• No results found

Metabolic-flux dependent regulation of microbial physiology

N/A
N/A
Protected

Academic year: 2021

Share "Metabolic-flux dependent regulation of microbial physiology"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Metabolic-flux dependent regulation of microbial physiology

Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias

Published in:

Current Opinion in Microbiology DOI:

10.1016/j.mib.2017.10.029

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Litsios, A., Ortega, Á. D., Wit, E. C., & Heinemann, M. (2018). Metabolic-flux dependent regulation of microbial physiology. Current Opinion in Microbiology, 42, 71-78. https://doi.org/10.1016/j.mib.2017.10.029

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Metabolic-flux

dependent

regulation

of

microbial

physiology

Athanasios

Litsios

1,3

,

A´lvaro

D

Ortega

1,3

,

Ernst

C

Wit

2

and

Matthias

Heinemann

1

Accordingtothemostprevalentnotion,changesincellular physiologyprimarilyoccurinresponsetoalteredenvironmental conditions.Yet,recentstudieshaveshownthatchangesin metabolicfluxescanalsotriggerphenotypicchangeseven whenenvironmentalconditionsareunchanged.Thissuggests thatcellshavemechanismsinplacetoassessthemagnitudeof metabolicfluxes,thatis,therateofmetabolicreactions,and usethisinformationtoregulatetheirphysiology.Inthisreview, wedescriberecentevidenceformetabolicflux-sensingand flux-dependentregulation.Furthermore,wediscusshowsuch sensingandregulationcanbemechanisticallyachievedand presentasetofnewcandidatesforflux-signalingmetabolites. Similartometabolic-fluxsensing,wearguethatcellscanalso senseproteintranslationflux.Finally,weelaborateonthe advantagesthatflux-basedregulationcanconfertocells.

Addresses

1MolecularSystemsBiology,GroningenBiomolecularSciencesand

BiotechnologyInstitute,UniversityofGroningen,Nijenborgh4,9747AG Groningen,TheNetherlands

2ProbabilityandStatistics,JohannBernoulliInstituteofMathematics

andComputerScience,UniversityofGroningen,Nijenborgh9,9747AG Groningen,TheNetherlands

Correspondingauthor:Heinemann,Matthias(m.heinemann@rug.nl)

3Sharedfirstauthors.

CurrentOpinioninMicrobiology2017,42:71–78 ThisreviewcomesfromathemedissueonCellregulation EditedbyJan-WillemVeeningandRitaTamayo

https://doi.org/10.1016/j.mib.2017.10.029

1369-5274/ã2017TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/).

Introduction

Microorganisms are often confronted with changes in

their environment, for instance, in terms of nutrient

availability.Directassessmentoftheextracellular

condi-tions, for example through two-component systems in

bacteria [1], often leads to adaptations in response to

environmental changes. However, there is increasing

evidenceshowingthatmicrobialcellscandisplaychanges

in their phenotype, for example, in growth rate, gene

expressionandmetabolism,alsoinresponsetochangesin

intracellularmetabolicfluxes,evenwhentheextracellular

conditions are kept constant [2–5]. But does this

flux-dependentregulationhaveamajorimpactoncell

physiol-ogy?Howcancellsmechanisticallysensemetabolicfluxes,

that is, rates of enzymatic reactions andmetabolic

path-ways,andusethisinformationforregulation?Andwhyis

thisregulationadvantageoustothe cell?

Microorganisms

display

flux-dependent

phenotypes

Accumulatingevidencesuggeststhatmicrobialcellscan

displayphenotypesimposedbymetabolicfluxes,andnot

directly byextracellularconditions. Oneexample isthe

switch from respiratory to fermentative metabolism in

glucose-rich conditions. When both Escherichia coli and

yeastweregrowninthesamenutrientenvironment,but

the rate of sugar uptake was controlled by inducible

expressionof sugarpermeasesorbyusinghexose

trans-portervariantswithdifferentkinetics(Figure1a)

respec-tively, a glycolytic flux-dependence of the metabolic

mode—a respiratory or fermentative metabolism—

was found[4,6].Ameta-analysisofdatafromanumber

of studiesthat useddifferentyeast strainsgrownunder

differentconditionssuggestedthatthisswitchistriggered

whenaspecificsugaruptakerateisexceeded[7].Because

the onset of ethanol production is accompanied by a

decreaseintheoxygenuptakerate,thisstudysuggested

that this ‘overflow metabolism’is an active responseto

the level of glycolytic flux, rather than a limitation in

oxidative metabolism.

Intracellular fluxchangesunderconstantenvironmental

conditionscanalsore-shapeproteomeexpression.

Prote-ome analysescarriedoutonbacteriagrowninlactoseas

thesolecarbonsourcebutinwhichmetabolicfluxeswere

modulatedbytitratingtheexpressionofeitherthelactose

permeaseor theenzymeinvolvedinammonia

assimila-tion showed thatas muchas 50% of theproteomewas

alteredintheseconditions[8].Similarly,a

comprehen-sive fluxomics and proteomics analysis in S. cerevisiae

strainswhich weregrownin thesame environment but

had different hexose uptake capacities, found that the

expression of nearly half of 200 quantified metabolic

proteins changed in aflux-dependent manner.Proteins

whose expression correlated positively with glycolytic

flux were found to be enriched for glycolytic proteins.

Ontheotherhand,proteinswithexpressionlevels

nega-tively correlating with glycolytic fluxwere enrichedfor

proteins involved in the TCA cycle, and in pyruvate,

(3)

Apartfromdeterminingthemetabolicmodeanddictating

proteinexpression, metabolicfluxescontrolgrowth.

Glu-coseinfluxdeterminesgrowthrateinS.cerevisiae[2,4],and inE.coli[9].Inaddition,thefractionofE. colicellsthat

enterspersistence,astateofnoorslow-growth

character-ized by antibiotic tolerance, was shown to anticorrelate

withglucoseinfluxwhentheratiobetweenglucoseanda

non-metabolizable analogue was modulated [10].

