• No results found

Design report CWD 81D deepwell pump

N/A
N/A
Protected

Academic year: 2021

Share "Design report CWD 81D deepwell pump"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Design report CWD 81D deepwell pump

Citation for published version (APA):

Diepens, J. F. L. (1988). Design report CWD 81D deepwell pump. (TU Eindhoven. Vakgr. Transportfysica : rapport; Vol. R-915-D). Technische Universiteit Eindhoven.

Document status and date: Published: 01/01/1988

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

(2)

DESIGN REPORT CWO 810 DEEPWELL PUMP JAN DIEPENS

June 1988

WIND ENERGY GROUP

Technical University Eindhoven Faculty of Physics

R 915 0

Laboratory of Fluid Dynamics and Heat Transfer

P.O. Box 513

5600 MB Eindhoven. the Netherlands

Consultancy Services

Wind Energy

Developing Countries

p.o box 85 3800 ab amersfoort holland

(3)

CONTENTS

1. Introduction

2. Output

3. Airchamber volume 4. Valve dimensions

5. Valve closure angle

6. Pump rod forces

Annex I-} pump rod forces CWO 2000 - CWO 81 D Annex 1-2 pump rod forces CWO 2740 - CWO 81 D Annex 1-3 pump rod forces CWO 5000 - CWO 81 D Annex 1-4 pump rod forces CWO 8000 - CWO 81 D

Page 1 2 6 11 17 19 21 22 23 24

(4)

1 . JffIROOUCTJ 00

In the past CWO has made the choice to standardize their pumps. The choice has been made for the pump range CWO 265. CWO 161. CWO 108. CWO 81 and CWO 49 (the number stands for the internal diameter of the pump).

This report gives the design calculations made for the CWO 81 0 deepwell pump for:

a. output for the different CWO windmills b. airchamber volume

c. valve dimensions d. valve closure angle e. pump rod force

The calculations will be made for the windmill pump combinations: CWO 2000 - CWO 81

CWO 2740 - CWO 81 0 CWO 5000 - CWO 81 0 CWO 8000 - CWO 81 0

(5)

2. OIITPlIT

At design wind speed the windmill pump combination is working in its

optimum point. The power suppl ied by the rotor must be equal to the hydraulic power.

~mech Pmech

=

Phydr

(2-1)

~

C 1/2p V3

~

R2

=

q p g H

mech p w

(2-2)

The flow q is determined by the stroke volume and the speed

(2-3)

Substituting

(2-3)

in

(2-2)

taken for V

=

Vd and A

=

Ad gives an expression for H 4 Cp ~mech H

= _____

m_a_x~~---S D2 A ~vol p d (3-4) with C

=

0.3 Pmax ~mech = 0.8 1.25 3 p

=

kg/m ~vol

=

0.9 D p

=

0.081 m 1000 3 Pw

=

kg/m g

=

9.81 m1s2

(6)

R3 y2

d -2

Hd

=

-S"""A-d~ . 6,671 . 10

The parameters for the different windmills are

cwo

2000 CWO 2740 CWO 5000 Table 2.1. R 1 m 1,37 m 2,5 m 1.3 2 1.7 0.05 0,03 0,08 s max 0,1 0.06 0.2 Y d mIn . 3 m/s 3 m/s 3 m/s Y d max 4.5 4.5 4.5 (3-5) (3-6)

The results of the qd and Hd calculations for the different windmill pump combinations are given in table 2.2 to 2.5.

cwo

2000

R lambda d S S max Y

d . Y D

min mIn dmax p

m m m m/s m/s m

1.000 1.300 0.050 0.100 3.000 4.500 0.081

Y

d q(Smin) q(Smax) H(S . ) mIn H(Smax)

m/s m::l/day m:l/day m m 3.000 12.436 24.871 9.011 4.506 3.250 13.472 26.944 10.576 5.288 3.500 14.508 29.017 12.265 6.133 3.750 15.545 31.089 14.080 7.040 4.000 16.581 33.162 16.020 8.010 4.250 17 .617 35.235 18.085 9.042 4.500 18.654 37.307 20.275 10.137 4.750 19.690 39.380 22.590 11.295 5.000 20.726 41.452 25.031 12.515 Table 2.2

