantforourconsiderations.

Expressions (10)–(17) are general anddo not rely on specific assumptions for NPcontributions to theb

ccs transitions.

¯

The remarkable feature is that experimentaldata for CP asymmetries and decay rates allow us to determine the phase entering (11), thereby pinningdowntheobservable assl inamodel-independent way.

Making the plausibleassumption that NPenters only through

B0sB

¯

0s mixing[4,17],itwasfoundthatthemeasurementofCP vio-lationinB0

s

J

/ψφ

rulesoutalargeenhancementofassl[18–20].

WecannowgobeyondthisfindingbyincludingpossibleNP con-tributionsto



12(s)throughfurtherdataonCPviolation.InFig. 1,we collectthevariousLHCbresultsfor

φ

f thatarecurrentlyavailable.

(4)

Fig. 1. Compilation oftheavailablemeasurementsofφf forvariousB0sf decays

originatingfromb¯→ ¯cc¯s processes.

Concerning the B0

s

J

/ψφ

decay, it is crucial to have the

pioneeringmeasurements of the differentCP-even (0,

) and CP-odd(

)final-stateconfigurations[21].TheLHCbanalysisofB0s

J

π

+

π

−[22]isactuallylargelydominatedbytheCP-oddB0

s

J

f0

(980)

contribution[23,24].Thesemeasurements donot

re-vealaprocessdependencewithintheuncertaintiesandare consis-tentwiththeSMpatternoftiny valuesof

φ

f.Sinceanaccidental

cancellationbetween

φ

sNPandthe

NPf isnotplausible,we

con-cludethattheseNPphasesareall small.Thispictureisalso sup-portedby data for B0d

J

K0 modes whichdo not show any signofdirectCP violationatthe1% level; for B±

J

K± de-cays,sucheffectsare evenconstrainedtovanishatthe0.3%level

[13].Shouldtherebe anaccidentalcancellationbetween

φ

sNP and the

NPf forsome subset offinalstates,it wouldnotaffectour analysisofassl asthe generalexpressions in(10)–(17)donotrely onspecificassumptionsforNPaffectingtheb

ccs processes

¯

and arealsovalidinthissituation.

Inthecaseof B0

s decayswithopencharm,wehaveonlyafirst

studyofCPviolationinB0s

DsD+s [25],whichhasasignificant uncertainty.However,wemayprobeNPalsothroughB+

→ ¯

D0D+s. TheBellecollaboration hasmeasuredthedirect CPasymmetryof thischannelas

(0.5

±

1.5)%[26],whichshouldbecomparedwith

A

dir

CP

(

Bs

DsDs+

)

= (

9.0

±

20)% anddoesnotindicateany

devia-tionfromtheSMwithhighprecision.AssumingaNPcontribution withsizableCP-violatingandCP-conservingphasedifferences,the

B+

→ ¯

D0D+

s result corresponds to

NPD

sD+s

in the few degree regime, in full agreement with the data for decays of the kind

B0s

J

/ψφ

discussedinthepreviousparagraph.

Theaverage ofthe measurements inFig. 1 is givenby

s



=

−(

1.5

±

1.8)◦.Applying(16)tothecorrespondingfinalstatesgives



= (

2.1

±

9.0)◦,whichyields

assl

= (

0

.

004

±

0

.

075

)

×

10−2

.

(18) This analysiscan be refined through improved measurements of CPviolationinthevariouschannels,inparticularforB0s

DsD+s

and B0s

D∗−s Ds∗+ modes, where in the latter case – in

anal-ogy to B0

s

J

/ψφ

– polarization-dependent measurements are

required [27]. Analyses of CP violation in B+

→ ¯

D(∗)0D(∗)+

s and

Bd0

D(d∗)−Ds(∗)+ willfurthercomplementthepicture.Letus

con-sidera futurescenario wherewe reducethe errorofthe current measurement of

φ

D

sD+s by a factor of three as an experimental benchmark, which would match the current experimental preci-sion for B0

s

J

/ψφ,

resulting in

s



= −(

1.0

±

1.6)◦,



=

(1.5

±

2.8)◦and

assl

= (

0

.

004

±

0

.

024

)

×

10−2

.

