• No results found

Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms

N/A
N/A
Protected

Academic year: 2021

Share "Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious

biofilms

Quan, Kecheng; Zhang, Zexin; Ren, Yijin ; Busscher, Henk; van der Mei, Henny C.; Peterson,

Brandon W.

Published in:

Journal of Materials Science & Technology

DOI:

10.1016/j.jmst.2020.08.031

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Quan, K., Zhang, Z., Ren, Y., Busscher, H., van der Mei, H. C., & Peterson, B. W. (2021). Possibilities and

impossibilities of magnetic nanoparticle use in the control of infectious biofilms. Journal of Materials

Science & Technology, 69(10), 69-78. https://doi.org/10.1016/j.jmst.2020.08.031

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

JournalofMaterialsScience&Technology69(2021)69–78

ContentslistsavailableatScienceDirect

Journal

of

Materials

Science

&

Technology

jo u r n a l h o m e p a g e :w w w . j m s t . o r g

Invited

Review

Possibilities

and

impossibilities

of

magnetic

nanoparticle

use

in

the

control

of

infectious

biofilms

Kecheng

Quan

a,b

,

Zexin

Zhang

a,∗

,

Yijin

Ren

c

,

Henk

J.

Busscher

b,∗

,

Henny

C.

van

der

Mei

b,∗

,

Brandon

W.

Peterson

b

aCollegeofChemistry,ChemicalEngineeringandMaterialsScience,SoochowUniversity,Suzhou,215123,China

bUniversityofGroningenandUniversityMedicalCenterGroningen,DepartmentofBiomedicalEngineering,9713AV,Groningen,theNetherlands cUniversityofGroningenandUniversityMedicalCenterGroningen,DepartmentofOrthodontics,Hanzeplein1,9713GZ,Groningen,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5June2020

Receivedinrevisedform11July2020 Accepted18July2020

Availableonline9August2020 Keywords: Magneticnanoparticles Magnetictargeting Biofilm Infection Antimicrobials

a

b

s

t

r

a

c

t

Targetingofchemotherapeuticstowardsatumorsitebymagneticnanocarriersisconsideredpromising

intumor-control.Magneticnanoparticlesarealsoconsideredforuseininfection-controlasanewmeans

topreventantimicrobialresistancefrombecomingthenumberonecauseofdeathbytheyear2050.To

thisend,magneticnanoparticlescaneitherbeloadedwithanantimicrobialforuseasadeliveryvehicle

ormodifiedtoacquireintrinsicantimicrobialproperties.Magneticnanoparticlescanalsobeusedforthe

localgenerationofheattokillinfectiousmicroorganisms.Althoughappealingfortumor-and

infection-control,injectioninthebloodcirculationmayyieldreticuloendothelialuptakeandphysicalobstruction

inorgansthatyieldreducedtargetingefficiency.Thiscanbepreventedwithsuitablesurface

modifica-tion.However,precisetechniquestodirectmagneticnanoparticlestowardsatargetsitearelacking.The

problemofprecisetargetingisaggravatedininfection-controlduetothemicrometer-sizeofinfectious

biofilms,asopposedtotargetingofnanoparticlestowardscentimeter-sizedtumors.Thisreviewaimsto

identifypossibilitiesandimpossibilitiesofmagnetictargetingofnanoparticlesforinfection-control.We

firstreviewtargetingtechniquesandthespatialresolutiontheycanachieveaswellassurface-chemical

modificationsofmagneticnanoparticlestoenhancetheirtargetingefficiencyandantimicrobialefficacy.

Itisconcludedthattargetingproblemsencounteredintumor-controlusingmagneticnanoparticles,are

neglectedinmoststudiesontheirpotentialapplicationininfection-control.Currentlybiofilm

target-ingbysmart,self-adaptiveandpH-responsive,antimicrobialnanocarriersforinstance,seemseasierto

achievethanmagnetictargeting.Thisleadstotheconclusionthatmagnetictargetingofnanoparticles

forthecontrolofmicrometer-sizedinfectiousbiofilmsmaybelesspromisingthaninitiallyexpected.

However,usingpropulsionratherthanprecisetargetingofmagneticnanoparticlesinamagneticfield

totraversethroughinfectious-biofilmscancreateartificialchannelsforenhancedantibiotictransport.

Thisisidentifiedasamorefeasible,innovativeapplicationofmagneticnanoparticlesininfection-control

thanprecisetargetinganddistributionofmagneticnanoparticlesoverthedepthofabiofilm.

©2020PublishedbyElsevierLtdonbehalfofTheeditorialofficeofJournalofMaterialsScience&

Technology.

Contents

1. Introduction...70

2. Strategiestofabricatemagneticnanoparticles...70

3. Techniquesfortargetingandimagingmagneticnanoparticles...71

4. Surfacemodificationofmagneticnanoparticlestoimprovemagnetictargetingefficiency...72

5. Antimicrobialpropertiesofmagneticnanoparticles...72

∗ Correspondingauthors.

E-mailaddresses:zhangzx@suda.edu.cn(Z.Zhang),h.j.busscher@umcg.nl(H.J. Busscher),h.c.van.der.mei@umcg.nl(H.C.vanderMei).

https://doi.org/10.1016/j.jmst.2020.08.031

(3)

5.1. Magneticnanoparticlesasanantimicrobialdeliveryvehicle...72

5.2. Magneticnanoparticlesasnano-antimicrobials...73

6. Hyperthermiainducedbymagneticnanoparticlesasanantimicrobialstrategy...73

7. MagneticnanoparticlesfordisruptingtheEPSmatrixofaninfectiousbiofilm...73

8. Summaryandperspectivesoftheuseofmagneticnanoparticlesforinfection-control...74

DeclarationofCompetingInterest...77

Acknowledgements ... 77

References...77

1. Introduction

Over80%ofallhumanbacterialinfectionsarecausedby bacte-riagrowinginabiofilm-modeofgrowth[1].Biofilmsaredefined as communitiesof surface-adheringand surface-adapted bacte-riathatgrowinaself-producedmatrixofextracellularpolymeric substances (EPS). EPS acts as a glue, holding biofilm inhabi-tants together, and at the same time constitutes a barrier to thepenetrationand accumulationofantimicrobialsin an infec-tiousbiofilm.Therewith,thebiofilm-modeofgrowthcontributes to antimicrobial-resistance. Antimicrobial-resistance is hard to beatbycurrentantimicrobialsandthenumberof antimicrobial-resistantbacterialstrainsandspeciesisgrowingfast.Asaresult, infections by antimicrobial-resistant bacteria are predicted to becomethemaincauseofdeathintheyear2050[2].

