• No results found

Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation

N/A
N/A
Protected

Academic year: 2021

Share "Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal

of

Chromatography

A

jou rn al h om ep a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Application

of

microstructured

membranes

for

increasing

retention,

selectivity

and

resolution

in

asymmetrical

flow

field-flow

fractionation

Maria

Marioli

a,∗

,

Ü.

Bade

Kavurt

b

,

Dimitrios

Stamatialis

b

,

Wim

Th.

Kok

a

aAnalyticalChemistryGroup,van’tHoffInstituteforMolecularSciences,UniversityofAmsterdam,P.O.Box94157,1090GDAmsterdam,theNetherlands b(Bio)artificialOrgans,DepartmentofBiomaterialsScienceandTechnology,TechMedInstitute,UniversityofTwente,P.O.Box217,7500AEEnschede,the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received10April2019

Receivedinrevisedform25June2019 Accepted2July2019

Availableonline3July2019 Keywords:

Field-flowfractionation Flowovergrooves AF4

Computationalfluiddynamics Microstructuredmembranes Proteinseparation

a

b

s

t

r

a

c

t

Inthepresentproof-of-conceptstudy,wedemonstratethatretentiontime,selectivityandresolution canbeincreasedinasymmetricalflowfield-flowfractionation(AF4)byintroducingmicrostructured ultrafiltrationmembranes.Evenlyspacedmicron-sizedgrooves,thatareplacedperpendiculartothe channelflowontheaccumulationwallofafield-flowfractionationsystem,causeadecreaseinthe zonevelocitywhichisstrongerforlargersolutes.Thishasbeendemonstratedinthermalfield-flow fractionation,andweprovethatthisisalsothecaseinAF4.Weexaminethehypothesistheoretically andexperimentally,bybothcomputationalandphysicalexperiments.Bymeansofmomentanalysis,we derivetheoreticallyasetofequationswhich,undercertainconditions,describethemasstransportand relateretentiontime,selectivityandplateheighttothedimensionsofthegrooves.Physicalexperiments arecarriedoutusingmicrostructuredpolyethersulfonemembranesfabricatedbyhotembossing,andthe experimentalresultsarecomparedwithcomputationalfluiddynamicsexperiments.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Asymmetrical flow field-flow fractionation (AF4), the most appliedsubtechniqueofthefield-flowfractionation(FFF)family, isanestablishedanalyticalmethodtoseparatemacromolecules andnanoparticlesaccordingtotheirhydrodynamicsizeundermild conditions[1–3].Thecouplingwithvariousphysicalandchemical detectorshascontributedsignificantlytoitspopularityasitcan providevaluableinformationsuchasmolecularweight distribu-tion,sizedistribution,conformationandchemicalcompositionin asinglerun[4].Considering therapidgrowthinbiotechnology, nanotechnologyandpolymerengineering,itisevidentthatAF4is goingtowitnessafurthergrowthinapplicationsinthecoming years.Inthisregard,itisworthwhiletoproposeandinvestigate possiblenewtechnicaldevelopmentsthat mayimprove perfor-mance.

Inthisstudyweinvestigatethepossibilityofincreasing reten-tion time, selectivity and resolution by using microstructured ultrafiltration(UF)membraneswithparallelgroovesontheir

sur-∗ Correspondingauthor.

E-mailaddress:M.Marioli@uva.nl(M.Marioli).

face (Fig. 1). However, considering that AF4 is a very flexible techniquewhere severalparameterscanbealtered tooptimize separation,firstajustificationshouldbegivenfortheusefulness ofsuchadevelopment.

AccordingtotherigorousFFFtheory,theretentiontimeof well-retained(withretentionratio<0.1)componentsinAF4isequal to[5], tR= w 2 6Dln



1+ V˙c ˙Vout B



(1)

where wisthechannelthickness, ˙Vcthecross-flowrate, ˙Voutthe

channeloutletflow rateandBthefractionoftheaccumulation areaafterthefocusingpoint.Therefore,theselectivityofapairof well-retainedsolutesequalstheratiooftheirdiffusioncoefficients,

˛=tR,2 tR,1 =

D1

D2

(2)

andconsequently,itcannotbealteredbychangingthe experimen-talparameters.Resolutioncanbeimprovedbyreducingtheplate https://doi.org/10.1016/j.chroma.2019.07.001

(2)

Fig.1.AF4withmicrostructuredmembranes.

heightwhich,basedonthenonequilibriumtheory(for<0.1),is equalto[6],

H= 24D2

v

0

u3crw

(3) whereucr isthecross-flowvelocitythoughtthemembrane and



v

0 is thecross-sectional mean carrier velocity. Hence, a high

cross-flowvelocitydecreasesplateheight.However,itmaylead toadsorptiononthemembrane and massoverloading for sen-sitivemacromolecules.Inaddition,highflowratesarehindered bythetransmembranepressurewhenultrafiltration(UF) mem-braneswithverylowmolecularweightcut-off(MWCO)areused toseparatesmallmacromolecules.

Thesolutescanberesolvedatlowercross-flowratesby increas-ingtheretentiontime,sinceaminimumtimeisrequiredtoachieve separation [7], which couldbe accomplished by increasingthe cross-flowtooutlet flowratioor thespacerthickness[8].Very highcross-flowtooutletflowratiosareimpractical,particularly forUFmembraneswithlowMWCO,andmaydistorttheparabolic flowprofile[9].Inaddition,theuseofathickerspacerresultsin higherrequiredfocusingtimesand moredilutionwitha subse-quentdecreaseinsensitivity[7].Moreover,alowaspectratiob/w (<30),wherebis thechannel breadth,mayaggravateedge and endeffectsincreasingplateheightandreducingrecovery[10,11]. Therefore,itcouldbebeneficialtoinvestigateamethodthatcould increase retention and resolution without altering the optimal cross-flow,spacerthicknessandcross-flowtooutletflowratio.

Theconceptofanaccumulationwallwithmicron-sizedgrooves inFFFhasbeenintroducedin1978byGiddingsetal.[12]asan attempttoincreaseretentionforsmallanalytesinthermal field-flowfractionation(ThFFF).Inaddition,groovedsurfaceshavebeen incorporatedinmicrofluidicchannelsforvariousotherapplications suchastoenablemixing[13]andtoseparatecellsand micropar-ticles[14].Navierhasdescribed thatmacroscopicallytherough surfaceisequivalenttoasmoothsurfacewithpartialslip[15–17]. Infact,forthisreason,asmallslipmightexistontheflatmembrane oftheAF4channel,asa resulttotheporosity,but itis negligi-bleforUFmembranes[18].NanostructuredUFmembraneshave beenfabricatedbynano-imprintinglithography[19–21], where membraneswerehot-embossed,andmicrostructuredpolymeric materialshave been developed withphase separation [22–24], whereapolymersolutioniscastoverapatternedmold.