(19)

Fig. 2. Dependence ofas

sl onφs+  followingfrom(9)and(11).Thevertical

bandscorrespondtotheexperimentalrangein(18)and(19),whilethehorizontal bandsshowtheLHCbandHFAGresultsin(3)and(4),respectively.

In Fig. 2, we illustrate the situation for as

sl, taking also the

measurements of



s and



Ms into account. The CP violation

measurements lead toa dramatic furthersuppression ofas

sl with

respecttothenumericalfactorin(9).Whileassl couldstill be en-hanced withrespect to the SM prediction (1), it ison the other hand already constrained to be at least a factor of four smaller than theuncertainty ofthe LHCbmeasurement (3); therange in

(19) puts an even stronger constraint. The comparison with the LHCbandHFAGbandsshowsimpressivelythatasslisstrongly con-strainedbycurrentlyavailable datadespitethepossibleimpactof NPcontributions.Thisfindinganswersthekeyquestionaboutthe spaceleftforNPinthisobservable.Neverthelessitwouldbe inter-estingtoconfrontthispicturewithmoreprecisemeasurementsof theas

slobservable, andnewideas ontheexperimental sidecould

resultinmoreprogressthancurrentlyforeseen. 3. Thenewstrategy

Inviewoftheconstraintsonasslderivedintheprevioussection, flavor-specific B0s decaysofferan interesting newplayground.

As-suming(2),asisusuallydoneintheliterature,B0

s

Ds



+

ν

and

¯

Bs0

D+s



ν

¯

areflavor-specifictransitions.Interestingly,these re-lations have not yet beentested by experiment. In the SM, they receive correctionsfromprocessesofhigher orderinelectroweak interactions, which are extremelysmall. But asNPmay, in prin-ciple,havesomeimpact,wegivethemostgeneralexpressionsfor therelevantobservables,allowingustosearchforviolationsof(2). To simplify the discussion, we keep only leading-order terms of smallparameters. Following[4],weintroduce

λ

= −

eiφ(Ms)



A

( ¯

B0 s

Ds



+

ν



)

A

(

B0s

Ds



+

ν



)



,

(20)

where

φ

(Ms)istheCP-violatingphaseassociatedwithB0

sB

¯

0s mixing,

¯λ

involvestheCP-conjugatedecays,and



A

mixCP

= −

2 Im

− ¯λ), 

A



= −

2 Re

− ¯λ) .

(21) The formalism isanalogousto B0

s

D+sK−, Bd0

D+

π

− decays

andis discussedindetail inRef. [28].There itis alsoshown ex-plicitlythat thecombinationoftheconvention-dependent mixing phase eM(s) withthe amplitude ratioin (20) actually results in

convention-independentobservables

λ

and

¯λ

.

If(2)holds,

λ,

¯λ

andtheobservablesin(21)vanish.Itisuseful todefinethetime-dependentfunctions

F±

(

t

)



A

mix

CP sin



Mst

± 

A

sinh



st

/

2

(5)

322 R. Fleischer, K.K. Vos / Physics Letters B 770 (2017) 319–324

Letusnowconsiderthefollowing“wrong-sign”asymmetryfor thetime-dependentdecayrates:

aWS

( ¯

B0s

(

t

)

Ds



+

ν



)

− (

B0s

(

t

)

D+s



ν

¯



)

( ¯

B0s

(

t

)

Ds



+

ν



)

+ (

B0s

(

t

)

D+s



ν

¯



)

.

(23)

Fort

>

0,andtakingintoaccountthataWSisobtained

experimen-tallybymeasuringthenumberofdecayevents,ittakestheform

aWS

=

AP

(

Bs

)

+

aCP

(

+

ν



;

fDs

)

+

a

s

sl

+

F

(

t

),

(24)

wherethetimedependenceallowsustotest(2).Ifweassume(2), thetimedependencecancelsandthetime-dependentratesin(23)

canbereplacedbytheirtime-integratedcounterparts.The produc-tionasymmetry AP

(

Bs

)

σ

( ¯

B0s

)

σ

(

B0s

)

σ

( ¯

B0s

)

+

σ

(

B0s

)

,

(25) where

σ

( ¯

B0

s

)

and

σ

(

B0s

)

denoteproduction crosssections,enters

studiesofCPviolationandisanon-perturbative,hadronicquantity whichischaracteristicfortheenvironmentwherethemesonsare produced.TheLHCbmeasurement AP