(7)

cwo

2740

R lambda d S

min S max V d min V d max D p

m m m mls mls m

1.370 2.000 0.030 0.060 3.000 4.500 0.081

Vd q(Smin) q(Sma) H(S . ) mln H(Smax)

mls m /day :1 m:1/day m m 3.000 8.379 16.758 25.102 12.551 3.250 9.077 18.154 29.459 14.730 3.500 9.775 19.551 34.166 17 .083 3.750 10.474 20.947 39.221 19.611 4.000 11.172 22.344 44.625 22.312 4.250 11.870 23.740 50.377 25.189 4.500 12.568 25.137 56.478 28.239 4.750 13.267 26.533 62.928 31.464 5.000 13.965 27.930 69.727 34.863 Table 2.3

cwo

5000 R lambda d S S max Vd . V D min mln d max p m m m mls mls m 2.500 1.700 0.080 0.200 3.000 4.500 0.081

Vd q(Smin) q(Smax) H(S . ) mln H(Smax)

mls m:1/day m:1/day m m 3.000 10.408 26.019 67.293 26.917 3.250 11.275 28.188 78.976 31.590 3.500 12.142 30.356 91.594 36.637 3.750 13.010 32.524 105.146 42.058 4.000 13.877 34.692 119.632 47.853 4.250 14.744 36.861 135.054 54.021 4.500 15.612 39.029 151.410 60.564 4.750 16.479 41.197 168.700 67.480 5.000 17.346 43.366 186.926 74.770 Table 2.4

(8)

cwo eooo

R lambda d S S max V V D

min d min d max p

m m m mls mls m

4.000 2.000 0.100 0.350 3.000 4.500 0.081

Vd q(Smin) q(Smax) H(S . ) mln H(Smax)

mls rn3 /day m3 /day m m 3.000 9.566 33.481 187.430 53.552 3.250 10.363 36.271 219.970 62.849 3.500 11.160 39.061 255.114 72.890 3.750 11.957 41.851 292.860 83.674 4.000 12.755 44.641 333.210 95.203 4.250 13.552 47.431 376.163 107.475 4.500 14.349 50.221 421.719 120.491 4.750 15.146 53.011 469.878 134.251 5.000 15.943 55.801 520.640 148.754 Table 2.5

(9)

3. A lRaWlBER VOlUME

The airchamber volume will be designed with the criteria of:

a. maximum pressure variation due to flow variation in the delivery line b. natural frequency criteria.

Maximum pressure variation

The report "Pump rod forces due to hydrodynamic effects in piston pumps" R 813 A gives for the dimensionless pressure variations:

AP Bl

AP

= - =

A

P

2

t

=

wt

with k

=

1.4 in 3.3

AP has a maximum when t

=

v

v

APC t = v)

=

0.223

V-

s x v

2

a

v

s

=

0,35

V-a 1

3'

cos (3-1) (3-2) (3-3) (3-4) (3-5)

(10)

For fatigue lifetime of the pump rod we put a limit on the maximal pressure

variation of 10%, this leads to:

v

AP

<

0,1

<

0,35 .. /

P

a To fullfill this

v

>

3.5 V a s max

For the different pump windmill combination Va has to be

cwo

2000 + CWO 81 CWO 2740 + CWO 81 CWO 5000 + CWO 81 CWO 8000 + CWO 81 V s max 0,51 1 0,31 1 1.03 1 1.80 1

Natural frequency criteria

V a min 1.79 1 1.09 1 3.61 1 6,3 1 (3-6) (3-7)

The natural frequency of a system with a capacitance and an inertia is

with n p 1 L as line inertia L

=

2

~ n V a C as flow capacitance C = k.P (3-8) (3-9) (3-10)

(11)

If we assume that the length of piping is equal to the pumping head and

that all pipes are from the same diameter then we can write using 3.8. 3.9

and 3.10 V a A .k.g A .k.g.l0 = ~rm~ __ + ~r;,;,;m_..",. __

if

H 02 o 0 where in V a

=

airchamber volume A

=

arid rising main

rm

k

=

adiabatic gas constant 0

=

natural frequency 0 H = pumping head (3-11) [m3] [m2] = 1.4 [lis] em]

According to "Introduction to wind energy" the resonance frequency should

be 1.5 times smaller than the minimum operating frequency of the pump.