Thescopeofthisstudyistoconductaproof-ofconcept inves-tigationtoassesstheeffectofmicrostructuredmembranesonthe retentiontime,selectivityandresolutioninAF4.Ahotembossing methodwaschosenforthefabricationofthesemembranes.We sharefundamentaltheoryandexperimentalfindingsthat comple-mentandexpandthepreviousstudywithperpendiculargrooves inThFFF[12].

Fig.2. Left-handfigure:displayofthetheoreticalmodel.Right-handfigure:velocity profile(a)overaflatmembraneand(b)overagroovedmembranewherethevelocity zero-planeistakenontheedgeoftheridge(x=h).

2. Theory

2.1. Transportequationsandmomentanalysis

Here,wedescribeasimplifiedmodelthatenablesustoderivean analyticalsolutiontotheproblemofmassmigrationovergrooves inanAF4channel.Inthismodelthegroovesareformedby zero-widthridgeswithauniformheighthonthemembranesurface, perpendiculartotheflowdirection.Slipflowthroughthegrooves isneglected;thezero-velocityplanefortheaxialflow(

v

)istaken atthetopoftheridges(Fig.2).

Thefollowingsimplificationshavebeenmade:

(1)Moleculardiffusionintheaxial(z-)directionisneglected. (2)Thedevelopmentoftheconcentrationprofileinthe

perpen-dicular(x-)directioniscompletebeforeelutionisstarted,bya precedingfocusingstepintheprocedure.

(3)Onlywell-retainedcompoundsareconsidered(withretention ratio <0.1). Such compounds are present predominantly closetotheaccumulationwall,wherethelinearpartoftheflow profileprevailsandthecross-flowvelocityucrmaybe

consid-eredasbeingequaltothefluidvelocitythroughthemembrane. For well-retainedcompounds,themathematicscanbe sim-plifiedsinceintegralsover theheightofthechannelcanbe takenfromx=0toinfinityinsteadoftotheupperwallposition (x=w),withgoodaccuracy.

(4)Therearenointeractionsbetweentheproteinandthe mem-brane.

(5)Flowconditionsarelaminar.Thisassumptionshouldholdtrue sincethepresenceofperpendiculargrooves,whicharesmall compared tothechannelthickness,reduceslocallytheflow velocity and decreasestheReynolds number [16]. Although eddiesmayexistinthecornersofthegrooves,theflowvelocity isverylowthereandthefluidisalmoststagnant.

Thetransportofacompoundi,withalocalconcentrationci=

ci(x,z,t),isgivenbythesimplifiedgeneraltransportequation

ci

t =Di

2ci

x2 +ucr

ci

x −

v

(x)

ci

z (4)

whereDiisthediffusioncoefficientofthecompoundofinterest,

and

v

(x)thelocalaxialflowvelocity.Themoleculardiffusionterm alongthez-directionisneglectedintheRHSofEq.(4).Theplus signfor thesecondtermoftheRHSappearsbecausea positive valueistakenforucr,evenwhenthecrossflowisinthenegative

x-direction.Theassumptionthattheanalytehasbeenintroduced inthechannelasafiniteplugleadstotheboundaryconditions

(3)

andtheassumptionthatthewallsofthechannelareimpermeable forthecompoundto

Di

ci

x +ucrci=0 for x=0,w (4b) Twosetsofmomentsaredefined.Localmoments,thatdescribe themassdistributionofacompoundiinafluidlayeratacertain distancexfromthemembrane,aredefinedas

mn,i(x,t)=



+∞ −∞

znc

i(x,z,t) dz (5)

andoverallmoments,thatdescribethemassdistributioninthe axialdirectionintegratedovertheheightofthechannel,as

Mn,i(t) =



w 0 mn,i(x,t) dx≈



∞ 0 mn,i(x,t) dx (6)

MomentsexistwhentheintegralsconvergeinEq.(6),i.e.,whenit canbeassumedthattheconcentrationofacompoundiapproaches zerofastenoughwhenzgoestoplusorminusinfinity.Thiswillbe thecasewhenthecompoundwasintroducedinthechannelasa plugorpeakoffinitewidth.

WhenbothsidesofthegeneraltransportEq.(4)aremultiplied withznandintegratedoverzfromminustoplusinfinity,

expres-sionsareobtainedforthelocalmomentsofi

mn,i

t =Di

2mn,i

x2 +ucr

mn,i

x +n

v

(x)mn−1,i (7) ThethirdtermoftheRHSinthisequationisobtainedbypartial inte-grationwiththeassumptionthatznc

i(x,z,t)vanishesforz→±∞.

Whenalocalmoment(n−1)isknown,thisequationcanbeusedto evaluatethenextlocalmoment(n).IntegrationofEq.(7)overthe heightofthechannel,consideringboundarycondition(4b),gives anexpressionfortheoverallmomentMn,i

Mn,i

t =n



w

0

v

(x)mn−1,idx (8)

2.2. Thezerothmoment(massdistribution)

IntegratingbothsidesofEq.(4)overzfromminustoplusinfinity givesanexpressionforthelocalzerothmomentofi,

m0,i

t =Di

2m0,i

x2 +ucr

m0,i

x (9)

Undertheassumptionthatfocusingwascomplete,andasteady statewasreachedbeforetheexperimentwasstarted,bothsidesof Eq.(9)mustbezero,andthemassdistributionovertheheightof thechannelcanbefoundas

m0,i=m∗0,i·exp



−ucr

Dix



(10) wherem∗0,iisthezerothmomentonthemembranesurface(with x=0).Theexp.concentrationprofileextendsoutfromtheupper wall(x=w)here. Eq. (10)describesthewell-known exponen-tialconcentrationprofileontheaccumulationwallinFFF,witha characteristiclayerthickness







equaltoDi/ucr.Whenthe

con-centrationoftheanalyteisscaledsoas m*

0,i=

ucr

Di

(11) theoverallzerothmomentM0,ibecomes1,andthehigheroverall

momentsareautomaticallynormalized.