Simi-larly, after a nutrient shift of E. coli from glucose to

fumarate,persistercells areformed,andthe rateof

per-sisterformationcorrelatesnegativelywithfumarateuptake

rate[11,12].Whilethe most prevalentnotion has been

thatpersistence is triggered by toxin–antitoxin systems,

recentwork demonstratedthatpreviousfindings

consid-ering toxin–antitoxin systems contained artifacts [13].

Thus, as suggested by the above-mentioned findings,

persistenceentryislikelymetabolicflux-dependent.

How

do

cells

measure

and

use

fluxes

for

regulation?

Theimportantquestionthatarisesishowcellsare

capa-bleofassessingthelevelof metabolicflux,and usethis

informationfor regulation. Changesin flux,induced by

environmentalchangesorstochasticexpressionof

trans-portersorenzymes,couldbeassessedbychangesinthe

concentrationofpathwayintermediates(Figure1a).

How-ever,theconcentrationsofmetabolitesaredeterminedby

the combination of the kinetics of the consuming and

producing reactions. Metabolite concentrations do not

necessarilychange when fluxesare altered [14],nordo

theynecessarilyscalewithflux[15].Therefore,to

accom-plishflux-sensingviatheconcentrationofcertain

metab-olites,specific kineticsoftheinvolvedenzymesand

spe-cificregulation ofthese enzymesare required,suchthat

the strict correlation (or alternatively, anti-correlation)

betweenthemetaboliteconcentrationandmetabolicflux

isanemergingbehavior.Werefertometaboliteswithsuch

abehaviorasflux-signalingmetabolites.

The glycolytic intermediate fructose-1,6-bisphosphate

(FBP)hasbeenidentifiedas aflux-signalingmetabolite

[16]. FBP levels correlate with glycolytic flux across a

broad range of microbial species and conditions

[3,7,14,17,18–20], and even in dynamic perturbations

of glycolysis [21]. It has been found recently that the

molecular system translating the glycolytic flux into

theFBPlevelencompassesallenzymesoflower

glycol-ysis including the feedforward activation of pyruvate

kinase by FBP, which ensures that FBP concentration

correlateslinearlywithglycolyticfluxoverabroadrange

offluxes[17].

Totransducethefluxinformation‘stored’inthe

concen-tration of a flux-signaling metabolite (e.g. FBP) into a

response,aconcentration-dependentinteractionbetween

theflux-signaling metabolite and other cellular

compo-nents is required. In fact, it is well documented that

metabolitesinteractwithandregulatemetabolicenzymes

[22],transcriptionfactors[23,24],proteinkinases[25,26],

and cis-regulatory RNA sequences (riboswitches)

(Figure 1b). Additionally, some metabolites (e.g.

ace-tyl-CoA) can have a critical role in the expression of

specificgenes becausethey areutilized as substrate for

covalentmodificationsofhistones[27,28].However,the

physiologicalrelevanceofsuchinteractionsinmostcases

isstillunclear.Mostavailableinformationstemsfromin

vitro studiesfocusing on purifiedindividual proteins or

RNAspecies[29],inpartbecausedirectperturbationof

metabolitelevelsinlivingcellswithoutoff-targeteffects

isstillimpossible.However,bysystematically

investigat-ing metabolites that affect transcriptional regulation in

vivo,Kochanowski and co-workers showed that indeed

(flux-signaling)metabolites(cyclicAMP,FBP,and

fruc-tose-1-phosphate) interacting with two major

transcrip-tionfactors(CrpandCra)areresponsibleforthemajority

ofthetranscriptionalregulationobservedacross23diverse

growthconditionsin E.coli[30].

While previously interactions between metabolites and

other cellular molecules were mostly found by

72 Cellregulation Figure1 Flux-sensing Flux-dependent regulation High flux Flux-signaling metabolite Flux-signaling metabolite Low flux [Metabolite] Cellular processes TFs Histones Riboswitches Kinases Enzymes FLUX (a) (b)

Current Opinion in Microbiology

Schematicillustrationofflux-sensingandflux-dependentregulation. (a)Kineticsofenzymesandtheirregulationissuchthatcertain intermediatesbecomeflux-signalingmetabolites,thatis,theirlevels eithercorrelate(oranticorrelate)withmetabolicflux.Atconstant nutrientconditions,differencesinmetabolicfluxescanbeachieved throughvariationsinnutrienttransporterlevels(illustratedinthe scheme),orthroughvariationsofflux-limitingenzymes.(b)Information aboutmetabolicfluxisimprintedintotheconcentrationofa flux-signalingmetabolite,whichtheninteractswithregulatoryfactorsand enzymes(greybox)tocontrolothercellularprocesses(including metabolism).Abbreviation:TFs,transcriptionfactors.

(4)

serendipity or intuition, recently, significant advances

were made towards unbiased and global identification

methods.Forinstance,Lietal.usedmassspectrometryto

identify hydrophobic metabolites bound to protein

kinases and enzymes involved in the biosynthesis of

ergosterolinyeast[31].Thisstudyrevealednovel

inter-actions among intermediates of the ergosterol pathway

and17differentenzymes(70%oftheergosterol

biosyn-thesis enzymes).Inanother study,amethodwas

devel-oped basedonlimiteddigestionofproteomes extracted

under non-denaturinginvivoconditionscoupledto

tar-getedproteomics.Thisallowed forscreeningof

confor-mational rearrangements of proteins upon metabolite

binding [32]. Besides confirming previously described

metabolite-protein interactions, the authors also

sug-gested manynovelallostericinteractions [32].

Apart from proteins, metabolites can also interact with

riboswitches—RNA elements that conditionally

regu-late geneexpression (transcriptionalregulation,in most

cases) dependingonthepresenceofasmallcompound.

Recently,Daretal.mappedthe30and50endsandglobal

transcriptlevelsindifferentmodelmicroorganismsandin

a complex microbial consortium from oral microbiota

and discovered a plethora of unknown potential

ribos-witches.Interestingly,bycomparingthelevelsof

condi-tional transcription termination after depleting lysine

fromthemediumoraddinganantibiotic,theyidentified

riboswitchesthatspecificallyrespondtoagiven

metabo-lite.Thisworkhasthepotentialtobedevelopedintoa

pipeline for high throughput screening of

metabolite-sensitiveRNAregulators [33].