For CWO windmills the minimum operating rpm of the mill is roughly the

rotor running at Ad at the design wind speed. Design wind speeds typically

range from 3-6 mls. When determining the air chamber volume for the lowest

design wind speed (3 mls) and with a margin of 1.5. the air chamber volumes

become excessive.

For practical reasons (weight cost. construction details) this cannot be

realised. Therefore air chamber volumes are determined. assuming the

following.

The design wind speed is taken to be 4.5 mls and the margin of 1,5 between

rotor rpm and resonance frequency of the air chamber is maintained.

(12)

A. These assumptions lead to air chambers of reasonable dimensions.

B. A consequence may be. that for low design wind speeds the pump is operating at its resonance frequency. This leads to increased pump rod forces due to this resonance. However. it should be realised that the maximum pump rod forces do not occur at the resonance frequency of the air chamber. but at much higher rpm due to other causes. A typical (quantative) graph of the maximum pump rod forces is given in fig. 3.1.

!

..

w

Figure 3.1

As the design wind speed 4.5 mls is chosen and

n

is assumed to have a

o

margin of 1.5 with respect to this design wind speed

n

can be determined

o with:

n

o For the

=

CWO 2000 CWO 2740 CWO 5000 (3-12)

different CWO windmi 11 s

n

is

0

n

0 3.9 rad/s 4.4 rad/s 2.1 rad/s

(13)

The air chamber volumes for the different windmills can be calculated with

formula (3-11). Taking for H the minimal H of the windmill pump combination by Vd = 4.5 mls (see tables 2.2 to 2.5) Va must be: (see table 3.1).

cwo

2000 + CWO 81 CWO 2740 + CWO 81 CWO 5000 + CWO 81 CWO 8000 + CWO 81 Table 3.1

H .

mIn 10.1 m 28,2 m 60.6 m 120.5 m V (1~ rising main) a 1.46 1 0.78 1 2.95 1 5.37 1 V (2" rising main) a 2.78 1 1.49 1 5.62 1 10.25 1

The standard CWO rising mains and pump rods will be used when we compare

the results of the two different air chamber volume calculations (resonance

frequency and pressure variation). Then the final choices for the air

chamber volumes are: (see table 3.2).

V (A ) V (0 ) V final choice s p s 0 s CWO 2000 + 810 1, 79 2.78 2.78 CWO 2740 + 810 1.09 1.49 1.49 CWO 5000 + 810 3.61 5.62 5.62 CWO 8000 + 810 6.3 10.25 10.25 Table 3.2

(14)

.... VALVE DlMENSI(JtS

In the CWO 810 deepwell pumps disk valves will be used, Figure 4.1 gives a schematic representation of a disk valve.

- ... 1.-::-

~I

.... --_ ....

I

Figure 4.1 Disk valve

The assumption is that from the flow cross section AI' A2 and A3 , A2 is critical, This because the pressure drop over the valve is assumed to arise from a pressure loss in the cross section A2'

The reason for this assumption is:

a. When designing a piston pump the aim is to minimize the valve lifting height. in order to reduce shock forces and volumetric losses. On the other hand we want to minimize the pressure drop over the valve by increasing the valve lifting height.

b. The resistance off cross section A2 on A3 can be kept low with respect to the resistance of cross section A2' This can be realized by keeping the areas Al and A3 big with respect to A2'

(15)

The practical implementations of these assumptions can be expressed in the following requirements:

The pressure loss coefficient of disk valves with flow area ratios Al

=

2 A2 are measured [1] and are a fUnction of the valve lifting height h

C

~

1333 h-1.69 (h

~

10 mm)

v

Valve lifting height

(4-1 )

The choice of the valve 1 ifting height depends on the maximum allowable shock force and pressure drop over the valve. A small valve lifting height results in a small shock force and a big pressure drop over the valve. Important is the closure angle of the valves for the height of the shock force. An aproximated solution for the closure angle can be found with:

[Smulders. Cleijne]

- ~uoy -L- +

+ m dd a (J 2 r

For the shock force the influence of h is

sin sin

(4-2)

(4-3)

(16)

For the pressure drop A the influence of h is p

~VV21

=

_13_33

__

h...;;.1_----,:_:-=-:."...:

=

[:2

1

]

1.