2.3. Thefirstmoment(meanretentiontime)

Themodelforthegroovedsurfaceusedhere(Fig.2),witha stagnantlayerof fluid determinedby thegrooveheight h,and approximatelylinearlyincreasingchannelflowratefromtheslip planeatthetopoftheridges,givesforthelocalaxialflowvelocity

v

(x)=0 for 0≤x≤h (12a)

v

(x)=6(x−h)

w 

v

 for x≥h (12b)

WhenEqs.(10)–(12)aresubstitutedintoEq.(8),

M1,i

t =



w h 6(x−h) w 

v

 ucr Di exp



−ucr Dix



dx (13)

theaxialvelocity

v

iofthecompoundisobtained(withforsimplicity integrationtoinfinityinsteadoftox=w),

v

i=

M1,i

t = 6Di ucrw

v

exp



−ucrh Di



(14) Eq.(14)withh=0givesthewell-knownexpressionforthezone velocity over a flatmembrane. With a groovedmembrane, the velocitydecreasesexponentiallywiththeratiooftheridgeheight overthecharacteristiclayerthickness.Fortheretentiontimethe oppositecanbewritten

tR,i=tR,iFLexp



+ucrh Di



(15) wheretFL

R,iistheretentiontimewithaflatmembrane,under

oth-erwise thesameconditions. Theretention time increasesmore stronglybythepresenceofthegroovesforcompoundswithasmall layerthickness,i.e.,formorestronglyretainedcompounds.

In the separation of two components, the selectivity ˛ is increasedwithincreasingridgeheightanditcanbewrittenas ˛=tR,2 tR,1 = D1 D2 exp



ucrh



1 D2 − 1 D1



=˛FLexp



h 1



˛FL−1



(16) where˛FListheselectivitywithaflatmembrane,and

1the

char-acteristiclayerthicknessofthefirst,leastretainedcompound.In Fig.3a,thecalculatedeffectofthe(relative)heightofthegrooveson theretentiontimesandtheselectivityisshownfortwocompounds withdiffusioncoefficientsthatdifferbyafactorof√2.

2.4. Thesecondmoment(peakvariance)

Toevaluatetheinfluenceofthegroovedsurfaceonpeak broad-ening,first anexpressionfor thedevelopmentofthelocalfirst momentshastobederived.Inthis,wefollowtheapproachtaken byTaylorandArisintheirtreatmentofpeakbroadeningin cylin-dricalchannels,andinearlyworkofGiddingsondispersioninFFF [25].TheyfoundsolutionsforthegeneraltransportEq.(4)inthe formofasumoftransientfunctionsandastationaryfunction.The transientfunctionsdescribetheconcentrationchangesintimeand spacedirectlyafterthestartofthe’elution’andtheydependonthe initialconditions.Itwasshownthatthesetransientfunctionsdie outrapidly,andthatastationarysituationdevelopsinwhichthe localcentersofgravityatdifferentdistancesfromthewallare situ-atedinasteadyprofilearoundtheoverall(mean)centerofgravity ofthetransportedplugofthecompoundofinterest.Here,a solu-tionissoughtforEq.(4)describingonlythestationarysituation, i.e.,asolutionthatobliges

1 m0,i(x)

m1,i(x)

t =

M1,i

t =

v

i for all x (17)

(4)

Fig.3.Theoreticalestimationofvariablesasafunctionoftherelativeridgeheight:a) increaseinselectivityandretentiontimefortwosoluteswithdiffusioncoefficients thatdifferbyafactorof√2(e.g.,monomeranddimer);retentiontimeshereare normalizedwiththeretentiontimeofthesmallersoluteforaflatmembranetFL

R,1b) increaseinplateheightc)increaseinresolution.

Asetofparticulatesolutionsform1,i(x)canbefoundthatsatisfyall

boundaryconditions. For0≤x<h, mA1,i(x,t) = 6

v

 w



t− Di u2 cr − x ucr



exp



−ucrh Di



exp



−ucrx Di



(18a) andforx≥h, mB1,i(x,t) = 6

v

 w { (x−h)2 2Di + x−h u +



t− Di u2 cr − x ucr



exp



−ucrh Di



}exp



−ucrx Di



(18b)

Theincreaseintimeoftheoverallsecondmomentcannowbe foundbysubstitutingEqs.(12b)and(18b)intoEq.(8)

M2,i

t =2



w h 6

v

0 w (x−h)m B 1,idx (19)

Sincethefluidvelocityiszerofor0<x<h,Eq.(18a)doesnothave tobeincludedintheintegration.Centralizingoftheoverallsecond momentgivestheincreaseofthespatialvarianceintime

2 z

t =

M2,i

t −2M1,i(t)

M1,i

t (20)

andfinally,theplateheightHcanbeobtainedas H=

z2/

t

M1,i/

t

(21) ThefinalresultforHis

H=24D 2 i

v

0 u3 crw

5 2exp



+ucr Dih



−32− ucr 2Dih

exp



−ucr Dih



(22) Foraflatmembrane,withh=0,thesecondandthirdfactorsinthe RHSofEq.(22)areequalto1,andthewell-knownexpressionfor H(HFL)isobtained(Eq.(3)).

InFig.3btheincreaseoftheplateheightwiththerelativeridge heightisshown,andinFig.3ctheincreaseinresolutionoftwo soluteswithratioofdiffusioncoefficients√2isshown.Weobserve thatforgrooveheighth=1.51,thereisatwo-foldincreasein

res-olutionandafour-foldincreaseintheretentiontimeoftheless retainedcomponent.Forcomparison,thesameincreasein reso-lutioncouldbeachieved (withoutaltering thecross flow)by a two-foldincreaseofthespacerthicknessorapproximatelyten-fold increaseofthecross-flowtooutletflowratio.

3. Materialsandmethods 3.1. Samplesandcarriereluent

Bovineserumalbumin(BSA),␥-globulin,apoferritin, thyroglob-ulinandhemoglobinwerepurchasedbySigma–Aldrich(MO,USA). PBS0.15M(20mMduetosodiumphosphatesalts)withapHof 7.2wasusedasacarriereluentfortheAF4experimentsandas adiluentfortheproteins.Allproteinsampleswerepreparedata concentrationof1mg/mL.

3.2. Fabricationandcharacterizationofthemicrostructured(MS) membranes

Twosiliconmolddesignswithparallelgrooveswereusedfor preparationofthemicrostructuredmembranes.MoldI(LioniXBV, TheNetherlands)hadapatternedareaofdiameter15.1cmwith groovesof cavity widthc=50␮m,ridge width r=50␮m, ridge heighth=12␮mwhereasMoldII(MESA+cleanroom,Universityof Twente,TheNetherlands)hadapatternedareaofdiameter6.8cm withgroovesofc=30␮m,r=20␮mandh=25␮m. Polyethersul-fone(PES)membraneswith10kDaand30kDamolecularweight cut-off(MWCO)(Sartorius,Germany)wereusedforthemembrane patterningwithoutanypretreatment.