Collectively,theinteractionofflux-signalingmetabolites

with other macromolecules can exert flux-dependent

regulation at different levels(e.g. gene expression and

enzyme activityregulation). Through therecent

devel-opmentintechniquestoidentify

metabolite–macromol-eculeinteractionswearegettingclosertoafullpictureon

how and which processesmight be regulatedin a

flux-dependentmanner.

On

the

quest

for

flux-signaling

metabolites

Although several metabolites may exert control over

cellular functions, how can we identify flux-signaling

metabolites? As mentioned, flux-signaling metabolites

(i) exhibitchangesintheirconcentration in responseto

changes in metabolic flux, and (ii) interact with other

macromoleculesinordertotranslatetheflux-information

intoacellularresponse.Withthegoaltoidentify

metab-olitesthatfulfillthesecriteria,andarethuscandidatesfor

mediatingflux-signaling,wefirstgatheredconcentration

data of glycolytic, tricarboxylic acid (TCA) cycle, and

pentose phosphate pathway (PPP) metabolites which

were generated in quantitative metabolomics

experi-ments, from seven independent studies performed on

threemicrobes (E.coli,B.subtilis,andS.aureus)[21,34–

39].To maximizethechancesto identifyflux-signaling

metabolites,thedatasetcontained30differentnutrient

regimesatsteady-stateorduringdynamicperturbations.

Weperformedastatisticalanalysisonthesedata(usinga

linearmixedeffectsmodel)toidentifythosemetabolites

whose concentrations vary most across the conditions.

Here, we found that different metabolites have largely

differentvariances(Figure2a,toprow).Themetabolites

withthe highestvarianceacrossconditionsareFBP,

cit-rate, succinate, 6-phosphogluconate (6PG),

ribulose-5-phosphate(Ru5P),andsedoheptulose-7-phosphate(S7P).

Secondly,wegatheredinformationaboutinteractionsof

thesamemetaboliteswithenzymes(https://metacyc.org/,

[40]), regulatory proteins, as wellas transcriptionaland

translational regulators (www.rcsb.org, [41]; http://

regulondb.ccg.unam.mx/,[42]).Here,wefoundthat

cer-tain metabolites had many more interactions with

enzymesandregulatoryproteinsthanothersofthesame

pathway.Particularly,citrateandalpha-ketoglutarate

(A-KG)fromtheTCAcycle,andFBP,phosphoenolpyruvate

(PEP)andpyruvatefromglycolysisstoodout(Figure2a,

central andbottomrows).

Takingthedataonthemetabolites’concentration

vari-ance and interactions with enzymes and regulators

together(Figure2b),weconfirmedFBPasa

flux-signal-ing metabolite [17]. Furthermore, we identified new

candidates for flux-signaling metabolites. For instance,

citrate,phosphoenolpyruvate(PEP)andA-KGscorehigh

on both criteria in Figure 2b, and are thus excellent

candidates, as well as succinate (SUC) and pyruvate

(PYR).Infact,itwasrecentlyshowninS.cerevisiaethat

citrateconcentration increaseswhennitrogenislimited,

andthatitsconcentrationcorrelateswellwiththedegree

ofnitrogenlimitation[14],suggestingthatcitratecould

reportonthemagnitudeofnitrogeninflux.Citratecould

exert flux-dependentregulation asan inhibitorof

pyru-vate kinase [14]; nitrogen influx would be sensed via

citrate and then lead to regulation of the flux through

glycolysis.Interestingly,a-ketoglutarate,theotherTCA

metabolitethatweidentifiedasapotentialflux-signaling

metabolite,wasalsoreportedtocoordinateglycolyticflux

withnitrogenuptake,butinE.coli[43].Suchregulatory

cross-talk between metabolicpathways (some of which

possiblymediatedinaflux-dependentmanner)seemsto

be rather common in central metabolism: metabolites

from one metabolic pathway to regulate enzymes in a

differentpathway(Figure 2c).

Unstable

proteins

as

reporters

of

translation

flux

Whileflux-signalingmetabolitescanreportonmetabolic

flux through specific pathways, important cellular

deci-sions, asfor exampletheentry tocelldivision,possibly

requirestheassessmentofthecellularmetabolicactivity

(5)

consideredas anexcellent reporterof overall metabolic activityofacell,forthefollowingreasons:(i)synthesizing

ribosomes requires most of the cellular biosynthetic

capacity [45], (ii) protein translation is by far themost

expensivebiosyntheticprocessinthecell[46],and(iii)a

highrateofproteinsynthesisalsoreflectsa

well-coordi-natedactivityofcentralmetabolism,astheproductionof

thedifferentamino acidsrequiredfor proteinsynthesis

demands a well-coordinated operation of several

path-waysincentralmetabolism[47,48].

Alsohere,toassesstranslationflux,fluxistranslatedintoa

measurablequantity,andinspecificaprotein

concentra-tion(Figure3).Informationabouttranslationfluxcanbe

imprinted into the levels of a proteinif this protein is

constitutivelyexpressedandhasaveryshorthalf-life(i.e.

thereisahighproteindegradationflux).Inthiscase,the

levelofthisproteinreflectstheinstantaneoustranslation

rate.Infact,Bellandcolleaguesmeasuredthehalf-lifeof

3751proteinsin exponentiallygrowingS.cerevisiae,and

foundanumberof very unstableproteins (161 proteins

with a half-life of <4minutes) that were enriched in

proteinsinvolvedincellregulation[49].Similar

conclu-sionswerealsodrawnfromanotherproteome-widestudy,

in which it was shown that the classes of short-lived

proteinsareenrichedincellularregulators[50],although

inamorerecentstudyalsoproteinsinvolvedinribosomes

andaminoacidbiosynthesishadhighturnoverrates[51].