69

1333 h2

At this moment we take as criterium the power losses due to the pressure

drop over the valve. To determine the valve lifting height. Reasons for

this choice are:

a. The influence of h on power losses is big compared to the influence on

the shock force.

b. a

cl can easier made smaller by increasing the valve mass. c. The pressure drop has to be kept low to avoid cavatation.

The pressure loss over one disk valve is

Ap

=

C !h p V2

v p

(4-5)

Loss of power due to Ap over one valve is

T/2 Aw

=

J

A .Ap.V .dt

o

p p (4-6) 7T 3 3 2

=

A .C !h p

J

w .r .sin wt.dwt p v 0

(4-7)

A .C !h p

[1 2

]7T

(4-8)

=

p v - 3(sin wt + r) coswt 0 213 A C 3 3

(4-9)

=

p v p w r

(17)

The work done lifting the water is T/2 w

=

J

p g H A V dt

o

p p Tr

=

P g HAw r

J

sinwt dwt p 0

=

2 p g H A wr p (4-10) (4-11 ) (4-12)

The loss of power due to pressure losses over the valves can now be expressed as a fraction of the power needed to lift the water (remember a piston pump has two valves).

4 3 3 A - 3 A C p w r ~_

p

v w - 2 p g HAw r p

=

(4-13) 2 2 2 Cv w r

=

3

g (4-14)

We take as criterium that !w

~

0,025 by Vd

=

4,5 mls with maximum stroke and minimal head.

C 2 2

A W S

~

<

°

025

>

1..

v max w - ' - C g H

min

this results in:

0.15 g H . C ~ _-=-_--.:;m;,,:1.:.:.n V 2 w s max (4-15) (4-16)

(18)

With this value for C the valve lifting height can be calculated with

v

1.69

h

>

J1~33

[mm]

(i-17)

v

For the different windmill pump combinations h has to be (see table i.1):

s

H .

wd C h max mln v min CWO 2000 0.1 10.1 5.85 28.95 9.7 CWO 27iO 0.06 28.2 6.56 178,56 3.28 CWO 5000 0,2 60,6 3,06 158,72 3.5 CWO 8000 0,35 120.5 2.25 1906. 0.8 Table i.1

For the standard CWO 81D pump h will be 5 mm. The valve closure angle will be limited by using thick valve disks (larger mass).

The other dimensions of the valve can be determined with the assumptions that A • 2 A

~ ~

(D2 - D2) 2 D h 2 2 4 P k

=

~ k -8h + J64 h2 + 4 0 Dk

=

- - - : 2 = - - - - -... P D 116 h + D2 - A h k

=

-I p ' (i-18)

(19)

d

=

J8 Ok h

z n (4-19)

with h

=

5 mm and 0p

=

81 mm the other dimensions have to be

Dk

S

61.5 for n

=

8 ~ d ~ 17.5 mm

z

n = 6 ~ d ~ 20.24 mm. z

For the CWO 81 pump we choice for Ok

=

Table 4.2

(20)

5. V AI-VE a1S.JR.E ANGLE

The motion equation for the piston valve is

m h

v (5-1)

At TUE Eindhoven a computer program has been developed to solve this equation [R BOO S "Berekening van de kleppenbeweging in zuigerpompen"]. This program is used to calculate the valve closure angles for the next configurations. see fig. 5.1 and table 5.1.

1. D

=

B1 rom Dk

=

65 rom T valve 10 rom h

=

3,5 p 2. D

=

B1 rom Dk

=

65 rom T valve 10 mm h

=

5 p 3. D

=

B1 mm Dk

=

65 mm T valve 19 mm h

=

3.5 p 4. D

=

Bl mm Dk

=

p 65 rom T valve 19 rom h

=

5

Table 5.1

All valve parts are made from steel.

The calculated valve closure angles are (see table 5.2):

081 065

IT

lh

~J

I

l

B x 0 13 djme""'on~ in mm

(21)

n::O.9

cwo

8000 n=3 CWO 2000 n=4 CWO 2740 n=I.2 CWO 5000 Table 5.2 PSOBIA PSOBtB PBOBIC PBOBlD P20BIA P2081B P20BIC P208lD P2781A P27BIF P27BIC P27BIP P5081 A P50BIB P5081C P5081D h h h h h h h h h h h h h h h h 5 5 3.5 3.5 5 5 3,5 3,5 5 5 3.5 3,5 5 5 3,5 3.5 T T T T T T T T T T T T T T T T 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19

6.'"