Chemistsareworkingover-timetodevelopnovel antimicro-bialstopreventthispredictionfrombecomingtrueandespecially nanotechnology-based novelinfection-control strategies appear promising[3].Existingantimicrobialscanbeencapsulatedinsmart, self-targeting andpH-responsivenanocarrierstokillbacteria in infectiousbiofilms[4].Thesenanocarrierscanbeequippedwith “stealth”propertiesthatmakethem“invisible”intheblood cir-culation at physiological pH (7.4), but have strong affinity to negatively-chargedbacteriaoncetheycomeintotheacidic envi-ronmentofabiofilmthattransformstheirsurfacechargefroma neutralornegativechargetoapositiveone[5–7].Manynovel nano-antimicrobials generate reactive-oxygen species to which most bacterialstrainsandspeciesstillhavenoadequatedefense[8]. Pho-tothermalnanoparticlesthatcanlocallygeneratehighamountsof heattokillinfectiousbiofilminhabitants,constituteanewclassof nano-antimicrobialswithanentirelynew,antimicrobialworking mechanism[7].Otherstrategiestotreatbiofilmsaretheinhibition ofquorumsensingwhichisparticularlyaneffectivemethodtotreat Pseudomonasaeruginosarelatedcysticfibrosis[9,10]or enzyme-induceddispersalofbiofilmbydegradationofthebiofilmmatrix [11,12].

Magnetically-targetablenanoparticleswithorwithout antimi-crobialmodification,arealsonewinthefieldofbacterialinfections. Magneticnanoparticleshavebeeninitiallystudiedinorderto tar-getchemotherapeutics toa tumorsiteanditsimaging [13–15]. Targeting ofmagneticnanoparticlestowardsatumorsite using anexternalmagneticfieldcanenhancedrugaccumulationinthe tumor [16,17], asconfirmed usingmagnetic resonanceimaging [18–21].Nevertheless,despitetherelativelylargesizeoftumors, magnetictargetingisnottrivialrequiringsophisticatedtechniques andsurfacemodificationtopreventreticuloendothelialuptakeor physicalobstructionintheliverorotherorgansduringnanoparticle transportthroughthebloodcirculation[22].

Clinically,theproblemsassociatedwithtumortreatmentbear similaritywiththetreatmentofinfection.Moreover,atumor rep-resentsaself-encapsulatedenvironmentwithlowpHandhypoxic conditions, as also existing in a biofilm. These considerations have stimulated extensive exploration of magnetic nanoparti-clesasa novelstrategy forbacterialinfection-control.Here, we provide a critical review of the use of magnetically-targetable

Table1

Sizeofclinicallyoccurringinfectiousbiofilms,measuredastheirlongestdiameter orlength[23].

Biofilmdemonstratedin Approximatesize(␮m)

Lunginfections 4-100

Chronicwounds 35-200

Softtissuefillers 5-25

Otitismedia 4-80

Implantassociated 5-500

Catheterandshuntassociated 5-1000

Chronicosteomyelitis 5-50

Chronicrhinosinusitis 5-30

Contactlenses 50-100

nanoparticlesasanovelinfection-controlstrategywiththeaim ofderivingbetterinsightinthepossibilitiesandimpossibilitiesof magneticnanoparticlesforthecontrolofmicrometer-sized infec-tiousbiofilms(seeTable1).Thesmallsizeofinfectiousbiofilms ascomparedwithcentimeter-sizedtumors[24]makesmagnetic targetingtobiofilmstechnicallychallenging. Therefore, wewill firststartwithanoverviewofmagneticnanoparticles, magnetic-targetingtechniquesandantimicrobialmodificationofmagnetic nanoparticles.Secondly,wewilldiscusstheapplicationsof mag-netic nanoparticles and magnetic-targeting techniques towards infectiousbiofilms.Finally,wewillsummarizetheperspectivesof theuseofmagneticnanoparticlesforinfection-control.

2. Strategiestofabricatemagneticnanoparticles

Magneticnanoparticlescanbepreparedfromhighlysaturated magnetizationmaterialssuchastransitionmetalslikeFe,Co,Ni andmetaloxideslikeFe3O4,␥-Fe2O3,accordingtoanumberof

differentmethods.Puremetalssuchasironnanoparticlespossess thehighestmagnetization(upto218emug-1)[25,26]but

usu-allyalsopossesshightoxicityandarepronetooxidation[27,28]. Therefore,puremetalnanoparticlesarenot consideredsuitable forbiomedicalapplications.Morestableandbiocompatiblemetal oxidessuchassuperparamagneticironoxidenanoparticlesare pre-ferreddespitetheirlowermagnetization(mostlylowerthan100 emug-1)[13,25,29].Moreover,antimicrobialsurface

functional-izationisrelativelyeasyformetaloxides[30].

Iron-basedmagneticnanoparticlesaremostcommonandcanbe preparedbyavarietyofmethods,summarizedinTable2.The sim-plestmethodisco-precipitation[31].Preparationoflargeamounts ofmagnetic nanoparticlesbyco-precipitation isrelatively easy, butasa disadvantage,oftenyieldsanon-uniformsize distribu-tion.Moreuniformsizedistributionscanbeobtainedbythermal decomposition[32,33].However,thermaldecompositionrequires highreactiontemperaturesupto365◦Canduseofanorganicphase [34].Hydrothermalreactionavoidstheuseoforganicphasesand canbedoneinanaqueousphase,whilemaintainingtheadvantages ofthermaldecomposition,includingpreparationoflargeamounts andawell-controlledsizedistribution.Asadisadvantage,the reac-tionrequirestemperaturesupto200◦Cthatcanonlybeachieved inanaqueousphaseunderhighpressureduringtimeperiodsof8

(4)

K.Quanetal. JournalofMaterialsScience&Technology69(2021)69–78

Table2

Summaryofmethodstopreparemagneticironoxide-basednanoparticles(MIONPs),togetherwiththeirrespectiveadvantagesanddisadvantagesperceived.