Throughsuch short-livedproteins, reportingtranslation

flux[52],acellcouldexert regulationonthebasisofits overallmetabolic activity(Figure 3).

Anexampleoftranslation-fluxbasedregulationinvolves

the budding yeast cyclin Cln3, which is a remarkably

74 Cellregulation Figure2 (a) Glycolysis 1.5 1.0 0.5 1.5 1.4 S7P Citrate PPP Glycolysis TC A G6P F6P 3PG Cis-Aco FUM MAL PYR A-KG PEP 6PG R5P FBP RU5P SUC X5P Isocitrate BPG DHAP SUC-CoA 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.05 0.10

Scaled number of interactions of metabolite

0.15 0.20 0.25 0.30 0.35 1.0 0.5 0 0 1.5 1.0 0.5 0 V a riance Enzymes Regulators 20 15 10 5 0 20 20 15 10 10 5 0 8 16 16 12 12 4 4 4 3 2 1 0 0 G6P F6P FBP 3PG BPG

DHAP G3P 2PG PEP PYR Citrate Cis-Aco

Isocitrate

A-KG

SUC-CoA

SUC FUM MAL OAA

E4P Metabolite’ s variance S7P R5P X5P RU5P 6PG 6GPDL 3 2 1 0 TCA PPP (b) (C)

Current Opinion in Microbiology

Identificationofflux-signalingmetabolitesandmetabolite-mediatedregulatorycrosstalkbetweendifferentmetabolicpathways.(a)Fromtopto bottom,varianceinconcentrationofmetabolitesacrossnutrientconditions(blackdotindicateslackofdata),numberofuniquemetabolite– enzymeregulatoryinteractions,andnumberofuniquemetaboliteinteractionswithproteinsinvolvedintheregulationofgeneexpression. Abbreviations:G6P,glucose-6phosphate;F6P,fructose-6-phosphate;FBP,fructose1,6-bisphosphate;3PG,glycerate3-phosphate;BPG, 1,3-bisphosphoglycerate;DHAP,dihydroxyacetonephosphate;G3P,glyceraldehyde3phosphate;2PG,glycerate2-phosphate;PEP,phosphoenol pyruvate;PYR,pyruvate;Cis-Aco,cis-aconitate;A-KG,a-ketoglutarate;SUC-CoA,succinyl-CoA;SUC,succinate;FUM,fumarate;MAL,malate; OAA,oxaloacetate;6GPDL,6-phosphogluconolactone;6PG,6-phosphogluconate;RU5P,ribulose-5-phosphate;X5P,xylulose-5-phosphate;R5P, ribose-5-phosphate;S7P,sedoheptulose-7-phosphate;E4P,erythrose-4-phosphate.Fortheestimationofthevariancecomponents,alinear mixedeffectsmodelwasfittothemetaboliteconcentrations,wherebytheinterestcenteredonhowmuchthevariousmetaboliteconcentrations variedacrossthedifferentconditions,controllingforthestate(dynamic/steady)andthevariousstudies.Foreachmetabolite,arandomintercept wasestimatedacrosstheconditionsandthevariancecomponentassociatedwiththatrandominterceptexpressedhowmucheachmetabolite variedacrosstheconditions.Afewmetabolites(RU5P,X5P,S7P,isocitrate)wereonlymeasuredwithinonestudyandthereforedidnotneedto becontrolledforstudyandafewothermetabolites(3PG,PYR,citrate,Cis-Aco,SUC-CoA)wereonlymeasuredatoneconditionanddidnot requirecontrolforthatvariableeither.Toobtainputativeinteractionsbetweenmetabolitesandregulatoryproteins,asearchintheProteinData Bankwasperformedusingthenameofeachmetabolitetogetherwiththeword‘transcription’askeywords,andthehitsweremanuallyexamined. (b)Metabolitevarianceversusthenumberofametabolite’sinteractionswithenzymesandregulatorsrelativetothetotalnumberofinteractionsof allmetabolitesinthepathway.Toestimatetheuncertaintyinnormalizedinteractions,webootstrapped(i.e.recalculatedthesevaluesfrom reduceddatasetswhereweeachtimeleftout10%oftheinteractions)andthendeterminedthecoefficientofvariance.Markersizesreflectthe inverseofthecoefficientofvariations.Forregressionline:R2=0.69,p-value1.58e6.Metaboliteswithlargemarkerswithinthegreycirclesare strongcandidatesforflux-signalingmetabolites.(c)Circosplot[44]showingthecross-regulationbetweenpathwaysthroughmetabolite–enzyme interactions.Thefulllengthofeachideogramisproportionaltothetotalnumberofenzymesinthepathwaythatwerefoundtoberegulatedby metabolitesinoneoftheothershownpathways(10,10,and1enzymesforglycolysis,TCA,andPPPrespectively).Theribbonsindicatewhich fractionoftheseenzymes(end-pointofribbon)areregulatedbymetabolitesofanotherpathway(ribboncolor).Forexample,theyellowribbon indicatesthatapproximatelyone-thirdofthemetabolite-regulatedglycolyticenzymes,areregulatedbyTCAmetabolites.

(6)

short-livedprotein[53],andwhosesynthesisisthoughtto

depend on the translation capacity of the cell [54].

Because Cln3 is a potent activator of the cell division

program in S.cerevisiae [55],Cln3transmits information

about translation flux to the cell cycle machinery [52],

thususinginformationabouttheoverallmetabolic

activ-ityof thecelltomakeanimportant cellfatedecision.

Why

sensing

intracellular

fluxes?