"'.7

5.5 3,B 16 13,7 13.6 I1.B 20.9 1B 17.B 15.5 B,4B 6.3 10.1 5.1

IBB.6

IB7 IB7 186 203 20-4 205 200 210 211 205 206 191 1B9 190 1B8

(22)

6. PUMP ROD FORCfS

To calculate the pump rod forces a computer program developed at THT Twente is used (pump rod for release 1.1).

A description of the program can be found in [WM-112 "Calculation of pump rod forces, user's guide to pump rod].

The pump rod forces for the next configurations have been calculated (see table 6.1 and fig. 6.1).

1. CWO 2000 - CWO BID

2. CWO 2740 - CWO BID

3. CWO 5000 - CWO BID 4. CWO BOOO - CWO BID

Table 6.1

'1:r'11

Figure 6. 1 H = 10 H = 2B

H

=

60 H

=

120 s

=

0.1 s

=

0.06 s

=

0.2 s = 0.35 n = 3 n

=

4 n

= 1.2

n = 0.9

(23)

The maximum pump rod forces occur when the piston valve closes. the computations give the following results (see table 6.2).

configura tion

AF

acl a

cl according calculations chapter 5

1. CWO 2000 2625 170 13.75

2. CWO 2740 4518 220 18.06

3. CWO 5000 5926 120 6.3

4. CWO 8000 18545 90 4.7

Table 6.2

(24)

ANNEX 1-1 pump rod forces CWO 2000 - CWO 810

PUMPROD.FOR : Release of Friday 1980-1-4 Data from input f i l e : CWD2081.DAT

Design Wind Speed : 4.75 m/s Pump rod forces at 18.80 rad/s

Alfa Facppr Fstppr- Facw Fstw Ffrw

deg N N N N N

a

598 277

a

a

a

10 584 277

a

a

a

20 545 277 38 525 319 30 481 277 33 525 319 40 399 277 28 525 319 50 303 277 21 525 319 60 199 277 14 525 320 70 94 277 7 525 320 80 -7 277 -0 525 320 90 -100 277 -7 525 320 100 -180 277 -13 525 320 110 -247 277 -17 525 319 120 -299 277 -21 525 319 130 -338 277 -23 525 319 140 -364 277 -25 525 319 150 -382 277 -27 525 319 160 -392 277 -27 525 319 170 -397 277 -28 525 319 180 -399 277 -28 525 319 190 -397 277

a

a

a

200 -392 277

a

a

a

210 -382 277

a

a

0 220 -364 277

a

0 0 230 -338 277

a

0

a

240 -299 277 0 0 0 250 -247 277 0 0

a

260 -180 277

a

a

0 270 -100 277

a

0 0 280 -7 277 0 0

a

290 94 277

a

0 0 300 199 277

a

0

a

310 303 277

a

a

a

320 399 277

a

a

a

330 481 277

a

a

a

340 545 277

a

0 0 350 584 277

a

0 0 360 598 277

a

0

a

17 558 277 39 525 319 14:9:10.91 Ffrcup Ffrv Ftotal N N N

a

a

875

a

9 870 98 33 1834 98 69 1802 97 110 1754 96 149 1690 95 181 1611 95 201 1518 94 208 1415 93 200 1307 92 181 1201 92 153 1102 91 121 1014 91 89 940 91 59 881 91 34 837 91 15 808 91 4 791 91

a

785

a

-4 -124

a

-15 -131 0 -34 -139 0 -59 -147 0 -89 -150 0 -121 -144 0 -153 -123 0 -181 -84 0 -200 -23 0 -208 62 0 -201 169 0 -181 295

a

-149 430

a

-110 566

a

-69 689 0 -33 788

a

-9 852

a

-0 875 98 25 2475

(25)