(

Bs

)

= (

1.09

±

2.61

±

0.66)%

leavesalotofroomforimprovement[29].TheCPasymmetry

aCP

(

+

ν



;

fDs

)

(

B0s

Ds

[→

fDs

]

+

ν



)

− ( ¯

B 0 s

D+s

[→ ¯

fDs

]

ν

¯



)

(

B0 s

Ds

[→

fDs

]

+

ν



)

+ ( ¯

B0s

D+s

[→ ¯

fDs

]

ν

¯



)

(26) ofthetime-independent decayrates(i.e.att

=

0),where fDs (

¯

fDs) isthefinalstateofthesubsequentDs(D+s)decay,mayrevealnew sourcesofCPviolationandwillbediscussedindetailinSection4. TheobservableaWS canbecomplementedwiththe“right-sign”

leptonasymmetry

aRS

( ¯

B0s

(

t

)

D+s



ν

¯



)

− (

B0s

(

t

)

Ds



+

ν



)

( ¯

B0s

(

t

)

D+s



ν

¯



)

+ (

B0s

(

t

)

Ds



+

ν



)

,

(27)

wherethefinalstatescanbeaccesseddirectly,i.e.without B0sB

¯

0s

oscillationsoraviolationof(2).Ittakesthefollowingform:

aRS

=

AP

(

Bs

)

aCP

(

+

ν



;

fDs

)

F+

(

t

),

(28) wherethe time-dependentfunction allows usagaintoprobe (2). Assumingtherelationsgiventhere,aRS canbe extractedfromthe

tagged,time-integratedrates.

As we have seen in Section 2, assl is constrained by B-decay

data to be too small to be accessible in measurements ofdecay rateasymmetries.Ontheotherhand,wemayextract AP

(

Bs

)

and

aCP

(

+

ν



;

fDs

)

from AP

(

Bs

)

=

1 2



aWS

+

aRS

assl



,

(29) aCP

(

+

ν



;

fDs

)

=

1 2



aWS

aRS

assl



,

(30)

wherewe have neglected the F±

(

t

)

termsandassl is constrained by(18),playinganegligiblerole.Thisanalysisopensanewwayto determineboththeCPasymmetryinB

¯

0s decaysandtheproduction asymmetry AP

(

Bs

).

From the experimental point of view,it is interesting to con-siderthefollowinguntaggedrateasymmetry[4]:

aunt

(

t

)



[

Ds



+

ν



,

t

] − [

D+s



ν

¯



,

t

]



[

Ds



+

ν



,

t

] + [

D+s



ν

¯



,

t

]

=

aCP

(

+

ν



;

fDs

)

+

a s sl 2



as sl

+

2 AP

(

Bs

)

2

 

cos

(

Mst

)

cosh

(

st

/

2

)



+

1 2



A

tanh

(

st

/

2

),

(31)

where



[

f

,

t

]

≡ (

B0s

(

t

)

f

)

+ ( ¯

B0s

(

t

)

f

).

TheLHCb collabo-rationemployed(31)forthetime-integrateduntaggedratesto de-termine(3).Theterminvolvingtheproductionasymmetryisthen essentially washed out dueto the rapid Bs0–B

¯

0s oscillations [30]. However,thetimedependenceof(31)allowsalsotheextraction of

AP

(

Bs

)

andaCP

(

Bs

;

fDs

),

complementingthe determinations pro-posedabove.

We have presented ournew strategy for semileptonicdecays. However,itactuallyappliestoanyflavor-specificB0

s mode,in

par-ticularB0s

Ds

π

+.Moreover,itcanbeappliedtoanyDs

fDs decay which is experimentally accessible. In contrast to conven-tionalanalysesofCPviolationinsuchtransitions,thenewstrategy isnotaffectedbytheproductionasymmetry

AP

(

Ds

)

= (−

0

.

33

±

0

.

22

±

0

.

10

)

% (32)

betweenthe D+s andDs mesons[31].Weadvocatetoimplement thenewmethodatLHCbandfuturerunsofBelleII atthe

ϒ(5S)

resonance.