Whyshouldcellsexertregulatoryactivityonthebasisof

metabolic flux, rather than, for example, solely on the

basis of extracellular nutrient concentration? Microbial

cells can growonmany differentcarbon sources (up to

180 for E. coli[56]).The simultaneousexpression of so

many sensors probing the extracellular environment

wouldpresentasignificantburdentocells.Furthermore,

signals from different sensors would need to be

‘integrated’ to ultimately lead to a coherent cellular

response.Instead,withintracellularflux-sensing,

measur-ing flux atdifferentpoints in metabolism (for instance,

where different inflowing nutrients converge) through

flux-signalingmetabolites,requiresfewersensing

mech-anisms[16].However,thisgaininexpenditurecomesat

the cost of only roughly reporting the nature of the

inflowing nutrients.In fact,it appears thatcells display

sub-optimal control of gene expression in response to

environmental conditions(reviewedin [57]),suggesting

that theyareprepared to facearangeofenvironmental

regimes,ratherthanaspecificone.Thus,wecanconsider

flux-sensing an economic way to regulate metabolism,

and as an elegant way to handle the problem of

‘integrating signals’.

Furthermore, flux-dependentregulationcould alsobea

robustwaytoregulatemetabolismandcellularprocesses.

First, flux-sensing allows cells to determine the actual

metabolicrates.Thus,regulation canbeexertedonthe

basisofwhatisactuallyhappeninginsidecells(intermsof

metabolic activity) instead of what substrate would be

available in the extracellular environment. Maybe

becauseofthis,importantcellulardecisions,forinstance

theentryintobacterialpersistence,aremadeonthebasis

of metabolic flux [11,12].Second, flux-sensing is

inte-gratedinglobalfeedbackloops(fluxcontrolsflux)[11,16],

which allows for corrections of stochastically induced

alterationsingeneexpression,whichrecentlywasshown

to alsoaffectmetabolism[58].

Conclusion

Flux-sensingandflux-basedregulationconstitutes

possi-bly a common,previously underappreciated,

phenome-non in microorganisms. Nevertheless, even identifying

whichelementscompriseaflux-signalingsystemisafar

fromtrivialtask. Althoughquantitativemetabolomics is

nowadaysatastagewherethelevelsofmanymetabolites

can bequantitatively determined, measuringmetabolic

fluxes across differentconditionsin a trulyquantitative

mannerisstillachallenge.However,significantadvances

have recentlybeenaccomplished towardsthis direction

[59]. Moreover, thesystematicidentification of

interac-tionsbetweenmetabolitesandproteinsorRNAshasbeen

sofarrelativelylimited.Infact,therecentdevelopments

on high-throughput identification of such interactions

[31,32,33,60] suggest that the limitednumber of

cur-rently knowninteractionsisdue tomethodological

lim-itations, rather than due to their limited presence in

biological systems. Finally, in order to experimentally

prove the functioning of flux-sensing systems in living

cells,complexmetabolic perturbationsare required(i.e.

perturbing metabolicflux,perturbing metabolitelevels)

whicharetypicallyverydifficulttoachieve,oronlywith

off-target effects. Therefore, combining mathematical

modelling with elegant targeted perturbation methods,

as for example the recently developed

optogenetics-based methodfor controlling enzymeactivity [61],will

beessentialtowardselucidatingandprovingflux-sensing

andflux-dependentregulation.

Understanding how metabolic fluxes are sensed and

translatedtophysiologicalresponseswillbehighly

valu-able for metabolic engineering, as for example in the

constructioncellfactories,whichinvolvestheredirection

of metabolic fluxes for the synthesis of commercially

interesting chemicals. Also, knowingwhich metabolites

are flux-signaling will allow the construction of

biosen-sors, whereby the concentration of the flux-signaling

metabolite is translated into a measurable output, such

astheexpressionofafluorescentprotein[62].Such

flux-reporting biosensors could possibly also be used as a

research tool for screeningof drugs targetingmetabolic

diseasesandcancer.Overall,theelucidationofthe

archi-tectureandfunctionofflux-sensingsystemswillprovide

animportant,currentlymissing,perspectiveonmetabolic

regulationwith potentiallypowerfulapplications.

Figure3

Flux from different metabolic pathways

Ribosomal capacity

Regulation

Translation FLUX Degradation flux Unstable

protein

[Protein]

Current Opinion in Microbiology

Inferringglobalmetabolicactivityfromtranslationfluxviaunstable proteins.Therateoftranslationreflectsthecoordinatedactivityof centralmetabolism.Theconcentrationofconstitutivelyexpressed, highlyunstableproteins,reportstherateoftranslation(i.e.the translationflux).Suchconstitutivelyexpressed,unstableproteinscan beexploitedbycellsforregulationbasedontheiroverallmetabolic activity.

(7)

Conflict

of

interests

Theauthors declarenoconflictofinterests.

Author

contributions

ALandADOcontributedequallytothiswork.AL,ADO,

andMHconceivedthestudyandwrotemanuscript.AL

andADOcollectedandanalyzeddata.EWperformedthe

analysisonthevarianceofthemetaboliteconcentrations.

Acknowledgements

ThisworkwassupportedbytheMarieCurieInnovativeTrainingNetwork (ITN)ISOLATEundergrantagreementno.289995,theEuropeanUnion SeventhFrameworkProgramme(FP7-KBBE-2013-7-single-stage)under grantagreementno.613745(PROMYS),andtheMarieSkłodowska-Curie InnovativeTrainingNetwork(ITN)MetaRNAundergrantagreementno. 642738.WewouldliketothankSerdarO¨ zsezenforthebootstrapanalysis.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest

1. StockAM,RobinsonVL,GoudreauPN:Two-componentsignal

transduction.Reactions2000,69:183-215.

2. Schmidt-GlenewinkelH,BarkaiN:Lossofgrowthhomeostasis bygeneticdecouplingofcelldivisionfrombiomassgrowth: implicationforsizecontrolmechanisms.MolSystBiol2014,10 769-769.

3. SchmidtAM:Flux-signalingandflux-dependentregulationin Saccharomycescerevisae.(Doctoraldissertation,ETHZu¨rich, Zu¨rich,2014).Retrievedfromwww.e-collection.library.ethz.ch. 4. ElbingK,LarssonC,BillRM,AlbersE,SnoepJL,BolesE,

HohmannS,GustafssonL:Roleofhexosetransportincontrol ofglycolyticfluxinSaccharomycescerevisiae.ApplEnviron Microbiol2004,70:5323-5330.