Microstructured (MS) membranes were prepared via hot embossing which was performed with an imprinter (Obducat, Sweden)inMESA+cleanroom(UniversityofTwente).The emboss-ingtemperature,pressureandtimewere120◦C,40barand180s, respectively and demoldingoccurredat 40◦C [20]. Surface and cross-section images of the microstructured membranes were takenby scanningelectron microscopy(SEM) equipment,XL30 ESEM-FEG(Philips,TheNetherlands)orJEOLJSM-6010LA(JEOL, Japan).MSmembraneI(Fig.4a)wasfabricatedbyhot-embossing a PES 10kDa membrane with the Mold I, and MS membrane II(Fig.4b)byhot embossinga PES30kDa membrane withthe MoldII.Membrane sampleswerewashed,dried,broken in liq-uidnitrogenforcrosssectionimagesandgold-sputteredforSEM imaging.

(5)

Fig.4.MicrostructuredmembranesandAF4channels:a)MSmembraneI(hotembossedwithMoldI)andChannelIb)MSmembraneII(hotembossedwithMoldII)and ChannelII.

Cleanwaterflux(Jw)valuesofthemembranesweremeasured

withdead-endAmiconStirredCell(Model8050,MerckMillipore, MA,USA)andultrapurewater(MilliQsystem,MerckMillipore). Measurementswereperformedatfourdifferenttransmembrane pressures(P)in therange of0.5–2bar,afterremoving ofthe membrane preservativesby immersingin water and after pre-compactionat2bar.Theweightofpermeatedwaterversustime wasmeasuredandthecleanwaterflux(JwinL/m2/h)was

calcu-latedforeachpressureconsideringtheeffectivemembranesurface area,whichwas13.4cm2 (Theareaisassumedasconstantafter

preparationofamicrostructuredsurface).Thecleanwater perme-ance(CWP,inL/m2/h/bar)ofthemembranewasdeterminedfrom

theslopeofJwversusPrelationship.

3.3. AF4experiments

TheAF4systemwasanEclipseDualTecsystem(Wyatt Technol-ogyEurope,Germany)connectedtoanAgilentHPLC1200system (AgilentTechnologies,Germany)thatconsistedofadegasser,an isocraticpump,aUVdetectorandanautosamplerequippedwith athermostat.Thetemperatureoftheautosamplerwassetat5◦C. TwoAF4trapezoidalchannelswereused,designatedasChannel IandII,oneforeachmembrane/moldsize(Fig.4).TheMS mem-braneswerecutwiththegroovesperpendicularandintheshape oftheporousfritwithsurgicalscissors.

ChannelIwasacommercialAF4channel(WyattTechnology Europe) which was used with the largerpatterned membrane (d=15.1cm).Ithadtip-to-tiplength13.3cmandaccumulationarea 15.6cm2(Fig.4a).Thenominalspacerthicknesswas250or350␮m.

Thefocus-flowwas1.5mL/minfor3minandthefocusingpointwas setat18%ofthechannellength.Theinjectedvolumewas10␮L (10␮ginjectedmass)andtheUVdetectionwasat280nm.

ChannelIIwasaminiaturizedchannelcreatedtotestthesmaller patternedmembrane(d=6.8cm).It hadtip-to-tiplength6.3cm andaccumulationarea7.24cm2 (Fig.4b).Itwascreatedusinga

commercialchannelmodifyingitsupperinlayandspacer.Inthe upperinlaytwointernalthreadsweremilledtoconnectthetubing fittingsfortheinletandoutlet.Thespacerwasfabricatedcutting

MylarA4sheetsofnominalthickness250and350␮m.The focus-flowwas0.8mL/minappliedfor3minandthefocusingpointwas setat18%.Theinjectedvolumewas5␮L(5␮ginjectedmass)and UVdetectionwasat220nm.

3.4. Computationalfluiddynamics(CFD)

Afiniteelementsolver,COMSOLMultiphysics5.2(COMSOLInc., MA,USA),wasusedtomodeltheAF4channelandsimulatethe proteinmigrationovertheflatandthepatternedmembrane.To reducethemodelintotwo dimensionsforlowercomputational cost,asymmetricalchannelwasmodelledinsteadofan asymmet-rical.Forthispurpose,asimplerectangulardomainwascreated, withaflatorgroovedbottomboundary.Ameshoffreetriangular elementswascreatedwithveryfineelements(<1␮m)inthe prox-imitytothebottomboundarytosimulateproteinmigrationwith highaccuracy.

Todescribetheflow,laminarflowofanincompressiblefluid wasusedand theboundaryconditions(inlets,outlets)wereset todefinechannel flowandcross-flowvelocities(itwasverified laterfromtheresultsthattheassumptionofthelaminarflowwas validbythecellReynoldsnumber).Thecross-flowvelocitywas dis-tributedhomogeneouslyalongthebottomboundary(membrane). Theoption“transportofdilutedspecies”(includingconvectionand diffusion)wasusedtosimulateproteinmonomeranddimer.The studyoftheflowprofilewassolvedasasteadystateproblemand theoutput(velocityfield)wasusedtosolvethetimedependent problemoftheproteinmigrationwithaBDF(Backwards Differen-tialFormula)solver.Therelativeandtheabsolutetoleranceswere setat10−4.Theinitialandthemaximumtimestepswereset0.001s and0.5s,respectively.

4. Resultsanddiscussion

4.1. Characterizationofthemicrostructuredmembranes

Themicrostructuredmembranes,designatedasMSmembrane Iand IIhadsimilarridgeheight,h∼12␮m,anddifferent

(6)

peri-Table1

ProteinrecoveryinAF4beforeandafterhotembossingoftheUFmembranes.AF4conditions: ˙Vc= ˙Vout=1mL/min. Recovery(%)±s.d.

BSA(66.5kDa) ␥-Globulin(150kDa) Apoferritin(443kDa) Thyroglobulin(669kDa)

Flatmembrane(10kDa) 89±2 86±2 87±3 78±4

MSmembraneI 22±4 35±5 86±1 76±3

Flatmembrane(30kDa) 20±3 60±5 82±4 71±2

MSmembraneII 9±1 11±3 84±2 72±3

odicity(i.e.,thesumofcavityandridgewidth),100and 50␮m respectively (Fig. 4). The shape of the patterns was rectangu-lar with round corners (MS membrane I) or ellipsoidal (MS membrane II)as therectangularcavities of themoldwere not completely filled during embossing. Although the polymer is heatedaboveits glasstransitiontemperaturein hot embossing processes,embossing wasperformed belowtheglasstransition temperature, since collapse of the pores and loss of perme-ance are reported in the literature for a PES membrane [20]. TheCWPs ofthe non-patterned membraneswereestimated as 150±20L/m2/h/bar (for membranes with 10kDa MWCO) and

271±113L/m2/h/bar (formembraneswith30kDaMWCO). The

CWPsofbothmembranesdecreasedafterhotembossing;MS mem-braneIhadCWPof74±1L/m2/h/barandMSmembraneIIhadCWP

of130±18L/m2/h/bar.