Material Schematicpreparationmethod (+)Advantages/

(-)Disadvantages

Refs. Fe3O4,

␥-Fe2O3

Co-precipitation (+)Facilepreparation/ (-)Largesizedistribution

[31]

Fe3O4,

␥-Fe2O3,

MFe2O4(M=Fe,Co,Mn)

Thermaldecomposition (+)Narrowsizedistribution/

(-)Highreactiontemperature,use ofanorganicphase

[32–34]

Hollow/core-shell Fe3O4

Hydrothermalsynthesis (+)Well-controlledsize

distribution/

(-)Highreactiontemperature,high pressureandlongreactiontime

[35,36]

Fe3O4,

␥-Fe2O3,

␣-Fe2O3

Sol-gelsynthesis (+)Well-controlledsizeand

structure

(-)Longreactiontime

[37]

Fe3O4 Electrochemicalreaction (+)Facilesizecontrol/

(-)Poorreproducibility

[38]

Fe3O4,

Fe2O3,

FeO

Aerosol-vaporization (+)Largeyields/

(-)Highreactiontemperature, largesizedistribution

[39,40]

Fe3O4 Gas-phasedeposition (+)High

structurecontrol/

(-)Highreactiontemperature

[41]

Fe3O4,

Fe3S4,

FeS2

Microbialsynthesis (+)Largescaleproduction,low

temperature/

(-)Longreactiontime,largesize distribution

[42,43]

horlonger.Duetothehighpressurenecessaryforhydrothermal reactionstopreparemagneticnanoparticles,specialsafety precau-tionsarerequired[35,36].Severalothermethodsexisttoprepare magneticnanoparticlesthatarelistedinTable2,buttheseareless commoninbiomedicalapplications.

3. Techniquesfortargetingandimagingmagnetic nanoparticles

Magnetictargetingistypicallyachievedbypropulsionof mag-neticnanoparticlesusingamagneticfield.Propulsionofmagnetic

(5)

Table3

Summaryoftargetingandimagingtechniquesofmagneticnanoparticles,togetherwiththeirrespectiveadvantagesanddisadvantages.Spatialresolutionwasexpressedin differentunits,dependingonwhetherinvolving2D,planaror3Dvolumetrictargeting.

Targetingtechnique Schematics Spatialresolution (+)Advantages/ (-)disadvantages

Refs.

Single-magnet 50-100mm3 (+)Easy/

(-)One-directionalandlowspatialresolution

[47]

Multi-magnet 0.04-16mm2 (+)Highcontrollability/

(-)Insufficientobservationindeeptissue

[51]

Magneticparticleimaging 0.3-0.5mm (+)Realtimeimaging/

(-)Lackoftransitiontoclinicalapplication

[54]

nanoparticlescanbedoneatrelativelylowmagneticfieldstrengths oflessthan3T,whichcausesnonegativeside-effectstohuman tissue [22,44]. Targeting, as opposed to simple propulsion, of magnetic nanoparticlestowardsa diseasedsite however,is not trivialandsuffersfromlowspatialresolutionandmagnetic tar-geting efficiency, i.e. the percentage of magnetic nanoparticles that reacha targetsite. Theeasiesttechniqueformagnetic tar-getingistouseasingle-magnet(seeTable3)toattractmagnetic nanoparticlestoatargetsite[45,46].Single-magnettargetingis fre-quentlyapplied,eitherinlaboratoryoranimalmodels[25,47–49]. However,single-magnettargetingisone-directionalandcritically dependsontiming[50],whichlimitsitstargetingaccuracy.A multi-magnet systemconsistsofseveralelectromagnetsarrangedina spatialarraytoenablemoreaccurate,multi-directionaltargeting. Often,multi-magnettargetingisdonewithelectromagnets allow-ingtovarythemagneticfieldstrengthforprecisetargeting.Asa result,millimeterresolutioncanbeachievedintargetingof mag-neticnanoparticlesthroughtheuseofaneightmagnettechnique [51].Jinetal.[22]usedaneightmagnetsystemfortargetingof magneticnanoparticleswithmillimeterresolutionina2D experi-mentalplanarmodelwithahightargetingefficiencyofupto89%. Yet,inreal-lifegeometries,3Dmillimeterresolutionismore dif-ficulttoobtainthaninexperimentalmodels,particularlyindeep tissues[52].

For effective invivo application of3D targeting of magnetic nanoparticles,itisthereforedesirabletocombinetargetingand real-timeimagingofmagneticnanoparticles[53].Magnetic Res-onance Imaging (MRI) is clinically widely used for imaging. Theoretically MRI couldalso beused for targeting witha high spatialresolution,butinpracticethemagneticfieldappliedfor tar-getingwillinterferewiththeimagingprocess[53]andviceversa.In ordertoallowimagingwithoutinterferingwithtargeting,magnetic particleimaging(MPI)canbeapplied[54].MPIisatomographic imagingmethodinitiallydesignedtoimagemagnetictracersinthe humanbody.MPIisbasedonapplicationofanoscillatingmagnetic fieldincombinationwithaposition-dependent,time-independent field.Sincethemagnetizationcurveofmagneticnanoparticlesis non-linear, onlynanoparticlespositionedin thefield-freepoint (seeTable3),showoscillatingmagnetization.Accordingly, mag-neticnanoparticlescanbeimagedwithasub-millimeterresolution [54].MPIhowever,isstillunderdevelopment.Takentogetherit

mustbeconcludedthathigh-efficiency,high-resolutiontargeting andimagingofmagneticnanoparticlesisfarfromeasyandmay currentlyevenbeconsideredout ofreachfor micrometer-sized infectiousbiofilms.