5. ElbingK,Sta˚hlbergA,HohmannS,GustafssonL:

Transcriptionalresponsestoglucoseatdifferentglycolytic ratesinSaccharomycescerevisiae.EurJBiochem2004, 271:4855-4864.

6. BasanM,HuiS,OkanoH,ZhangZ,ShenY,WilliamsonJR,HwaT: OverflowmetabolisminEscherichiacoliresultsfromefficient proteomeallocation.Nature2015,528:99-104.

7. HubertsDHEW,NiebelB,HeinemannM:Aflux-sensing

mechanismcouldregulatetheswitchbetweenrespirationand fermentation.FEMSYeastRes2012,12:118-128.

8.

 HuiHwaS,T,SilvermanWilliamsonJM,JR:ChenQuantitativeSS,EricksonproteomicDW,BasananalysisM,WangrevealsJ, asimplestrategyofglobalresourceallocationinbacteria.Mol SystBiol2015,11e784–e784.

Aquantitativeproteomicsanalysisof1000E.colienzymesacrossa rangeofdifferentlevelsofcarbonuptakeflux,nitrogenassimilationflux, andproteintranslationlimitation,whereforeachtypeoflimitationthe initialextracellularnutrientconditionswerethesameacrosslimitations. Thisstudyshowedthatwhiletherearefractionsoftheanalyzedproteome thatdonotchangeorchangeacrossalltypeoflimitation,theprotein levelsincertainfractionsoftheproteomechangeexclusivelyasaresultin limitationofcarbonuptakefluxornitrogenassimilationflux,revealingthat thereisaflux-basedorganizationofthebacterialproteome.

9. HansenMT,PatoML,MolinS,FillNP,vonMeyenburgK:Simple downshiftandresultinglackofcorrelationbetweenppGpp poolsizeandribonucleicacidaccumulation.JBacteriol1975, 122:585-591.

10. MaisonneuveE,Castro-CamargoM,GerdesK:(p)ppGpp

controlsbacterialpersistencebystochasticinductionof toxin–antitoxinactivity.Cell2013,154:1140-1150.

11. KotteO,VolkmerB,RadzikowskiJL,HeinemannM:Phenotypic bistabilityinEscherichiacoli’scentralcarbonmetabolism.Mol SystBiol2014,10:736.

12.

 RadzikowskiHeinemannM:JL,BacterialVedelaarpersistenceS,SiegelD,isOrtegaanactiveA´D,SchmidtsSstressA, responsetometabolicfluxlimitation.MolSystBiol2016, 12:882.

AstudyinwhichthemolecularphenotypeofE.coliwascomprehensively mappedduring entry and residency into persistence, using a novel methodforpersistercellgeneration.Thisstudyrevealedthatchanges in metabolic flux can determine whether cells enter persistence or assume a growing phenotype, even when cells lack critical genetic componentsinvolvedinpersistenceformation,showingthatmetabolic fluxesareinvolvedinbacterialdecisionmaking.

13. HarmsA,FinoC,SørensenMA,SemseyS,GerdesK:Nasty prophagesandthedynamicsofantibiotic-tolerantpersister cells.bioRxiv2017http://dx.doi.org/10.1101/200477.

14.

 HackettGibneyPA,SR,BotsteinZanotelliD,VRT,StoreyXuJD,W,GoyaRabinowitzJ,ParkJD:JO,Systems-levelPerlmanDH, analysisofmechanismsregulatingyeastmetabolicflux. Science2016,354:aaf2786.

Anovelstudywherefluxomic,metabolomic,andproteomicdatawere obtainedforS.cerevisiaefrom25differentchemostatcultures,andwere combinedwithmodelingtorevealmechanismsunderlyingmetabolic-flux regulation.Thisstudy,duetothewealthofinformationgenerated,offers anexcellentdataresortforidentificationofmetaboliteswhichdisplaya flux-dependentconcentration,andthus,whichfulfillthefirstcriterionof flux-signalingmetabolites.

15. ZamboniN,SaghatelianA,PattiGJ:Definingthemetabolome: size,flux,andregulation.MolCell2015,58:699-706.

16.

 KottedistributedO,ZauggsensingJB,HeinemannofmetabolicM:Bacterialfluxes.MoladaptationSystBiolthrough2010, 6:355.

Inthispaper,theconceptofflux-signalingandflux-dependentregulation wasfirstdescribedandshowntobekeyforadaptationofmicrobesto changingnutrientenvironments.

17.

 KochanowskiSchmidtA,HeinemannK,VolkmerM:B,FunctioningGerosaL,HaverkornofametabolicvanRijsewijkfluxBR, sensorinEscherichiacoli.ProcNatlAcadSciUSA2013, 110:1130-1135.

Thisstudyconstitutesoneofthefirst(ifnotthefirst)casesinwhich evidenceandtheunderlyingmechanismforflux-dependentregulation werereported.ItreportsonthemechanismbywhichFBPaccomplishesa glycolyticflux-dependentconcentration,andhowthroughitsinteraction withthetranscription factorCra, E. coli can achieve flux-dependent regulation.

18. ChristenS,SauerU:Intracellularcharacterizationofaerobic glucosemetabolisminsevenyeastspeciesby13Cflux analysisandmetabolomics.FEMSYeastRes2011,11:263-272.

19. HeylandJ,FuJ,BlankLM:CorrelationbetweenTCAcycleflux andglucoseuptakerateduringrespiro-fermentative growthofSaccharomycescerevisiae.Microbiology2009, 155:3827-3837.

20. ChubukovV,UhrM,LeChatL,KleijnRJ,JulesM,LinkH, AymerichS,StellingJ,SauerU:Transcriptionalregulationis insufficienttoexplainsubstrate-inducedfluxchangesin Bacillussubtilis.MolSystBiol2013,9:709.

21. SchaubJ,ReussM:Invivodynamicsofglycolysisin Escherichiacolishowsneedforgrowth-ratedependent metabolomeanalysis.BiotechnolProg2008,24:1402-1407.