4. DirectCPviolation

ThekeypointofournewstrategyisthattheDs mesons,which

are produced inthe B

¯

0

s

Ds



+

ν

 transitions,will decayfurther as Ds

fDs.Therefore,therateasymmetriesaresensitive toCP violationin boththe B

¯

0s andthe subsequent Ds decays.Keeping

onlyleading-ordertermsinCP-violatingeffectsintheCP asymme-trydefinedin(26),weobtain

aCP

(

+

ν



;

fDs

)

=

a (Bs) CP

|

+ν

+

a (Ds) CP

|

fDs

,

(33) where a(CPBs)

|

+ν

(

B 0 s

Ds



+

ν



)

− ( ¯

B0s

D+s



ν

¯



)

(

B0s

Ds



+

ν



)

+ ( ¯

B0s

D+s



ν

¯



)

(34) probesCPviolationattheB0s amplitudelevel,whereas

a(CPDs)

|

fDs

(

Ds

fDs

)

− (

D+s

→ ¯

fDs

)

(

Ds

fDs

)

+ (

D+s

→ ¯

fDs

)

(35) measuresCPviolationinthe Ds

fDs processes.

Such “direct” CP asymmetries can be generated through the interference between at least two decay amplitudes with non-trivial CP-conservingandCP-violating phasedifferences [32]. The CP-conserving phasescanbe induced through stronginteractions orabsorptivepartsofloopdiagrams,whiletheCP-violatingphases areprovidedbytheCKMmatrixintheSMorNPeffects.

In theSM, a(CPBs)

|

+ν is zeroatleading order inweak interac-tionsandtakesavanishinglysmallvaluethroughhigher-order ef-fects[33–35].EveninthepresenceofNP,thisCPasymmetry can-not take sizeablevalues.Forthenon-leptonicdecay B0s

Ds

π

+

things have to be assessed more carefully, as there may still be roomforNPatthedecayamplitudelevel[36,37]andstrong inter-actionsareatwork.Itwouldbeinterestingtomeasure

aCP

(

π

+

;

fDs

)

aCP

(

+

ν



;

fDs

)

=

a (Bs)

CP

|

π+ (36)

(6)

ConcerningdirectCPviolationinDsdecays,non-leptonic

chan-nels play the key role. In the SM, the CPasymmetries are small butmaybeenhanced throughNP[38,39].Predictionssufferfrom hadronicuncertainties,wherethe SU

(3)

flavorsymmetry offersa usefultool[40].

LHCb employed Ds

K+K

π

∓ modes for the analysis of

assl. Consequently, the experimental result in (3) actually probes

(

assl

)

eff

=

assl

+

2a

(Ds)

CP

|

K+Kπ∓.Using theconstraintforassl in (18), wemayconvert(3)into

a(CPDs)

|

K+Kπ

= (

0

.

19

±

0

.

17

)

×

10−2

,

(37)

which isfive times more precise than the average

(0.5

±

0.9)

×

10−2 [13] of CLEO measurements [41,42] and about two times

more precise than (32), thereby illustrating the potential of the newmethod.

To probe NP, decays with penguin loop contributions, such as D+s

π

+K0

,

π

0K+

,

K+

φ,

are mostpromising. Taking D+s

π

+KS as an example [43,44], LHCb measured a(CPDs)

|

KSπ±

=

−(

0.38

±

0.46

±

0.17)%[45],whichhasanuncertaintythreetimes largerthan(37).

5. Conclusions

We are moving towards impressive new frontiers in high-precisionstudiesofCPviolation.Theglobalagreementofthe cur-rent data with the Standard Model raises the question of how much space is left for New Physics. In the case of CP violation in B0

sB

¯

0s oscillations,we haveused experimental data to obtain

assl

= (

0.004

±

0.075)

×

10−2, pushing this observable well be-lowthecurrentlyaccessibleregime. Wehavepresenteda model-independent formalism in terms of CP-violating phases and de-cay rates, allowing us to further refine this range through im-proveddataforCPviolationindecaysofthekindB0

s

J

/ψφ

and

B0s

D(s∗)+D(s∗)−.

The assl observable has been inthe focus for many years and was determined by means of flavour-specific B0s

Ds



+

ν

 de-cays. In view of our findings for as

sl, we propose a new strategy

to utilizesuch decays. It allows us to determine the B0

s

produc-tionasymmetry AP

(

Bs

)

andtheCPasymmetryaCP

(

+

ν



;

fDs

).