4. Surfacemodificationofmagneticnanoparticlesto improvemagnetictargetingefficiency

Althoughmagneticnanoparticlespossesshighbiocompatibility evenwithoutsurfacemodification[13],non-uniformsize distribu-tionandpooraqueousdispersibilityaffectthemagnetictargeting efficiencyinvivo[55]. Magnetictargetingefficiencyofmagnetic nanoparticlesinabsenceofsurfacemodificationisrelativelylow in vivo, around 0.1% due to aggregation that increases reticu-loendothelial uptake and yields physical obstruction in organs [16,56]. Surface modification of magnetic nanoparticles using poly(ethyleneglycol)(PEG)ordextrancanpreventaggregationby increasingthestericrepulsionbetweennanoparticlesandmakethe nanoparticlesbiologicallyinvisiblewithreducedinvitrouptakein macrophages(Fig.1(a))[57]orinvivoobstructionintheliveror otherorgans (Fig.1(b))[56].Modificationofmagnetic nanopar-ticles canalso bedone withinorganic materialssuchas silica, increasingtheirhydrophilicitytopreventaggregationandincrease magnetictargetefficiency[58].Silicaencapsulationalsoenables facilebindingofotherfunctionalgroups,butgoesattheexpense ofmagnetizationofthenanoparticles[59].

5. Antimicrobialpropertiesofmagneticnanoparticles

Magneticnanoparticles cannot onlybe modified topossess stealthpropertiesaidingtheirmagnetictargetingefficiency,but canalsobeantimicrobiallymodified,eitherimplyingtheiruseas anantimicrobialdeliveryvehicleorequippingthemwith antimi-crobialsurfacefunctionalities.

5.1. Magneticnanoparticlesasanantimicrobialdeliveryvehicle

Magneticnanoparticlescanaidantimicrobialtransportin var-ious ways. Encapsulation of iron oxide magnetic nanoparticles togetherwithmethicillinencapsulatedinpolymersomes[48]could bepropelledintoamethicillin-resistantStaphylococcusepidermidis

(6)

K.Quanetal. JournalofMaterialsScience&Technology69(2021)69–78

Fig.1.Surfacemodificationofmagneticnanoparticlestoimprovetargetefficiency.(a)InvitrouptakeofunmodifiedsuperparamagneticMNPsandPEGmodifiednanoparticles inmousemacrophagesafteroneandfivedaysofgrowthinpresenceofnanoparticles,dataadaptedfrom[43].(WithpermissionfromElsevierLtd.).(b)Nanoparticlecollection intheliverandspleenofrats1hpost-administrationofunmodifiedironoxideMNPsandMNPsmodifiedPEGofdifferentmolecularweight[42].(WithpermissionofElsevier Ltd.).

biofilm under theinfluence of a single-magnet field tokill the majority ofbiofilmbacteria(Fig.2(a)).In absenceof encapsula-tion, Wang et al. [60] conjugatedgentamicin tomagnetic iron oxidenanoparticlesforantibioticdeliveryobservingdeepkilling inStaphylococcusaureusbiofilms,whileDurmusandWebster[61] appliedsilver-conjugatedsuperparamagneticironoxide nanopar-ticlestoeradicatemethicillin-resistantS.aureusbiofilms(Fig.2(b)). Magneticironoxidenanoparticleshavealsobeenmodifiedtocarry antimicrobialphotodynamicagentsintooralbiofilmsthatcreate reactiveoxygenspeciesuponphoto-irradiation[62].

Nearly all studies using magnetic propulsion to penetrate magneticnanoparticlesintoabiofilm,assumehomogeneous distri-butionofnanoparticlesinbiofilms(Fig.2(c)),butthistypeofprecise targetingisnottrivialandrequiresextensivepilotstudiesbefore optimalmagneticfieldconditionsareestablished.Distributionof gentamicin-loadedmagneticnanoparticlesinanS.aureusbiofilm dependedcriticallyuponmagneticfieldconditions[50]. Accumu-lationofnanoparticlesnearthesurfaceofabiofilmorinitsdepth neartothesubstratumsurface occurredduetooverlyshort or longapplicationtimesofasingle-magnetfield.Thisyieldeda spe-cifictimedurationforoptimaldistributionofgentamicin-loaded nanoparticlesacrossthedepthofabiofilm(Fig.2(d))andmaximal killingofitsinhabitants(Fig.2(e)).

5.2. Magneticnanoparticlesasnano-antimicrobials

Iron oxide-based magnetic nanoparticles possess intrinsic antimicrobialproperties,suchasperoxidase-likeenzymemimetic activityenablingthemtoproducereactiveoxygenspecies caus-ingbacterialcellmembranedamage[63]andtherewithbacterial death[8,64].Antimicrobialeffectsofcarboxyl-grafted superpara-magneticironoxidenanoparticles(SPIONs)magneticallytargeted to staphylococcal biofilmswereattributed tothegeneration of reactiveoxygenspeciescausinganoxidativestress[49,65]. Mag-neticallyconcentratedinabiofilm,carboxyl-graftedSPIONscaused aneight-foldhigherpercentageofdeadstaphylococcithan gen-tamicin. Biofilm eradicating efficacyof SPIONscouldbefurther improvedinthepresenceofmetabolicstimuli(i.e.,fructose)due totheenhancedSPIONuptakeandantimicrobialsensitivityina methicillin-resistantS.aureus(MRSA)biofilms[8].SPIONshowed an81%increaseofkillingefficacyinthepresenceoffructoseand twoordersofmagnitudebetterkillingthanantibiotics.

6. Hyperthermiainducedbymagneticnanoparticlesasan antimicrobialstrategy

Magneticnanoparticlescanlocallygenerateheatupon expo-sure to an alternating current (AC) magnetic field. Heat can indiscriminatelykilldifferentbacterialstrainswithalowriskof inducingresistance.Magnetichyperthermaltreatmenthas there-fore been considered promising for killing antibiotic-resistant bacterialinfectionsafterappropriatetargeting[25,66].However, without appropriate targeting, hyperthermia can be a double-edgedswordthatcankillnotonlypathogenicbacteriabutalso healthytissuecells[67],whichcanlimititsclinicalapplications.

Magnetichypothermaltreatmenthassofarbeenconsidered for eradicationof P.aeruginosabiofilms (Fig. 3(a)and (b)) [68] andtreatmentofS.aureusinfectedwounds[69].Inaddition, mag-netichypothermaltreatmentcombinedwithantimicrobialusehas shownsynergisticeffectstowardseradicationofinfectiousbiofilms [66,70]. Magnetic hypothermia can also induce detachment of infectiousbacteriafromabiofilm(Fig.3(c))toallowsubsequent easierkillingof bacteriaby antibioticsin theirplanktonicstate [71].Besidesapplication ofmagnetichypothermal treatmentin infection-control, it is being considered to prevent bacterially-inducedfoodspoilagecausedbyPseudomonasfluorescens[72]and contaminationofwaterbyEscherichiacoli[73].