ANNEX 1-2 pump rod forces CWO 2740 - CWO 810

PUMPROD.FOR : Release of Friday 1980-1-4 Data from input f i l e : CWD2781.DAT

Design Wind Speed : 3.98 mls

Pump rod forces at 25.00 radls

Alfa Facppr Fstppr Facw Fstw Ffrw

deg N N N N N 0 1199 627 0 0 0 10 1181 627 0 0 0 20 1127 627 0 0 0 30 1038 627 28 1433 161 40 918 627 25 1433 161 50 770 627 21 1433 161 60 599 627 16 1433 161 70 409 627 11 1433 161 80 207 627 6 1433 161 90 -1 627 -0 1433 161 100 -209 627 -6 1433 161 110 -411 627 -11 1433 161 120 -600 627 -16 1433 161 130 -770 627 -21 1433 161 140 -918 627 -25 1433 161 150 -1037 627 -28 1433 161 160 -1125 627 -31 1433 161 170 -1179 627 -32 1433 161 180 -1197 627 -33 1433 161 190 -1179 627 0 0 0 200 -1125 627 0 0 0 210 -1037 627 0 0 0 220 -918 627 0 0 0 230 -770 627 0 0 0 240 -600 627 0 0 0 250 -411 627 0 0 0 260 -209 627 0 0 0 270 -1 627 0 0 0 280 207 627 0 0 0 290 409 627 0 0 0 300 599 627 0 0 0 310 770 627 0 0 0 320 918 627 0 0 0 330 1038 627 0 0 0 340 1127 627 0 0 0 350 1181 627 0 0 0 360 1199 627 0 0 0 22 1109 627 30 1433 161 14:13:7.59 Ffrcup Ffrv Ftotal N N N 0 0 1826 0 4 1812 0 15 1768 180 32 3499 180 53 3396 179 75 3266 179 96 3110 178 112 2931 178 123 2734 177 127 2524 176 123 2306 176 112 2087 175 95 1875 175 75 1678 174 53 1504 174 32 1360 174 15 1253 173 4 1186 173 0 1164 0 -4 -556 0 -15 -513 0 -32 -442 0 -53 -343 0 -75 -218 0 -95 -68 0 -112 104 0 -123 294 0 -127 499 0 -123 711 0 -112 923 0 -96 1130 0 -75 1322 0 -53 1492 0 -32 1633 0 -15 1739 0 -4 1804 0 -0 1826 180 18 3963

(26)

ANNEX 1-3 pwap rod forces CWO 5000 - CWO 81D

PUMPROD.FOR : Release of Friday 1980-1-4 Data from input file : CWD5081.DAT

Design Wind Speed : 3.95 m/s Pump rod forces at 7.50 rad/s

Alfa Facppr Fstppr Facw Fstw Ffrw

deg N N N N N 0 685 1010 0 0 0 10 670 1010 0 0 0 20 625 1010 15 3057 277 30 554 1010 13 3057 277 40 462 1010 11 3057 277 50 354 1010 9 3057 278 60 237 1010 6 3057 278 70 117 1010 3 3057 278 80 2 1010 0 3057 278 90 -105 1010 -3 3057 278 100 -200 1010 -5 3057 278 110 -279 1010 -7 3057 278 120 -342 1010 -8 3057 277 130 -391 1010 -9 3057 277 140 -426 1010 -10 3057 277 150 -449 1010 -11 3057 277 160 -464 1010 -11 3057 277 170 -472 1010 -11 3057 277 180 -474 1010 -11 3057 277 190 -472 1010 0 0 0 200 -464 1010 0 0 0 210 -449 1010 0 0 0 220 -426 1010 0 0 0 230 -391 1010 0 0 0 240 -342 1010 0 0 0 250 -279 1010 0 0 0 260 -200 1010 0 0 0 270 -105 1010 0 0 0 280 2 1010 0 0 0 290 117 1010 0 0 0 300 237 1010 0 0 0 310 354 1010 0 0 0 320 462 1010 0 0 0 330 554 1010 0 0 0 340 625 1010 0 0 0 350 670 1010 0 0 0 360 685 1010 0 0 0 12 662 1010 16 3057 277 14:18:21.10 Ffrcup Ffrv Ftotal N N N 0 0 1695 0 5 1685 372 20 5378 372 42 5327 372 68 5258 371 92 5172 371 113 5072 371 126 4962 371 130 4848 370 126 4734 370 115 4626 370 98 4527 370 78 4442 369 58 4372 369 39 4317 369 22 4277 369 10 4250 369 3 4234 369 0 4229 0 -3 536 0 -10 537 0 -22 539 0 -39 546 0 -58 562 0 -78 590 0 -98 634 0 -115 696 0 -126 779 0 -130 882 0 -126 1002 0 -113 1135 0 -92 1272 0 -68 1405 0 -42 1523 0 -20 1615 0 -5 1675 0 -0 1695 372 8 5612