The currentexperimental situationfor AP

(

Bs

)

leavesroom for

signifi-cantimprovement,whileaCP

(

+

ν



;

fDs

)

isgovernedbythedirect CPviolationinDs

fDs,thereby openinganewavenueforthe explorationofthisphenomenon.

Wehavealso givenexpressions allowing usto probewhether

B0s

Ds



+

ν

 decays are actually flavor-specific. This feature, whichiscommonly used,ismostplausiblebut hasnot yetbeen testedexperimentally.

The new strategy can also be applied to other flavor-specific modes, such as B0

s

Ds

π

+. It shifts flavor-specific B0s decays

fromtheirwell-knownroleasprobesofCPviolationinB0

sB

¯

0s

os-cillations to newtools for the exploration of direct CP violation, inparticularin D±s decays.As CPviolationinthesemodesmight beenhancedbyNewPhysics,wehaveanewframeworktosearch forsuchsignatures,allowingustotakefulladvantageofthe corre-spondingphysicspotentialinthehigh-precisioneraofheavy-flavor studies.

Acknowledgements

We would like to thank Marcel Merk and Vincenzo Vagnoni forusefuldiscussions. This work is supported by the Foundation forFundamental Researchon Matter (FOM)andby the Deutsche Forschungsgemeinschaft (DFG) within research unit FOR 1873 (QFET).

References

[1] G.Borissov,R.Fleischer,M.H.Schune,Annu.Rev.Nucl.Part.Sci.63(2013)205,

http://dx.doi.org/10.1146/annurev-nucl-102912-144527,arXiv:1303.5575 [hep-ph].

[2] P.Ball,R.Fleischer,Eur.Phys.J.C48(2006)413,http://dx.doi.org/10.1140/epjc/ s10052-006-0034-4,arXiv:hep-ph/0604249.

[3] M.Artuso,G.Borissov,A.Lenz,Rev.Mod.Phys.88 (4)(2016)045002,http://dx. doi.org/10.1103/RevModPhys.88.045002,arXiv:1511.09466[hep-ph].

[4] I.Dunietz,R.Fleischer,U.Nierste,Phys.Rev.D63(2001)114015,http://dx.doi. org/10.1103/PhysRevD.63.114015,arXiv:hep-ph/0012219.

[5] R.Aaij,etal.,LHCbCollaboration,Phys.Rev.Lett.117 (6)(2016)061803,http:// dx.doi.org/10.1103/PhysRevLett.117.061803,arXiv:1605.09768[hep-ex]. [6] Y.Amhis, etal., HeavyFlavorAveragingGroup(HFAG) Collaboration,arXiv:

1412.7515[hep-ex],http://www.slac.stanford.edu/xorg/hfag/.

[7] V.M.Abazov,etal.,DØCollaboration,Phys.Rev.D89 (1)(2014)012002,http:// dx.doi.org/10.1103/PhysRevD.89.012002,arXiv:1310.0447[hep-ex].

[8] A.Lenz,U.Nierste,J.Charles,S.Descotes-Genon,H.Lacker,S.Monteil,V. Niess, S. T’Jampens, Phys. Rev. D 86 (2012) 033008, http://dx.doi.org/10.1103/ PhysRevD.86.033008,arXiv:1203.0238[hep-ph].

[9] A.Badin,F.Gabbiani,A.A.Petrov,Phys.Lett.B653(2007)230,http://dx.doi. org/10.1016/j.physletb.2007.07.049,arXiv:0707.0294[hep-ph].

[10]A.Badin,F.Gabbiani,A.A.Petrov,arXiv:0909.4897[hep-ph].

[11] C.Bobeth,U.Haisch,ActaPhys.Pol.B44(2013)127,http://dx.doi.org/10.5506/ APhysPolB.44.127,arXiv:1109.1826[hep-ph].

[12] C.Bobeth,U.Haisch,A.Lenz,B.Pecjak,G.Tetlalmatzi-Xolocotzi,J.High En-ergyPhys.1406(2014)040,http://dx.doi.org/10.1007/JHEP06(2014)040,arXiv: 1404.2531[hep-ph].

[13] K.A.Olive,et al.,ParticleDataGroupCollaboration,Chin. Phys.C38(2014) 090001,http://dx.doi.org/10.1088/1674-1137/38/9/090001.