7. MagneticnanoparticlesfordisruptingtheEPSmatrixof aninfectiousbiofilm

Apartfromtheintrinsic,peroxidase-likeenzymemimetic activ-ity of iron oxide-based magnetic nanoparticles, their enzyme activity can also degrade the EPS that constitutes the matrix keeping biofilm inhabitants together [74]. In the presence of superparamagneticironoxidenanoparticles(SPIONs),H2O2

syn-ergisticallywithSPIONsdegradedtheEPSmatrixofStreptococcus mutansbiofilm(Fig.4(a))andcausedamorethan5-logreduction ofcellviabilitythatwasabsentforSPIONsorH2O2only(Fig.4(b)).

However,theconcentrationofH2O2usedherewasrelativelyhigh

(1%v/v),whichcanbeharmfultonormaltissue[75]andmay there-forelimitclinicalapplication.

The enzyme mimetic activity of iron oxide-based magnetic nanoparticlescanalsobeusedinatotallydifferentwaytoaffect theEPSmatrixinawaythataidseradicationofabiofilm.When magnetically propelled through a biofilm, these so-called Cat-alyticAntimicrobialmicroRobots(CARs)effectivelybrokedownthe EPSmatrixofabiofilm(Fig.5(a))tocompletelyremovebiofilms

(7)

Fig.2. Exampleoftheuseofantimicrobial-loadedmagneticnanoparticlesforthecontrolofinfectiousbiofilms.(a)Totalvolumeofmethicillin-resistantS.epidermidisbiofilms andfractionoflive-to-deadbacteriaupon24hexposuretopolymersome-encapsulatedironoxideMNPswithandwithoutmethicillinaftertargetinginasingle-magnetfield, asquantifiedusingconfocallaserscanningmicroscopy[48].(WithpermissionfromElsevierLtd.).(b)MassofMRSAbiofilmsexposedtosilver-conjugatedsuperparamagnetic ironoxidenanoparticles(SPIONs)inabsenceandpresenceofasingle-magnetfield[61].(WithpermissionfromWiley).(c)Commonlyassumedhomogeneousdistribution ofMNPdistributionacrossthedepthofaninfectiousbiofilmsunderanappliedsingle-magnetfield[61].(WithpermissionfromWiley).(d)DistributionofironoxideMNPs withconjugatedgentamicinacrossthedepthofaS.aureusbiofilmfordifferentexposuretimestoasingle-magnetfield,showinghomogeneousdistributionforanexposure timeof5min[50].(WithpermissionfromAmericanChemicalSociety).(e)Similaraspanel(d),showingmaximalkillingacrossthedepthofaS.aureusbiofilmforamagnet fieldexposuretimeof5min[50].(WithpermissionfromAmericanChemicalSociety).

and biofilmdebris froma surface,including dead bacteriaand degradedEPS[76].Magneticironoxidenanoparticlesmagnetically propelledthroughabiofilmhavealsobeenemployedtocreate arti-ficialwaterchannelsinS.aureusbiofilms(Fig.5(b))toenhance antibioticpenetrationandkilling[77].Diggingofartificial chan-nelsbymagneticallypropellednanoparticlesinastaphylococcal biofilm increased thebacterialkilling efficacy ofgentamicin 4-6 fold. Importantly,this couldbeachieved byrelatively rough, unprecisemagneticpropulsionofmagneticnanoparticlesintwo perpendiculardirectionsthroughabiofilm.

8. Summaryandperspectivesoftheuseofmagnetic nanoparticlesforinfection-control

Majorresearcheffortshavebeenmadetofacilitatetheuseof magneticnanoparticlesforinfection-control,mostnotablybased

onthepossibilitytodirectmagneticnanoparticlestoan infection-siteusinganappliedmagneticfield.Magneticnanoparticleshave threeimportantintrinsicpropertiesthatmakethemsuitableasan antimicrobialwithoutfurtherantimicrobialmodification:(1)their abilitytogeneratereactiveoxygenspeciesthatcancause bacte-rialcellwalldamage,(2)theirphotothermalpropertiesthrough whichtheycanlocallygenerateheattokillinfectiousbacteria,(3) theirabilitytodisrupttheEPSmatrixofabiofilm(seesummary inFig.6).Apartfromthis,magneticnanoparticlescanbeusedas antimicrobialnanocarriers(Fig.6).Forinvivousehowever,surface modificationofmagneticnanoparticlesisrequiredtopreventtheir aggregationandtherewithreticuloendothelialuptakeandphysical obstructioninorgans.

The problems that arise in magnetic targeting of magnetic nanoparticles to micrometer-sized infection-sites are largely neglectedinthecurrentliterature.Moreover,ingenerallittle

(8)

K.Quanetal. JournalofMaterialsScience&Technology69(2021)69–78

Fig.3.Magnetichypothermaltreatmentininfection-control.(a)TemperatureofSPIONsuspensionswithdifferentSPIONconcentrationsasafunctionofACmagneticfield applicationtime.Suspensionvolumeequals0.15mL,ACpowerandfrequency1.47kWat494Hzandmagneticfieldstrengthamounts3kAm-1,respectively[68].(With

permissionfromElsevierLtd.).(b)LogCFUreductionsinP.aeruginosabiofilmsexposedtoSPIONsuspensionswithdifferentSPIONconcentrationsasafunctionofACmagnetic fieldapplicationtime[68].Fordetailsseepanel(a).(WithpermissionfromElsevierLtd.).(c)DetachmentofP.aeruginosafrombiofilmsexposedtoironoxide-basedmagnetic nanoparticlesuponapplicationofanACmagneticfield(leftpanel)andbacterialeftbehindinthebiofilm(rightpanel)[71].(WithpermissionfromNature).