ProteinrejectionoftheMSmembraneswasevaluatedwiththe AF4system;therecoveryoffourproteinsofdifferentmolecular weight(66.5–669kDa)wasestimatedfromtheratioofthepeak areaof thefractionatedsampletothepeak areaofthe unfrac-tionatedsample.Thepeakareaoftheunfractionatedsamplewas estimatedfromthefractogramobtainedbyinjectingandeluting thesameamountoftheproteinwiththesamechanneloutletflow rate,withouttheapplicationof focusflow orcross-flowexcept forapoferritin.Thesolutionofapoferritincontainedlow molec-ularweightcomponentswhichwereUV-activeatthedetection wavelength,andthereforefocusflowwasappliedfortheirremoval. Forthisreason,therecoveryvaluesofapoferritinmaybeslightly overestimatedforallmeasurements(bothwithflatandwithMS membranes).TheexperimentalresultsaregiveninTable1;the recoveryofthesmallerproteins(BSAand␥-globulin)was signifi-cantlylowerfortheMSmembranes.

Thedecreaseinrecoveryafterhotembossingshouldindicate anincreaseintheactualMWCOratherthanproteinadsorption sincethePESmembranesusedinthisstudyarehydrophilicwith lowfoulingpropertiesforproteinsolutions.Thiswasconfirmedby injectingandfocusingforseveralminutesahighvolume(100␮L) ofaconcentratedsolution(30mg/mL)ofhemoglobin(∼65kDa) whichhasaredcolor.Itwasobservedthatthesamplewasfocused asanarrowbandwithaflatmembranewhileitwaspassingthrough thecross-flowwithanMSmembrane.Whenthemembranewas removedandvisuallyinspected,itwasnotstainedwhichwould indicateadsorption.

Theaforementionedresults(increaseinMWCOanddecrease inCWP)seemcontradictingsincelowerCWPisoftencorrelated withadecreaseinthesizeornumberoftheporesoftheselective (patterned)side.ApossibleexplanationisthattheCWPdecreases becauseof the membrane compaction (particularly in thearea ofthegrooves’valleyswhichexperiencethehigheststress dur-inghotembossing).Inaddition,theincreaseintheactualMWCO mightberelatedtoanincreaseoftheporesizeof thegrooves’ ridgesbecause of themembrane deformation or toother local defectsthatoccurduringimprinting/demoldingwhichare, how-ever, small enough to affect only the recovery of the smaller proteins.

Incontrastwithourobservations,Marufetal.[20]showedthat hotembossingcouldleadtosimilarCWPand lowerMWCOfor

anotherPESmembraneandamoldpatternedwithsmallergrooves (inthesub-micronrange).Perhapstheporedeformationtherewas minimalbecauseofthesmallersizeofthegrooves.However,the effectofthemembranecompactionontheCWPandthedifference inthestressdistributiononthevalleysandontheridgesduring hotembossinghavebeendiscussedinthesestudies[21].Overall ourresultsindicatethathot-embossingneedstobeoptimizedto avoidchangesoftheMWCOsincetheconceptwouldbe benefi-cialparticularlyforlowmolecularweightanalytes,andingeneral UF membraneswithhighsolventpermeability are preferredin AF4.

Using BSA as thecalibrant withknown diffusioncoefficient (6.21·10−11m2/s[26]),theactualchannelthicknessforthe

Chan-nel I and the Channel II witha flat membrane was estimated 305±6␮mand294±8␮mrespectively,andthediffusion coef-ficientofapoferritinwasestimated3.38·10−11m2/sfromEq.(1).

Thesevalueswereusedinthesimulations.However,MS mem-branesarealreadycompressedduetohotembossing,andhence anyadditionalcompressioncausedbythespacerisexpectedto besmall.Thiswouldresultinlargeractualchannelthicknessand consequentlyin longerretention times. Thedifference in com-pressionbetweentheflatandtheMSmembraneswasevidentby visualinspectionwhenthemembraneswereremovedfromthe channelandinspected.Unfortunately,themethodwithaprotein ofknowndiffusivitycannotbeappliedfortheMSmembranesas theretentiontime increasesbythepresenceofthegroovesfor well-retainedcompounds.However,inorder toassesscorrectly theeffectofgrooves,theactualchannelthicknessoftheMS mem-branes needs tobe measuredand we attempted this by other means.

First,themembranecompressibilitywasestimatedfromthe dif-ferenceinthethicknessofthecompressedandnon-compressed partofthemembranes,measuredbySEMandamicrometerscrew gaugewhentheywereremovedfromthechannel.The compres-sionthatoccurredwithaflatandaMSmembranewas∼50␮m and∼20␮mrespectively.Thiscorrespondsto11%largerchannel thicknesswiththeMSmembranes.However,thesemethodshave lowprecisionsincetheymeasureonlyaverysmallpartofthetotal membraneareawhenthemembranesaredry.Second,weapplied therapidbreakthroughmethod[27]inthefractogramsobtained fortherecoveryexperimentswithinjectionand elutionof thy-roglobulin(withouttheapplicationoffocusorcross-flow).Thevoid volumewasmeasured13%largerwiththeMSmembranewhich correspondstoa13%thickerchannel.Thisresultisinclose agree-mentwiththefirstmethod.However,bothmethodsdonotuse cross-flowwhichmightslightlyaffectthemembranecompression and/orswelling.

4.2. AF4experiments

Apoferritinandthyroglobulinwerechosenasthemodel pro-teinstoassesstheeffectofthegroovesonretentiontime,selectivity andplateheight,sincetheyexhibitedhighrecoverieswiththe pat-ternedmembranes(Table1).InFig.5thefractogramsofapoferritin, obtainedusingflatandMSmembranes,areoverlaidafter subtrac-tionofthetimethatwasrequiredforthefocusingstep.Forboth

(7)

Fig.5. ComparisonofflatandMSmembranesanalyzedwithflowrates ˙Vc= ˙Vout=1.0mL/minfora)ChannelIandMSmembraneIandb)ChannelIIandMSmembraneII.

Fig.6.CFDmodelfortheChannelII/MSmembraneIIsystem:a)Meshofthemodelinthebeginningofthechannel,b)velocityprofileoverthegrooves,c)concentration profileofapoferritinoverthegroovesandd)derivedconcentrationattheoutlet(rightboundary)foreverytimepointforthemonomeranddimer.

(8)

Table2

ComparisonofflatandMSmembranesforbothchannelswithrespecttotheplateheightofthemonomerH,theretentiontimeofthemonomertR,1andtheselectivitya betweenthemonomerandthedimer.Theerrorbarsaregivenat1␴levelandreflectthemembrane-to-membranereproducibility.