[14] S.Faller,R.Fleischer,T.Mannel,Phys.Rev.D79(2009)014005,http://dx.doi. org/10.1103/PhysRevD.79.014005,arXiv:0810.4248[hep-ph].

[15] K.DeBruyn,R.Fleischer,J.HighEnergyPhys.1503(2015)145,http://dx.doi. org/10.1007/JHEP03(2015)145,arXiv:1412.6834[hep-ph].

[16] L.Bel,K.DeBruyn,R.Fleischer,M.Mulder,N.Tuning,J.HighEnergyPhys. 1507(2015)108,http://dx.doi.org/10.1007/JHEP07(2015)108,arXiv:1505.01361 [hep-ph].

[17] Y.Grossman,Y.Nir,M.P.Worah,Phys.Lett.B407(1997)307,http://dx.doi.org/ 10.1016/S0370-2693(97)00675-8,arXiv:hep-ph/9704287.

[18] Z.Ligeti,M.Papucci,G.Perez,Phys.Rev.Lett.97(2006)101801,http://dx.doi. org/10.1103/PhysRevLett.97.101801,arXiv:hep-ph/0604112.

[19] J.Charles,etal.,Phys.Rev.D91 (7)(2015)073007,http://dx.doi.org/10.1103/ PhysRevD.91.073007, arXiv:1501.05013 [hep-ph]; for updates, see http:// ckmfitter.in2p3.fr.

[20] A.Bevan,etal.,arXiv:1411.7233[hep-ph];forupdates,seehttp://www.utfit. org.

[21] R.Aaij,etal.,LHCbCollaboration,Phys.Rev.Lett.114 (4)(2015)041801,http:// dx.doi.org/10.1103/PhysRevLett.114.041801,arXiv:1411.3104[hep-ex]. [22] R.Aaij,etal.,LHCbCollaboration,Phys.Lett.B736(2014)186,http://dx.doi.

org/10.1016/j.physletb.2014.06.079,arXiv:1405.4140[hep-ex].

[23] S.Stone,L.Zhang,Phys.Rev.D79(2009)074024,http://dx.doi.org/10.1103/ PhysRevD.79.074024,arXiv:0812.2832[hep-ph],arXiv:0909.5442[hep-ex]. [24] R.Fleischer,R.Knegjens,G.Ricciardi,Eur.Phys. J.C71(2011)1832,http://

dx.doi.org/10.1140/epjc/s10052-011-1832-x,arXiv:1109.1112[hep-ph]. [25] R.Aaij,et al., LHCbCollaboration, Phys. Rev.Lett.113 (21) (2014)211801,

http://dx.doi.org/10.1103/PhysRevLett.113.211801,arXiv:1409.4619[hep-ex]. [26] I.Adachi,et al., BelleCollaboration, Phys. Rev.D77(2008)091101, http://

dx.doi.org/10.1103/PhysRevD.77.091101,arXiv:0802.2988[hep-ex].

[27] A.S.Dighe,I.Dunietz,R.Fleischer,Eur.Phys.J.C6(1999)647,http://dx.doi.org/ 10.1007/s100529800954,arXiv:hep-ph/9804253.

[28] R.Fleischer,Nucl.Phys.B671(2003)459,http://dx.doi.org/10.1016/j.nuclphysb. 2003.08.010,arXiv:hep-ph/0304027.

[29] R.Aaij,etal.,LHCbCollaboration,Phys.Lett.B739(2014)218,http://dx.doi. org/10.1016/j.physletb.2014.10.005,arXiv:1408.0275[hep-ex].

[30] R.Aaij,etal.,LHCbCollaboration,Phys.Lett.B728(2014)607,http://dx.doi. org/10.1016/j.physletb.2013.12.030,arXiv:1308.1048[hep-ex].

[31] R.Aaij,etal.,LHCbCollaboration,Phys.Lett.B713(2012)186,http://dx.doi. org/10.1016/j.physletb.2012.06.001,arXiv:1205.0897[hep-ex].

[32] R.Fleischer,Phys.Rep.370(2002)537,http://dx.doi.org/10.1016/S0370-1573 (02)00274-0,arXiv:hep-ph/0207108.