Fig.4. Biofilmeradicatingofmagneticnanoparticlesbytheirperoxidase-likeactivity.(a)ConfocalLaserScanningMicrographsofS.mutansbiofilmdisruptionaftertreatment withsodiumacetatebuffer(control),SPIONsfollowedbysodiumacetatebufferexposure(SPION)orH2O2exposure(SPION+H2O2),sodiumacetatebufferfollowedbyH2O2

exposure(H2O2).GreenandredcoloursrepresentbacteriaandEPS,respectively.(b)BacterialcellviabilityinS.mutansbiofilmsaccordingtopanel(a)[74].(Withpermission

fromElsevier).

tion is given todescribe the precise magnetic field conditions used.Yet,precisemagnetictargeting,especially3Dtargetingwith micrometerresolutionindeeptissues,ishardtoobtaincompared

withchemical-targeting of nanoparticles.Smart, pH-responsive nanocarriersforinstance,cantargetthemselvestothelowpH envi-ronmentofaninfectiousbiofilminvitro[3].Recentlythesesmart

(9)

Fig.5.Useofmagneticallypropellednanoparticlesforthecontrolofinfectiousbiofilms.(a)Cross-sectionalviewofS.mutansUA159biofilmsafterhavingbeentraversedby catalytic,antimicrobialmagneticnanoparticlesusingastaticmagneticfield.Rod-likebiofilmstructurescanbeseen(whitedashedlines)togetherwithstructuraldamageto thebiofilm[76].(WithpermissionfromAAAS).(b)Artificialchannelscreatedbymagnetically-propelledMNPstocreateartificialwaterchannelsinabiofilm,visibleinthe CLSMoverlayerimageofagreen-fluorescentS.aureusasblackholes,whileindicateinthecross-sectionalimagebydouble-arrows[77].(WithpermissionfromWiley).

Fig.6. Summaryofadvantagesofmagneticnanoparticlesasanovelnano-antimicrobial.

(10)

K.Quanetal. JournalofMaterialsScience&Technology69(2021)69–78

pH-responsivenanocarriershavebeendemonstratedinvivotobe abletofindtheirownwaythroughthebloodcirculationsystem towardsabacterialinfection-site[78].Sincemagnetictargetingof antimicrobialnanoparticlescancurrentlynotbeachievedwiththe precisionrequiredtokillaninfectiousbiofilm,thisreviewyieldsthe conclusionthatclinicaltranslationoftheuseofmagnetic nanopar-ticleswillremainoutofreachunlessprecise,3Dmagnetictargeting techniquesbecomesavailable.

However,alternativeuseofmagneticnanoparticlesrelyingon magneticallypropellingmagneticnanoparticlesthroughabiofilm doesnotnecessarilyneedtargetingwiththe3Dresolutionrequired topreciselytargetabiofilmandmaintainsahighconcentration ofmagneticnanoparticlesinsidethebiofilm.Propellingmagnetic nanoparticles througha biofilmhasbeenshown todisrupt the biofilmmatrixstructuretoallowbetterantibioticpenetration[77] andevencausecompleteremovalofbiofilm[76].Thistypeofuse ofmagneticnanoparticlespossiblyincombinationwithclinically used antibiotics(alsoseeFig.6), isconsideredclosertoclinical translationthatrequiresprecisetargeting.

DeclarationofCompetingInterest

Theauthorsreportnodeclarationsofinterest

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC1100402), the National Natural Science Foundation of China (Nos. 11574222 and 21522404), and the University MedicalCenterGroningen(UMCG),TheNetherlands.

References

[1]D.Davies,Nat.Rev.DrugDiscovery2(2003)114–122.

[2]G.Humphreys,F.Fleck,Bull.W.H.O.94(2016)638–639.

[3]Y.Liu,L.Shi,L.Su,H.C.vanderMei,P.C.Jutte,Y.Ren,H.J.Busscher,Chem.Soc. Rev.48(2019)428–446.

[4]Y.Liu,H.J.Busscher,B.Zhao,Y.Li,Z.Zhang,H.C.vanderMei,Y.Ren,L.Shi,ACS Nano10(2016)4779–4789.

[5]D.Hu,Y.Deng,F.Jia,Q.Jin,J.Ji,ACSNano14(2020)347–359.

[6]Y.Gao,J.Wang,M.Chai,X.Li,Y.Deng,Q.Jin,J.Ji,ACSNano14(2020) 5686–5699.

[7]Y.Liu,H.C.vanderMei,B.Zhao,Y.Zhai,T.Cheng,Y.Li,Z.Zhang,H.J.Busscher, Y.Ren,L.Shi,Adv.Funct.Mater.27(2017),1701974.

[8]N.G.Durmus,E.N.Taylor,K.M.Kummer,T.J.Webster,Adv.Mater.25(2013) 5706–5713.

[9]N.Singh,M.Romero,A.Travanut,P.F.Monteiro,E.Jordana-Lluch,K.R.Hardie, P.Williams,M.R.Alexander,C.Alexander,Biomater.Sci.7(2019)4099–4111.

[10]N.Nafee,A.Husari,C.K.Maurer,C.Lu,C.DeRossi,A.Steinbach,R.W. Hartmann,C.M.Lehr,M.Schneider,J.ControlledRelease192(2014)131–140.

[11]J.J.T.M.Swartjes,T.Das,S.Sharifi,G.Subbiahdoss,P.K.Sharma,B.P.Krom,H.J. Busscher,H.C.vanderMei,Adv.Funct.Mater.23(2013)2843–2849.

[12]P.J.Weldrick,M.J.Hardman,V.N.Paunov,ACSAppl.Mater.Interfaces11 (2019)43902–43919.

[13]A.K.Gupta,M.Gupta,Biomaterials26(2005)3995–4021.

[14]K.Ulbrich,K.Holá,V. ˇSubr,A.Bakandritsos,J.Tuˇcek,R.Zboˇril,Chem.Rev.116 (2016)5338–5431.

[15]L.H.Reddy,J.L.Arias,J.Nicolas,P.Couvreur,Chem.Rev.112(2012) 5818–5878.

[16]B.Chertok,B.A.Moffat,A.E.David,F.Yu,C.Bergemann,B.D.Ross,V.C.Yang, Biomaterials29(2008)487–496.

[17]A.J.Cole,A.E.David,J.Wang,C.J.Galbán,H.L.Hill,V.C.Yang,Biomaterials32 (2011)2183–2193.