ChannelI

Apoferritin Thyroglobulin

˙Vc/ ˙Vout(mL/min) H(mm) tR,1(min) a H(mm) tR,1(min) a

Flatmembrane, w=350␮m 0.8/0.8 0.88±0.02 4.66±0.17 1.35±0.02 0.69±0.01 6.32±0.30 1.35±0.01 1.0/1.0 0.66±0.02 4.62±0.25 1.36±0.01 0.54±0.02 6.26±0.33 1.36±0.00 1.5/1.5 0.43±0.01 4.51±0.16 1.37±0.02 0.42±0.01 6.33±0.31 1.36±0.02 MSmembraneI, w=350␮m 0.8/0.8 1.03±0.01 7.78±0.04 1.42±0.01 0.87±0.02 11.15±0.24 1.46±0.01 1.0/1.0 0.78±0.03 8.09±0.08 1.45±0.00 0.69±0.01 11.45±0.18 1.51±0.01 1.5/1.5 0.65±0.04 8.25±0.23 1.49±0.01 – – – MSmembraneI, w=250␮m 0.8/0.8 1.27±0.02 4.59±0.04 1.44±0.01 0.91±0.04 6.57±0.15 1.45±0.02 1.0/1.0 0.93±0.05 4.92±0.37 1.46±0.02 0.79±0.02 6.63±0.10 1.48±0.01 1.5/1.5 0.64±0.00 5.00±0.04 1.51±0.01 0.54±0.01 7.39±0.04 1.53±0.02 ChannelII Apoferritin Thyroglobulin

˙Vc/ ˙Vout(mL/min) H(mm) tR,1(min) a H(mm) tR,1(min) a

Flatmembrane, w=350␮m 0.5/0.5 0.27±0.01 4.25±0.23 1.34±0.01 0.21±0.00 5.90±0.48 1.33±0.00 0.8/0.8 0.16±0.00 4.26±0.32 1.35±0.02 0.16±0.02 5.92±0.46 1.33±0.01 1.0/1.0 0.13±0.00 4.33±0.17 1.35±0.01 0.15±0.00 5.89±0.47 1.34±0.01 MSmembraneII, w=350␮m 0.5/0.5 0.43±0.01 8.88±0.14 1.49±0.01 0.39±0.02 13.16±0.13 1.50±0.01 0.8/0.8 0.33±0.01 9.90±0.08 1.55±0.01 0.36±0.01 14.56±0.09 1.57±0.02 1.0/1.0 0.29±0.00 12.22±0.05 1.59±0.01 – – – MSmembraneII, w=250␮m 0.5/0.5 0.53±0.01 4.61±0.03 1.48±0.00 0.47±0.00 6.80±0.14 1.53±0.02 0.8/0.8 0.34±0.02 5.47±0.08 1.56±0.02 0.32±0.01 8.28±0.18 1.63±0.00 1.0/1.0 0.29±0.01 5.74±0.02 1.62±0.01 0.30±0.00 8.88±0.20 1.68±0.01

channels/MSmembranesystemsandthesamespacerthicknessof 350␮m(Fig.5left-handfigures),thereisaconsiderableincrease inretentiontime,selectivityandresolutionbetweenmonomerand dimer.Althoughthereismorepeakbroadeningwiththepresence ofthegrooves,resolutionishigherbecauseofthehigherselectivity (asexpectedbythetheory,Fig.3).Consequently,thesame resolu-tioncouldbeachievedwiththeMSmembranesand applyinga lowercross-flowrate,oralternativelyusingathinnerspacer(Fig.5 right-handfigures).

Therefore,theMSmembranescouldbebeneficialasthesame retentionandresolutioncouldbeachievedwithlowercross-flow rates without the need to increase spacer thickness or to use impracticalcross-flowtooutletflowratios.Inpracticethatwould beparticularlyusefulforrelativelysmallsolutes(suchasBSAor evensmaller)sincelargersolutescanbeanalyzedwithoptimal spacerthicknessandflowrates,andthereforethereisaneedto fabricateMSmembraneswithlowerMWCO.Thechallengesand theprocedurestooptimizeAF4methodsforsmallsoluteswitha 300DaMWCOmembranehavebeenreported[28].Smaller macro-moleculesaretypicallyanalyzedbysizeexclusionchromatography (SEC)wheretheyexhibitverygoodresolution,butinsomecases, SECisnotsuitable,forinstance,whenthereisstrongnon-specific adsorptioninthechromatographicsupportandwhenlarge macro-moleculesco-existinthesamplethatneedtobeanalyzed.Inthe lastcase,across-flowprogramwithexponentialdecayshouldbe usedasthegrooveswouldcauseverystrongretentionforthelarge components.

Aseriesofexperimentswerecarriedoutusingdifferent cross-flowrateswhileretainingtheratio( ˙Vc/ ˙Vout=1);theresultsare

displayedinTable2.Theplateheightofthemonomerwas esti-matedfromthewidthathalfpeakheight.Anumberofconclusions maybedrawnfromtheseexperimentalresults.Althoughthereis alargedepartureoftheengineeredgroovesfromthetheoretical model(i.e.,noslip,infinitesimalridgeandrectangularshape),the underlyingconclusionswerefoundsimilar.

First,fromTable2,itcanbeseenthatforhigher ˙Vcandsame

˙Vc/ ˙Vout the retention time of the monomer and theselectivity

betweenmonomeranddimerweresimilarfortheflatmembranes asexpectedbythetheory(Eqs.(1)and(2))butincreasedfortheMS membranes.Thisisinlinewiththetheoreticalequationsderived bymomentanalysis(Eqs.(15)and(16)).Secondly,forthesame experimentalconditions,theincreaseinselectivitywashigherfor thyroglobulin(lower)anditwasindependentofthespacer thick-ness,aspredictedbythetheory.Lastly,theincreaseinretention timeandselectivityforthesamecross-flowvelocitywashigherfor theMSmembraneII,probablyduetothesmallerslipbecauseof thesmallerperiodicityofthegrooves.

It is howeverimportant tonotethat partof theincrease in retentiontime isa resultofthelargeractualchannelthickness withtheMSmembranes.Asitwasmentionedabove,thechannel thicknesswasestimated∼12%largerwithMSmembranes,which correspondsto∼25%longerretentiontimescausedbytheeffectof themembranecompression,astheretentiontimeisproportional tow2(Eq.(1)).Evenso,intheexperimentalresults(Table2)we

observeamuchhigherincreaseintheretentiontimes,namelyfrom 67%(forChannelIandacrossflowrateof0.8mL/min)to180%(for ChannelIIandacross-flowrateof1.0mL/min)forthemonomerof apoferritin,whichindicatesthattheeffectofthegrooveshasthe largestcontributiontotheincreaseintheretentiontime.Moreover, overloadingwasinvestigatedbyinjectingdifferentsamplemass, namely2␮g,10␮g,and20␮g,intheChannelI/MSmembraneI system;nooverloadingeffectwasobservedasretentiontime,plate heightandselectivitywerepracticallythesameforeveryexamined injectedmass.