22. ChangeuxJ-P:AllosteryandtheMonod–Wyman–Changeux

modelafter50years.AnnuRevBiophys2012,41:103-133.

23. SellickCA,ReeceRJ:Eukaryotictranscriptionfactorsasdirect nutrientsensors.TrendsBiochemSci2005,30:405-412.

24. PinsonB,VaurS,SagotI,CoulpierF,LemoineS, Daignan-FornierB:Metabolicintermediatesselectivelystimulate transcriptionfactorinteractionandmodulatephosphateand purinepathways.GenesDev2009,23:1399-1407.

25. TheveleinJM,deWindeJH:Novelsensingmechanismsand

targetsforthecAMP–proteinkinaseApathwayintheyeast Saccharomycescerevisiae.MolMicrobiol1999,33:904-918.

(8)

26. HedbackerK,CarlsonM:SNF1/AMPKpathwaysinyeast.Front Biosci2008,13:2408-2420.

27. ShiL,TuBP:Acetyl-CoAandtheregulationofmetabolism: mechanismsandconsequences.CurrOpinCellBiol2015, 33:125-131.

28. HirscheyMD,ZhaoY:Metabolicregulationbylysine malonylation,succinylation,andglutarylation.MolCell Proteomics2015,14:2308-2315.

29. LindsleyJE,RutterJ:Whencecomeththeallosterome? Proc NatlAcadSciUSA2006,103:10533-10535.

30. KochanowskiK,GerosaL,BrunnerSF,ChristodoulouD, NikolaevYV,SauerU:Fewregulatorymetabolitescoordinate expressionofcentralmetabolicgenesinEscherichiacoli.Mol SystBiol2017,13:903.

31. LiX,GianoulisTA,YipKY,GersteinM,SnyderM:Extensivein vivometabolite–proteininteractionsrevealedbylarge-scale systematicanalyses.Cell2010,143:639-650.

32.

 BoersemaFengY,DePJ,FranceschideLauretoG,PP,KahramanNikolaevA,Y,SosteOliveiraM,MelnikAP,PicottiA, P: Globalanalysisofproteinstructuralchangesincomplex proteomes.NatBiotechnol2014,32.

Alimiteddigestionofproteomesextractedundernon-denaturing con-ditionscoupledtotargetedproteomicswasusedtoidentifyproteinsthat undergoconformationalrearrangementsindifferentconditions.As meta-bolitebindingtoproteinsinducesaconformationalchangetheauthors hypothesizedthatthismethodcouldalsoservetoidentifyproteintargets of allostericregulation.A parallel analysisofprotein abundance and metabolicfluxesallowedtheauthorstopointtopotentialenzymetargets ofmetaboliccontrolinaninvivorelevantsituationandthemechanismby whichtheseenzymescontrolflux(transcriptionaland/orallosteric). 33.

 DarCossartD,ShamirP,SorekM,R:MellinTerm-seqJR,KouterorevealsM,abundantStern-Ginossarribo-regulationN, ofantibioticsresistanceinbacteria.Science2016,352: aad9822.

Theauthorsdevelopedforthefirsttimeanexperimentalhigh-throughput methodforthediscoveryofriboswitchesacrossbacterialgenomes.The so-calledterm-seqmethodquantitativelymapsRNA30ends,thus allow-ingunbiasedidentificationofgenesdisplayingprematuretranscription termination,whichisthemostcommonmechanismofligand-mediated geneexpressioncontrolinbacteria.Term-seqwasprovenavaluabletool fortheidentificationofantibiotic-responsiveribo-regulatorsinpathogens opening atrack for discoveringriboswitchesresponding tounknown ligands.

34. BuchholzA,HurlebausJ,WandreyC,TakorsR:Metabolomics: quantificationofintracellularmetabolitedynamics.BiomolEng 2002,19:5-15.

35. TimischlB,DettmerK,KasparH,ThiemeM,OefnerPJ: Developmentofaquantitative,validatedcapillary electrophoresis-timeofflight-massspectrometrymethod withintegratedhigh-confidenceanalyteidentificationfor metabolomics.Electrophoresis2008,29:2203-2214.

36. BennettBD,KimballEH,GaoM,OsterhoutR,VanDienSJ, RabinowitzJD:Absolutemetaboliteconcentrationsand impliedenzymeactivesiteoccupancyinEscherichiacoli.Nat ChemBiol2009,5:593-599.

37. LiebekeM,MeyerH,DonatS,OhlsenK,LalkM:Ametabolomic viewofStaphylococcusaureusanditsser/thrkinaseand phosphatasedeletionmutants:involvementincellwall biosynthesis.ChemBiol2010,17:820-830.

38. LinkH,KochanowskiK,SauerU:Systematicidentificationof allostericprotein–metaboliteinteractionsthatcontrolenzyme activityinvivo.NatBiotechnol2013,31:357-361.

39. ChubukovV,SauerU:Environmentaldependenceof

stationary-phasemetabolisminBacillussubtilisand Escherichiacoli.ApplEnvironMicrobiol2014,80:2901-2909.

40. CaspiR,BillingtonR,FerrerL,FoersterH,FulcherCA,KeselerIM, KothariA,KrummenackerM,LatendresseM,MuellerLAetal.:The

MetaCycdatabaseofmetabolicpathwaysandenzymesand

theBioCyccollectionofpathway/genomedatabases.Nucleic AcidsRes2016,44:D471-D480.

41. BermanHM,WestbrookJ,FengZ,GillilandG,BhatTN,WeissigH, ShindyalovIN,BournePE:Theproteindatabank.NucleicAcids Res2000,28:235-242.

42. Gama-CastroS,SalgadoH,Santos-ZavaletaA, Ledezma-TejeidaD,Mun˜iz-RascadoL,Garcı´a-SoteloJS, Alquicira-Herna´ndezK,Martı´nez-Flores I,PannierL,Castro-Mondrago´nJA etal.:RegulonDBversion9.0:high-levelintegrationofgene regulation,coexpression,motifclusteringandbeyond.Nucleic AcidsRes2016,44:D133-D143.