[18]H.Han,Y.Hou,X.Chen,P.Zhang,M.Kang,Q.Jin,J.Ji,M.Gao,J.Am.Chem.Soc. 142(2020)4944–4954.

[19]X.Jiang,S.Zhang,F.Ren,L.Chen,J.Zeng,M.Zhu,Z.Cheng,M.Gao,Z.Li,ACS Nano11(2017)5633–5645.

[20]J.Yu,Y.Ju,L.Zhao,X.Chu,W.Yang,Y.Tian,F.Sheng,J.Lin,F.Liu,Y.Dong,Y. Hou,ACSNano10(2016)159–169.

[21]Y.Guo,Y.Ran,Z.Wang,J.Cheng,Y.Cao,C.Yang,F.Liu,H.Ran,Biomaterials 219(2019),119370.

[22]Z.Jin,K.T.Nguyen,G.Go,B.Kang,H.K.Min,S.J.Kim,Y.Kim,H.Li,C.S.Kim,S. Lee,S.Park,K.P.Kim,K.M.Huh,J.Song,J.O.Park,E.Choi,NanoLett.19(2019) 8550–8564.

[23]T.Bjarnsholt,M.Alhede,M.Alhede,S.R.Eickhardt-Sørensen,C.Moser,M. Kühl,P.Ø.Jensen,N.Høiby,TrendsMicrobiol.21(2013)466–474.

[24]M.M.Tomayko,C.P.Reynolds,CancerChemother.Pharmacol.24(1989) 148–154.

[25]Y.Chao,G.Chen,C.Liang,J.Xu,Z.Dong,X.Han,C.Wang,Z.Liu,NanoLett.19 (2019)4287–4296.

[26]L.M.Lacroix,N.FreyHuls,D.Ho,X.Sun,K.Cheng,S.Sun,NanoLett.11(2011) 1641–1645.

[27]N.Tran,T.J.Webster,J.Mater.Chem.20(2010)8760–8767.

[28]J.T.Nurmi,P.G.Tratnyek,V.Sarathy,D.R.Baer,J.E.Amonette,K.Pecher,C. Wang,J.C.Linehan,D.W.Matson,R.L.Penn,M.D.Driessen,Environ.Sci. Technol.39(2005)1221–1230.

[29]A.E.Deatsch,B.A.Evans,J.Magn.Magn.Mater.354(2014)163–172.

[30]M.M.El-Hammadi,J.L.Arias,ExpertOpin.Ther.Pat.25(2015)691–709.

[31]W.Wu,Q.He,C.Jiang,NanoscaleRes.Lett.3(2008)397–415.

[32]S.Sun,H.Zeng,J.Am.Chem.Soc.124(2002)8204–8205.

[33]S.Sun,H.Zeng,D.B.Robinson,S.Raoux,P.M.Rice,S.X.Wang,G.Li,J.Am. Chem.Soc.126(2004)273–279.

[34]J.Park,K.An,Y.Hwang,J.Park,H.Noh,J.Kim,J.Park,N.Hwang,T.Hyeon,Nat. Mater.3(2004)891–895.

[35]W.Cheng,K.Tang,Y.Qi,J.Sheng,Z.Liu,J.Mater.Chem.20(2010)1799–1805.

[36]J.Liu,Z.Sun,Y.Deng,Y.Zou,C.Li,X.Guo,L.Xiong,Y.Gao,F.Li,D.Zhao, Angew.Chem.Int.Ed.48(2009)5875–5879.

[37]G.M.DaCosta,E.DeGrave,P.M.A.DeBakker,R.E.Vandenberghe,J.SolidState Chem.113(1994)405–412.

[38]L.Cabrera,S.Gutierrez,N.Menendez,M.P.Morales,P.Herrasti,Electrochim. Acta53(2008)3436–3441.

[39]T.González-Carre ˜no,A.Misfsud,C.J.Serna,J.M.Palacios,Mater.Chem.Phys. 27(1991)287–296.

[40]T.González-Carre ˜no,M.P.Morales,M.Gracia,C.J.Serna,Mater.Lett.18(1993) 151–155.

[41]S.Mathur,S.Barth,U.Werner,F.Hernandez-Ramirez,A.Romano-Rodriguez, Adv.Mater.20(2008)1550–1554.

[42]J.W.Moon,C.J.Rawn,A.J.Rondinone,L.J.Love,Y.Roh,S.M.Everett,R.J.Lauf, T.J.Phelps,J.Ind.Microbiol.Biotechnol.37(2010)1023–1031.

[43]K.B.Narayanan,N.Sakthivel,Adv.ColloidInterfaceSci.156(2010)1–13.

[44]X.Wang,C.Ho,Y.Tsatskis,J.Law,Z.Zhang,M.Zhu,C.Dai,F.Wang,M.Tan,S. Hopyan,H.McNeill,Y.Sun,Sci.Rob.4(2019)eaav6180.

[45]B.Chertok,A.E.David,V.C.Yang,Biomaterials31(2010)6317–6324.

[46]A.S.Lübbe,C.Bergemann,H.Riess,F.Schriever,P.Reichardt,K.Possinger,M. Matthias,B.Dörken,F.Herrmann,R.Gürtler,P.Hohenberger,N.Haas,R.Sohr, B.Sander,A.J.Lemke,D.Ohlendorf,W.Huhnt,D.Huhn,CancerRes.56(1996) 4686–4693.

[47]K.Lee,A.E.David,J.Zhang,M.C.Shin,V.C.Yang,J.Ind.Eng.Chem.54(2017) 389–397.

[48]B.M.Geilich,I.Gelfat,S.Sridhar,A.L.vandeVen,T.J.Webster,Biomaterials 119(2017)78–85.

[49]G.Subbiahdoss,S.Sharifi,D.W.Grijpma,S.Laurent,H.C.vanderMei,M. Mahmoudi,H.J.Busscher,ActaBiomater.8(2012)2047–2055.

[50]K.Quan,Z.Zhang,Y.Ren,H.J.Busscher,H.C.vanderMei,B.W.Peterson,ACS Biomater.Sci.Eng.6(2020)205–212.

[51]F.Ullrich,C.Bergeles,J.Pokki,O.Ergeneman,S.Erni,G.Chatzipirpiridis,S. Pané,C.Framme,B.J.Nelson,Invest.Ophthalmol.VisualSci.54(2013) 2853–2863.