[33] S.Bar-Shalom,G.Eilam,M.Gronau,J.L.Rosner,Phys.Lett.B694(2011)374,

http://dx.doi.org/10.1016/j.physletb.2010.10.025,arXiv:1008.4354[hep-ph]. [34]J.Zupan,arXiv:1101.0134[hep-ph].

[35] J. Brod, J. Zupan, J. High Energy Phys. 1401 (2014) 051, http://dx.doi.org/ 10.1007/JHEP01(2014)051,arXiv:1308.5663[hep-ph].

[36] J.Brod,A.Lenz,G.Tetlalmatzi-Xolocotzi,M.Wiebusch,Phys. Rev.D92 (3) (2015)033002,http://dx.doi.org/10.1103/PhysRevD.92.033002,arXiv:1412.1446 [hep-ph].

(7)

324 R. Fleischer, K.K. Vos / Physics Letters B 770 (2017) 319–324

[37] T.Jubb,M. Kirk,A.Lenz,G.Tetlalmatzi-Xolocotzi,Nucl.Phys. B915(2017) 431–453, http://dx.doi.org/10.1016/j.nuclphysb.2016.12.020, arXiv:1603.07770 [hep-ph].

[38] S.Bianco,F.L.Fabbri,D.Benson,I.Bigi,Riv.NuovoCimento26 (7)(2003)1,

http://dx.doi.org/10.1393/ncr/i2003-10003-1,arXiv:hep-ex/0309021. [39]M.Gersabeck,in:FWNP,PoS001(2015),arXiv:1503.00032[hep-ex].

[40] S.Müller,U.Nierste,S.Schacht,Phys. Rev.D92 (1)(2015)014004, http:// dx.doi.org/10.1103/PhysRevD.92.014004,arXiv:1503.06759[hep-ph]; S.Müller,U.Nierste,S.Schacht,Phys.Rev.Lett.115 (25)(2015)251802,http:// dx.doi.org/10.1103/PhysRevLett.115.251802,arXiv:1506.04121[hep-ph].

[41] P.U.E. Onyisi,et al.,CLEOCollaboration,Phys. Rev.D88 (3)(2013) 032009,

http://dx.doi.org/10.1103/PhysRevD.88.032009,arXiv:1306.5363[hep-ex]. [42] J.P.Alexander,etal.,CLEOCollaboration,Phys.Rev.Lett.100(2008)161804,

http://dx.doi.org/10.1103/PhysRevLett.100.161804,arXiv:0801.0680[hep-ex]. [43] H.J.Lipkin,Z.-Z.Xing,Phys.Lett.B450(1999)405,http://dx.doi.org/10.1016/

S0370-2693(99)00170-7,arXiv:hep-ph/9901329.

[44] B.Bhattacharya,M.Gronau,J.L.Rosner,Phys.Rev.D85(2012)054014,http:// dx.doi.org/10.1103/PhysRevD.85.054014,arXiv:1201.2351[hep-ph].

[45] R.Aaij,etal.,LHCbCollaboration,J.HighEnergyPhys.1410(2014)25,http:// dx.doi.org/10.1007/JHEP10(2014)025,arXiv:1406.2624[hep-ex].

Referenties

GERELATEERDE DOCUMENTEN

The cost-effectiveness and budget impact of three strategies for HCV screening and subsequent treatment in recently arrived migrants were evaluated: (i) no screening, (ii) screening

With regard to quantity difference, 75% of the respondents said that there was a quantity difference per enset processed depending on the type of processing

Mogelijk als re- actie op de zeer ingrijpende stedelijke herstructu- rering die zich voltrok op dit direct aan de buiten- zijde van het oude stadshart gelegen verouderde

[r]

Daarna wordt bekeken op welke manier binnen het domein DMCI onderzoeksresultaten worden uitgegeven door het PublishingLab en er wordt ook gekeken naar uitgaven van de

Natuurlijk is het nog beter om niet te veel producten buiten de Schijf van Vijf te eten of drinken.. • Heb je ongeveer een

Tulp en lelie zorgen voor veel werk bij Maarten de Kock, onderzoeker plantenvirologie en diagnostiek van PPO.. Bij tulp gaat het om vra- gen over de beheersing van virus- sen

Recent heeft de Minister van Landbouw van Noord Rijn Westfalen (Duitsland) aangekondigd wetgeving te zullen ontwikkelen, die het doden van haantjes verbiedt 3. De discussie over