43. DoucetteCD,SchwabDJ,WingreenNS,RabinowitzJD: a-Ketoglutaratecoordinatescarbonandnitrogenutilization viaenzymeIinhibition.NatChemBiol2011,7:894-901.

44. KrzywinskiM,ScheinJ,BirolI,ConnorsJ,GascoyneR, HorsmanD,JonesSJ,MarraMA:Circos:aninformation

aestheticforcomparativegenomics.GenomeRes2009,

19:1639-1645.

45. BremerH,DennisP:Feedbackcontrolofribosomefunctionin Escherichiacoli.Biochimie2008,90:493-499.

46. RussellJB,CookGM:Energeticsofbacterialgrowth: balanceofanabolicandcatabolicreactions.MicrobiolRev 1995,59:48-62.

47. LjungdahlPO,Daignan-FornierB:Regulationofaminoacid,

nucleotide,andphosphatemetabolisminSaccharomyces

cerevisiae.Genetics2012,190:885-929.

48. UmbargerHE:Aminoacidbiosynthesisanditsregulation.Annu RevBiochem1978,47:533-606.

49.

 BelleofproteinA,Tanayhalf-livesA,BitinckaintheL,ShamirbuddingR,yeastO’Sheaproteome.EK:QuantificationProcNatl AcadSciUSA2006,103:13004-13009.

Anexhaustive,genome-wide,andlabor-intensivestudyinwhichthe half-livesofproteinsintheyeastproteomewereassessed.Thisstudy,by revealingthatshort-livedproteinsareenrichedforproteinsinvolvedincell regulation,setsthefoundationofthehypothesispromotedherethatcells useunstableproteinstoundertakedecisionsinaccordancetotranslation flux.

50. ChristianoR,NagarajN,Fro¨hlichF,WaltherTC:Globalproteome turnoveranalysesoftheyeastsS.cerevisiaeandS.pombe. CellRep2014,9:1959-1965.

51. LahtveeP-J,Sa´nchezBJ,SmialowskaA,KasvandikS, ElsemmanIE,GattoF,NielsenJ:Absolutequantificationof

proteinandmRNAabundancesdemonstratevariabilityin

gene-specifictranslationefficiencyinyeast.CellSyst2017,4 495–504.e5.

52. JorgensenP,TyersM:Howcellscoordinategrowthand division.CurrBiol2004,14:1014-1027.

53. TyersM,TokiwaG,NashR,FutcherB:TheCln3–Cdc28kinase complexofS.cerevisiaeisregulatedbyproteolysisand phosphorylation.EMBOJ1992,11:1773-1784.

54. SchmollerKM,TurnerJJ,Ko˜ivoma¨giM,SkotheimJM:Dilutionof thecellcycleinhibitorWhi5controlsbudding-yeastcellsize. Nature2015,526:268-272.

55. TyersM,TokiwaG,FutcherB:Comparisonofthe

SaccharomycescerevisiaeG1cyclins:Cln3maybean

upstreamactivatorofCln1,Cln2andothercyclins.EMBOJ 1993,12:1955-1968.

56. OrthJD,ConradTM,NaJ,LermanJA,NamH,FeistAM,

PalssonBO:Acomprehensivegenome-scalereconstruction

ofEscherichiacolimetabolism—2011.MolSystBiol2014,7 535–535.

57. KochanowskiK,SauerU,ChubukovV:Somewhatincontrol—

theroleoftranscriptioninregulatingmicrobialmetabolic fluxes.CurrOpinBiotechnol2013,24:987-993.

58. KivietDJ,NgheP,WalkerN,BoulineauS,SunderlikovaV,TansSJ: Stochasticityofmetabolismandgrowthatthesingle-cell level.Nature2014,514:376-379.

59. GerosaL,HaverkornVanRijsewijkBRB,ChristodoulouD, KochanowskiK,SchmidtTSB,NoorE,SauerU: Pseudo-transitionanalysisidentifiesthekeyregulatorsofdynamic

(9)

metabolicadaptationsfromsteady-statedata.CellSyst2015, 1:270-282.

60. GallegoO,BettsMJ,Gvozdenovic-JeremicJ,MaedaK, MatetzkiC,Aguilar-GurrieriC,Beltran-AlvarezP,BonnS, Ferna´ndez-TorneroC,JensenLJetal.:Asystematicscreenfor protein–lipidinteractionsinSaccharomycescerevisiae.Mol SystBiol2010,6.

61. GehrigS,MacphersonJA,DriscollPC,SymonA,MartinSR, MacRaeJI,KleinjungJ,FraternaliF,AnastasiouD:Anengineered

photoswitchablemammalianpyruvatekinase.FEBSJ2017,

284:2955-2980.

62. LehningCE,SiedlerS,EllabaanMMH,SommerMOA:Assessing glycolyticfluxalterationsresultingfromgeneticperturbations inE.coliusingabiosensor.MetabEng2017,42:194-202.

Referenties

GERELATEERDE DOCUMENTEN

Advection-diffusion-reaction equation, flux, finite volume method, integral representation flux, numerical flux, dissipation and dispersion errors.. AMS

Interaction between the plasma and the material wall is a key issue for the success of the future fusion reactor ITER as the flux density of hydrogen ions is very high, up to 10 24 m

Left: RMS-flux relation of Sgr A*: The RMS variability of five minute segments of the light curve as a function of the mean flux density in the time bin.. The light curve has a

Whereas with our fluorescence microscopy method we measured a four-fold increase in autophagic flux from the basal to the induced state, traditional approaches such as Western

Om inzicht te verkrijgen in het (visco-)elastisch gedrag zijn er van diverse materialen trekproeven genomen, waarvan d e resultaten in grafiek 2 staan. De krachten stemmen

[r]

Please note also that the experimentally observed stress values are often above the compressive yield strength of copper, which is B63 MPa (ref. This validates our dilute adatom

overdetermination of our conclusions? Moreover, what does it mean to understand the social context of Antiquity? 115 How we as scholars imagine the social situations will have