[52]B.Shapiro,S.Kulkarni,A.Nacev,A.Sarwar,D.Preciado,D.A.Depireux,Annu. Rev.Biomed.Eng.16(2014)455–481.

[53]B.Shapiro,S.Kulkarni,A.Nacev,S.Muro,P.Y.Stepanov,I.N.Weinberg,Wiley Interdiscip.Rev.Nanomed.Nanobiotechnol.7(2015)446–457.

[54]B.Gleich,J.Weizenecker,Nature435(2005)1214–1217.

[55]Y.X.J.Wang,S.M.Hussain,G.P.Krestin,Eur.Radiol.11(2001)2319–2331.

[56]A.J.Cole,A.E.David,J.Wang,C.J.Galbán,V.C.Yang,Biomaterials32(2011) 6291–6301.

[57]Y.Zhang,N.Kohler,M.Zhang,Biomaterials23(2002)1553–1561.

[58]N.Zhu,H.Ji,P.Yu,J.Niu,M.U.Farooq,M.W.Akram,I.O.Udego,H.Li,X.Niu, Nanomaterials8(2018)810.

[59]M.Abbas,B.ParvatheeswaraRao,M.NazrulIslam,S.M.Naga,M.Takahashi,C. Kim,Ceram.Int.40(2014)1379–1385.

[60]X.Wang,A.Deng,W.Cao,Q.Li,L.Wang,J.Zhou,B.Hu,X.Xing,J.Mater.Sci.53 (2018)6433–6449.

[61]N.G.Durmus,T.J.Webster,Adv.HealthcareMater.2(2013)165–171.

[62]X.Sun,L.Wang,C.D.Lynch,X.Sun,X.Li,M.Qi,C.Ma,C.Li,B.Dong,Y.Zhou, H.H.K.Xu,J.Dent.81(2019)70–84.

[63]L.Gao,J.Zhuang,L.Nie,J.Zhang,Y.Zhang,N.Gu,T.Wang,J.Feng,D.Yang,S. Perrett,X.Yan,Nat.Nanotechnol.2(2007)577–583.

[64]E.N.Taylor,K.M.Kummer,N.G.Durmus,K.Leuba,K.M.Tarquinio,T.J. Webster,Small8(2012)3016–3027.

[65]K.D.Leuba,N.G.Durmus,E.N.Taylor,T.J.Webster,Int.J.Nanomed.8(2013) 731–736.

[66]E.C.Abenojar,S.Wickramasinghe,M.Ju,S.Uppaluri,A.Klika,J.George,W. Barsoum,S.J.Frangiamore,C.A.Higuera-Rueda,A.C.S.Samia,ACSInfect.Dis.4 (2018)1246–1256.

[67]X.Ren,R.Gao,H.C.vanderMei,Y.Ren,B.W.Peterson,H.J.Busscher,ACSAppl. Mater.Interfaces(2020),http://dx.doi.org/10.1021/acsami.0c08592. [68]H.Park,H.J.Park,J.A.Kim,S.H.Lee,J.H.Kim,J.Yoon,T.H.Park,J.Microbiol,

Methods84(2011)41–45.

(11)

[69]M.H.Kim,I.Yamayoshi,S.Mathew,H.Lin,J.Nayfach,S.I.Simon,Ann.Biomed. Eng.41(2013)598–609.

[70]C.H.Fang,P.I.Tsai,S.W.Huang,J.S.Sun,J.Z.C.Chang,H.H.Shen,S.Y.Chen,F.H. Lin,L.T.Hsu,Y.C.Chen,BMCInfect.Dis.17(2017)516.

[71]T.K.Nguyen,H.T.T.Duong,R.Selvanayagam,C.Boyer,N.Barraud,Sci.Rep.5 (2015)18385.

[72]D.Rodrigues,M.Ba ˜nobre-López,B.Espi ˜na,J.Rivas,J.Azeredo,Biofouling29 (2013)1225–1232.

[73]S.F.Situ,J.Cao,C.Chen,E.C.Abenojar,J.M.Maia,A.C.S.Samia,Macromol. Mater.Eng.31(2016)1525–1536.

[74]L.Gao,Y.Liu,D.Kim,Y.Li,G.Hwang,P.C.Naha,D.P.Cormode,H.Koo, Biomaterials101(2016)272–284.

[75]H.Sun,N.Gao,K.Dong,J.Ren,X.Qu,ACSNano8(2014)6202–6210.

[76]G.Hwang,A.J.Paula,E.E.Hunter,Y.Liu,A.Babeer,B.Karabucak,K.Stebe,V. Kumar,E.Steager,H.Koo,Sci.Rob.4(2019)eaaw2388.

[77]K.Quan,Z.Zhang,H.Chen,X.Ren,Y.Ren,B.W.Peterson,H.C.vanderMei,H.J. Busscher,Small15(2019),1902313.

[78]S.Tian,L.Su,Y.Liu,J.Cao,G.Yang,Y.Ren,F.Huang,J.Liu,Y.An,H.C.vander Mei,H.J.Busscher,L.Shi,Sci.Adv.(2020),inpress.

Referenties

GERELATEERDE DOCUMENTEN

总结 170 物被膜在工业生产中的应用以及增强抗菌剂对临床细菌生物被膜感染的治 疗。

Dear Henk, thank you for giving me the chance to join this program and I really appreciate for what you have done to help me finish my thesis.. I first saw you

Magnetic nanoparticles attached to an implant surface can be pulled off on-demand to increase the penetrability of biomaterial- associated infectious biofilms to antimicrobials

Moreover, since most human bacterial infections involve bacteria in a biofilm-mode of growth and while killing of planktonic bacteria is essential to demonstrate, more emphasis

Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting

In line with the absence of penetration and accumulation of SSPMs in staphylococcal biofilms, exposure of staphylococcal biofilms to PpIX-loaded SSPM and light- activation

Bacterial killing in human ex vivo, multi-species oral biofilms from 12 orthodontic adolescent patients by Triclosan in solution and PEG-PAE-T5 micelles was evaluated as

Next, cell membranes separated from murine macrophages or human monocytes were mixed with the antimicrobial conjugate nanoparticles (ACN), and sonicated to obtain