(27)

.ANNEX 1-1 pump rod forces CWO 8000 - CWO B1D

PUMPROD.FOR : Release of Friday 1980-1-4 Data from input file : CWD8081.DAT

Design Wind Speed : 3.69 m/s

Pump rod forces at 5.60 rad/s

Alfa Facppr Fstppr Facw Fstw Ffrw

deg N N N N N 0 2715 3377 0 0 0 10 2637 3377 2526 6098 838 20 2408 3377 2307 6098 848 30 2049 3377 1963 6098 861 40 1591 3377 1524 6098 875 50 1071 3377 1026 6098 887 60 531 3377 509 6098 895 70 13 3377 12 6098 898 80 -449 3377 -430 6098 896 90 -826 3377 -792 6098 889 100 -1105 3377 -1058 6098 880 110 -1279 3377 -1226 6098 870 120 -1358 3377 -1301 6098 860 130 -1358 3377 -1301 6098 852 140 -1304 3377 -1249 6098 845 150 -1223 3377 -1172 6098 840 160 -1142 3377 -1094 6098 837 170 -1084 3377 -1038 6098 835 180 -1063 3377 -1018 6098 834 190 -1084 3377 0 0 0 200 -1142 3377 0 0 0 210 -1223 3377 0 0 0 220 -1304 3377 0 0 0 230 -1358 3377 0 0 0 240 -1358 3377 0 0 0 250 -1279 3377 0 0 0 260 -1105 3377 0 0 0 270 -826 3377 0 0 0 280 -449 3377 0 0 0 290 13 3377 0 0 0 300 531 3377 0 0 0 310 1071 3377 0 0 0 320 1591 3377 0 0 0 330 2049 3377 0 0 0 340 2408 3377 0 0 0 350 2637 3377 0 0 0 360 2715 3377 0 0 0 9 2650 3377 2539 6098 838 12:42:39.85 Ffrcup Ffrv Ftotal N N N 0 0 6092 1051 13 16541 1028 50 16117 991 102 15442 944 159 14567 890 207 13556 834 240 12484 779 251 11428 729 242 10463 688 215 9650 658 178 9028 638 137 8616 629 99 8404 628 65 8361 633 39 8440 641 21 8583 649 9 8734 655 2 8845 657 0 8886 0 -2 2291 0 -9 2226 0 -21 2133 0 -39 2034 0 -65 1954 0 -99 1920 0 -137 1960 0 -178 2094 0 -215 2335 0 -242 2686 0 -251 3138 0 -240 3668 0 -207 4240 0 -159 4809 0 -102 5323 0 -50 5735 0 -13 6000 0 -0 6092 1053 11 18556

Referenties

GERELATEERDE DOCUMENTEN

In het derde en vierde scenario word veronderstelt dat de overheid de mate waarin zij risico’s loopt door de garantstellingen in een PPS kan verkleinen, door het

Er zijn inderdaad aanwijzingen dat patiënten met chronische pijn met sterkere en langdurigere aan- spanning van de spieren in het pijnlijke gebied reageren op stressoren,

Zou de chirurg belangstelling voor de oncologie gehad hebben, dan zou hij wel oog gehad hebben voor hèt herstel van de balans tussen Yin en Yang bij onze

Hierbij staat prijs zeker niet alleen voor geld maar ook voor intensive care behandeling en nabehandeling met alle nadelen ervan voor de pasgeborenen en de

Een continue zorg : een studie naar het verband tussen personeelswisselingen, organisatiekenmerken, teameffectiviteit en kwaliteit van begeleiding in residentiele instellingen

Van de competenties die door meer dan de helft van de oud-studenten op een hoog niveau dienen te worden beheerst, zijn drie competenties door tenminste 20% van de

32 Door de Commissie Farjon wordt hierover opgemerkt, dat getracht is ‘het nuttige van de instelling van vrederegters algemeen te maken, zonder echter daarvoor eene

Deze grens wordt overschreden door een vergaande mutilatie waartoe amputatie van een extremiteit zeker gerekend m m t worden.. Dit mens-machine-milieu systeem wordt dan in