4.3. Computationalfluiddynamics

FortheCFDexperiments,theminiaturized channel(Channel IIin Fig. 4)wasmodelled and themigration ofthe apoferritin monomeranddimerwassimulated.Thediffusioncoefficientsfor themonomerandfor thedimer ofapoferritinweretakenfrom theAF4experiments(wheretheratioofthediffusioncoefficients, andtherefore theselectivitywas1.34).Themodelwasverified byreducingsignificantlythesizeofthemeshelements,thetime

(9)

Table3

CFDexperimentsandcomparisonwiththeexperimentalresultsforapoferritin, ChannelIIandcross-flowrate0.5mL/min.

tR,1(s) tR,2(s) a

Flatmembrane-Exper. 255 342 1.34

Flatmembrane-CFD 261(SE=2%) 350(SE=2%) 1.34(SE<1%)

MSIImembrane-Exper. 533 794 1.49

MSmembraneII-CFD 720 1310 1.82

stepandthetolerances;allthesechangesdidnotalterthe reten-tiontimes(within0.2%).TheCFDmodelwasvalidatedcomparing theresults(retentiontimeandselectivity)withtheexperimental resultsobtainedforthenonpatternedmembrane.Goodagreement wasfound,thestandarderror(SE)was2%fortheretentiontime ofapoferritin (monomeror dimer)and<1%for theirselectivity (Table3).Theassumptionofthelaminarflowconditions,which wasusedforthemodel,wasjustifiedbytheresults;theReynolds numberwaslessthan0.05acrossthewholechannel(maximum inthemiddleofthechannelthickness)andlessthan2·10−4inside

thegrooves.

For the patterned membrane (MS membrane II) and ˙Vc=0.5mL/min, the flow and concentration profiles, and the

derived concentration at the outlet for each time point are depictedinFig.6.Itwasrevealedthattheexperimentalretention time and selectivity are much lower compared to the values predicted by the simulation (Table 3). This may be due to a non-uniform cross-flow velocity as a result of differences in themembranecompactionand/orintheporesizebetweenthe ridgesandthecavitiesofthemembrane’sselectivelayerasitwas discussedabove.

5. Conclusions

Todateonlyflat(non-patterned)UFmembraneshavebeenused inAF4asmicron-sizedfeaturesareconsideredharmfulforthe sep-aration.Wehavedemonstratedthatmicron-sizedgroovescouldin factimproveperformanceinAF4.Thiswasshownbyseveralmeans includingmomentanalysis,physicalexperiments,andCFD simu-lations.Ourresultsshowthatperpendiculargroovescanincrease retention,selectivityandresolution.Thissystemcouldbeusefulas macromoleculesandnanoparticlescouldbeanalyzedwithlower cross-flowrateswithouttheneedtousehigherspacerthickness orhigher cross-flowtooutletflow ratio.Thisconcept couldbe appliedonanyFFFsystemasithasbeenoriginallydemonstrated byGiddingsetal.forThFFF[12].

Thephysical experimentswerecarried outwith microstruc-turedUFmembranesfabricatedbyhot-embossing.Thisfabrication processcausedanincreaseintheactualMWCOofthemembrane (asindicatedbytheAF4experiments)buttheeffectofthegrooves couldbeshownwiththelargerproteinstandardsusedinthisstudy (apoferritin 443kDa and thyroglobulin 669kDa). However, this conceptcouldbeparticularlyusefulforsmallermacromolecules, andthereforefutureworkshouldbefocusedonthefabricationof microstructuredmembraneswithlowerMWCOandhighwater permeability. This couldbe achieved,for instance, by methods otherthanhotembossingsuchasphaseseparationoradditive tech-nologies(e.g.,3Dprintingofanon-porousorporousmaterialover anUFmembrane).AdditionalresearchwithCFDexperimentsof differentgrooveshapesanddimensionsisunderwaytoinvestigate theoptimalgroovestructure.

Acknowledgements

Thisworkwas partof theresearchprogram SmartSep with projectnumber 11400 which wasfinanced by theNetherlands

OrganizationforScientificResearch(NWO).Authorsalso acknowl-edgeLydiaBolhuis-Versteeg(UniversityofTwente)forherhelpon SEMimagingandWyattTechnologyEuropeforprovidingtechnical assistance.

References

[1]C.Contado,Fieldflowfractionationtechniquestoexplorethe“nano-world”, Anal.Bioanal.Chem.409(2017)2501–2518,http://dx.doi.org/10.1007/ s00216-017-0180-6.

[2]M.I.Malik,H.Pasch,Field-flowfractionation:newandexcitingperspectives inpolymeranalysis,Prog.Polym.Sci.63(2016)42–85,http://dx.doi.org/10. 1016/j.progpolymsci.2016.03.004.

[3]F.vonderKammer,S.Legros,E.H.Larsen,K.Loeschner,T.Hofmann, Separationandcharacterizationofnanoparticlesincomplexfoodand environmentalsamplesbyfield-flowfractionation,TrAC–TrendsAnal.Chem. 30(2011)425–436,http://dx.doi.org/10.1016/j.trac.2010.11.012.

[4]S.Podzimek,LightScattering,SizeExclusionChromatographyand AsymmetricFlowFieldFlowFractionation,JohnWiley&Sons,Inc.,Hoboken, NewJersey,2011.

[5]K.G.Wahlund,J.C.Giddings,Propertiesofanasymmetricalflowfield-flow fractionationchannelhavingonepermeablewall,Anal.Chem.59(1987) 1332–1339,http://dx.doi.org/10.1021/ac00136a016.

[6]A.Litzén,K.G.Wahlund,Zonebroadeninganddilutioninrectangularand trapezoidalasymmetricalflowfield-flowfractionationchannels,Anal.Chem. 63(1991)1001–1007,http://dx.doi.org/10.1021/ac00010a013.

[7]R.N.Qureshi,W.T.Kok,Optimizationofasymmetricalflowfield-flow fractionation(AF4),LCGCEur.23(2010)18–25.

[8]J.S.Yang,M.H.Moon,Flowoptimisationswithincreasedchannelthicknessin asymmetricalflowfield-flowfractionation,J.Chromatogr.A1581–1582 (2018)100–104,http://dx.doi.org/10.1016/j.chroma.2018.10.053. [9]J.M.Davis,Influenceofcrossflowhydrodynamicsonretentionratioinflow

field-flowfractionation,Anal.Chim.Acta246(1991)161–169.

[10]J.Janˇca,Field-flowfractionationinmicrofluidicchannelsoflowaspectratio, Int.J.Polym.Anal.Charact.22(2017)62–71,http://dx.doi.org/10.1080/ 1023666X.2016.1232558.

[11]P.S.Williams,S.B.Giddings,J.C.Giddings,Calculationofflowpropertiesand endeffectsinfield-flowfractionationchannelsbyaconformalmapping procedure,Anal.Chem.58(1986)2403–2408,http://dx.doi.org/10.1021/ ac00125a010.

[12]J.C.Giddings,L.K.Smith,M.N.Myers,Surfacebarriersforretention enhancementinfield-flowfractionation,Sep.Sci.Technol.13(1978) 367–385,http://dx.doi.org/10.1080/01496397808057108.

[13]A.D.Stroock,S.K.W.Dertinger,A.Ajdari,I.Mezic,H.aStone,G.M.Whitesides, Chaoticmixerformicrochannels,Science295(2002)647–651,http://dx.doi. org/10.1126/science.1066238.

[14]J.A.Bernate,C.Liu,L.Lagae,K.Konstantopoulos,G.Drazer,Vectorseparation ofparticlesandcellsusinganarrayofslantedopencavities,LabChip13 (2013)1086–1092,http://dx.doi.org/10.1039/c2lc40927e.

[15]C.L.M.H.Navier,Mémoiresurlesloisdumouvementdesfluides,Mémoiresde l’AcadémieR,DesSci.l’InstitutFr.6(1823)386–436.

[16]C.Y.Wang,Flowoverasurfacewithparallelgrooves,Phys.Fluids15(2003) 1114–1121,http://dx.doi.org/10.1063/1.1560925.

[17]T.Lee,E.Charrault,C.Neto,Interfacialsliponrough,patternedandsoft surfaces:areviewofexperimentsandsimulations,Adv.ColloidInterfaceSci. 210(2014)21–38,http://dx.doi.org/10.1016/j.cis.2014.02.015.

[18]P.S.Williams,Retentionratioandnonequilibriumbandspreadingin asymmetricalflowfield-flowfractionation,Anal.Bioanal.Chem.407(2015) 4327–4338,http://dx.doi.org/10.1007/s00216-015-8734-y.

[19]S.H.Maruf,M.Rickman,L.Wang,J.MerschIV,A.R.Greenberg,J.Pellegrino,Y. Ding,Influenceofsub-micronsurfacepatternsonthedepositionofmodel proteinsduringactivefiltration,J.Memb.Sci.444(2013)420–428,http://dx. doi.org/10.1016/j.memsci.2013.05.060.

[20]S.H.Maruf,L.Wang,A.R.Greenberg,J.Pellegrino,Y.Ding,Useof nanoimprintedsurfacepatternstomitigatecolloidaldepositionon ultrafiltrationmembranes,J.Memb.Sci.428(2013)598–607,http://dx.doi. org/10.1016/j.memsci.2012.10.059.

[21]S.H.Maruf,Z.Li,J.A.Yoshimura,J.Xiao,A.R.Greenberg,Y.Ding,Influenceof nanoimprintlithographyonmembranestructureandperformance,Polymer 69(2015)129–137,http://dx.doi.org/10.1016/j.polymer.2015.05.049. [22]M.Bikel,I.G.M.Pünt,R.G.H.Lammertink,M.Wessling,Shrinkageeffects

duringpolymerphaseseparationonmicrofabricatedmolds,J.Memb.Sci.347 (2010)141–149,http://dx.doi.org/10.1016/j.memsci.2009.10.015.

[23]L.Vogelaar,R.G.H.Lammertink,J.N.Barsema,W.Nijdam,L.A.M. Bolhuis-Versteeg,C.J.M.VanRijn,M.Wessling,Phaseseparation micromolding:anewgenericapproachformicrostructuringvarious materials,Small1(2005)645–655,http://dx.doi.org/10.1002/smll. 200400128.

[24]Y.-J.Won,J.Lee,D.C.Choi,H.R.Chae,I.Kim,C.H.Lee,I.C.Kim,Preparationand applicationofpatternedmembranesforwastewatertreatment,Environ.Sci. Technol.46(2012)11021–11027,http://dx.doi.org/10.1021/es3020309. [25]R.Aris,G.I.Taylor,Onthedispersionofasoluteinafluidflowingthrougha

tube,Proc.R.Soc.London.Ser.A:Math.Phys.Sci.235(1956)67–77,http://dx. doi.org/10.1098/rspa.1956.0065.

(10)

[26]N.Meechai,A.M.Jamieson,J.Blackwell,Translationaldiffusioncoefficientsof bovineserumalbumininaqueoussolutionathighionicstrength,J.Colloid InterfaceSci.218(1999)167–175,http://dx.doi.org/10.1006/jcis.1999.6401. [27]J.C.Giddings,P.S.Williams,M.A.Benincasa,Rapidbreakthrough

measurementofvoidvolumeforfield-flowfractionationchannels,J. Chromatogr.A627(1992)23–35.

[28]C.W.Cuss,I.Grant-weaver,W.Shotyk,AF4-ICPMSwiththe300Damembrane toresolvemetal-bearing“Colloids”<1kDa:optimization,fractogram deconvolution,andadvancedqualitycontrol,Anal.Chem.89(2017) 8027–8035,http://dx.doi.org/10.1021/acs.analchem.7b01427.

Referenties

GERELATEERDE DOCUMENTEN

Planten met mooi verhoutende, stevige stengels en vruchten die liefst lang intact blijven zijn heel geschikt.. Probeer een plek te zoeken waar de lage win- terzon over de

It has been shown that, as compared to using one source, the use of 6 sources for non-directional sound generation leads to sound fields with smaller deviations from the desired

When meta-regulation is understood as a regulator (as in second and third party regulation) facilitating and motivating regulatees to self- regulate – setting aside

Thus, for any avoidance of doubt, the arm’s length principle that the Commission applies in its State aid assessment is not that derived from Article 9 of the OECD Model

The research question: “How does the reputation of top executives influence the effect of pro-social CSR initiatives on job selection of prospective job applicants?”

So, that unconstrained firm tends to be more profitable, than constrained ones, while constrained companies tend to be smaller and hold less tangible assets because of

De bevindingen voor de variabelen Duur Aandacht Merk Mentos, Frequentie Aandacht Product Mentos, Duur Aandacht Merk Malibu, Duur Aandacht Product Malibu en Frequentie Aandacht

Neirude Lissone (boegbeeld van de NICU), Aartie Toekoen (baken van de pediatrie) en Shirley Heath, jullie ook dank voor jullie deelname aan deze stichting en voor de