• No results found

ultra-performance and fluidchromatography supercritical Generic development chiral method in supercritical fluidchromatography Journal of Chromatography A

N/A
N/A
Protected

Academic year: 2022

Share "ultra-performance and fluidchromatography supercritical Generic development chiral method in supercritical fluidchromatography Journal of Chromatography A"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal of Chromatography A

jou rn al h om ep a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography

Katrijn De Klerck, Yvan Vander Heyden, Debby Mangelings

DepartmentofAnalyticalChemistryandPharmaceuticalTechnology,CenterforPharmaceuticalResearch(CePhaR),VrijeUniversiteitBrusselVUB, Laarbeeklaan103,B-1090Brussels,Belgium

a r t i c l e i n f o

Articlehistory:

Received12April2014

Receivedinrevisedform2June2014 Accepted3June2014

Availableonline9June2014

Keywords:

SFCmethoddevelopment Chiralseparationstrategy

Polysaccharide-basedstationaryphases Ultra-performanceSFC

Methodtransfer

a b s t r a c t

Thedevelopmentofchiralseparationmethodsinpharmaceuticalindustryisoftenaverytedious,labour intensiveandexpensiveprocess.Atrial-and-errorapproachremainsfrequentlyused,giventheunpre- dictablenatureofenantioselectivity.Tospeed-upthisprocessandtomaximizetheefficiencyofmethod development,agenericchiralseparationstrategyforSFCisproposedinthisstudy.Todefinesuchstrat- egy,theeffectofdifferentchromatographicparametersontheenantioselectivityisinvestigatedand evaluated.Subsequently,optimizationstepsaredefinedtoimproveachiralseparationintermsofres- olution,analysistime,etc.ortoinduceseparationwheninitiallynotobtained.Thedefinedstrategy proveditsapplicabilityandefficiencywiththesuccessfulseparationofanovel20-compoundtestset.In asecondstage,themethodtransferfromaconventionaltoanultra-performanceSFCsystemisinvesti- gatedforthescreeningstepoftheseparationstrategy.Themethodtransferprovedtobeveryeasyand straightforward.Similarenantioresolutionvalues,butslightlyshorteranalysistimeswereobtainedonthe ultra-performanceequipment.Nevertheless,evenmorebenefitmaybeexpectedinultra-performance SFCwhencustomizedsub-2␮mchiralstationaryphaseswillbecomeavailable.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Over the past years, much attention has been paid to sub- and supercritical fluid chromatography (SFC)in the context of chiral separations [1–4]. By exploitingthe benefitsof sub- and supercritical fluids,fastand efficient enantioseparations canbe obtainedinSFC. Simplyreturning toambientconditionsevapo- ratestheprimaryeluent,carbondioxide(CO2), fromthemobile phaseafteranalysis.Hence,SFCcandelivera significantreduc- tioninwastegenerationand–disposalcomparedtoconventional high-performanceliquidchromatography(HPLC)[5].Thehigher flowrates,thatcanbeappliedinSFC,allowhigherproductivities relativetoHPLC,whichisanimportantassetinapharmaceutical industrialenvironmenttoacceleratethedrugdevelopmentpro- cess[6,7].Giventheseproperties,SFChasbecomeapredominant techniquefor(preparative)enantioresolutions[2,3,6–8].

∗ Correspondingauthor.Tel.:+3224774329;fax:+3224774735.

E-mailaddresses:debby.mangelings@vub.ac.be,Yvan.Vander.Heyden@vub.ac.be (D.Mangelings).

Asforall separationtechniques,chiral methoddevelopment is alsoinSFC quitelabourintensive. Enantioselectivityremains unpredictable and the best way to achieve appropriate sepa- ration conditions is by experimental trial-and-error. To make methoddevelopmentmore efficientand faster, generic separa- tionstrategies can beutilized [9–12].Thesestrategies screen a chiral compound ona limitednumber ofcomplementary chro- matographicsystems(stationary+mobilephasecombinations)in ordertofindthemostsuitablesystem,showingthebestenantiose- lectivity.Dependingontheoutcomeofthisscreening,optimization stepsguidetheuserfurthertoobtainthedesiredseparation.In casethedesiredseparationcouldnotbeachieved,oneisreferred toscreeninanotherseparationtechnique.

AgenericscreeningapproachinSFC,thatallowsafastselection of anappropriatechromatographic chiral separationsystemfor diversechiralmixtures,wasproposedearlier[13].Polysaccharide- basedchiralstationaryphases(CSPs)wereusedinthisscreening becauseof theirbroad enantiorecognitioncapabilities and easy availabilities[3,14].However,afterexecutingthisscreening,one mightnothaveachievedthedesiredseparationyet.Inthatcon- text,furthermethodoptimizationstepscanbedefined.Theseaim tooptimizeresolution,selectivity,analysistime,andinrelevant http://dx.doi.org/10.1016/j.chroma.2014.06.011

0021-9673/©2014ElsevierB.V.Allrightsreserved.

(2)

casesalsothepeakshape.Afirstpartofthispaperfocusesonthe influenceofdifferentparametersonachiralSFCseparation.Based onthisinformation,appropriateoptimizationstepsarederivedto completetheentiregenericseparationstrategy.Toevaluatethe performanceofthisstrategy,anovel20-racematessetistested.

Tocatchupwiththestate-of-the-arttechnologyfoundinthe fieldofHPLC,SFC equipmentis becomingbetteradapted,more robustandmorereliabletoachievechromatographicseparations withacceptablerepeatabilityandreproducibility.Inparticular,the mobilephase densitycanbe controlledmuchstricter, which is acrucial aspectinSFC sincethedensityhasadirect impacton themobile-phase strength.Followingthetrend in HPLC,SFC is undergoinganevolutiontoultra-highperformanceSFC(UHP-SFC) [15,16].Withminimalvoidvolumesandmaximalsensitivity,fast separationscanbeachievedwithhighefficiencies.Becausecertain parameters aredifferent betweenthedifferent systems,(enan- tio)separationsmightbeimpactedwhentransferred.Asecondpart ofthisresearchthereforefocusesonthemethodtransferfromcon- ventionalSFCtoUHP-SFC.

2. Experimental

2.1. Chromatographicequipment

TheanalyticalSFCmethodstationfromThar®(Pittsburgh,PA, USA,a Waters® company)equippedwithaWaters® 2998-DAD detector(Milford,MA,USA)wasusedforthefirstpartoftheexperi- ments(definitionoftheseparationstrategy).Theautosamplerwas equippedwitha10␮lloop.Forallanalysespartialloopinjections of5␮lweredone.Dataacquisitionandprocessingwereperformed usingChromscope®V1.10software(2011)fromWaters®.

ForthestrategyevaluationandmethodtransfertoUHP-SFC,an AcquityUltraPerformance ConvergenceChromatography(UPC2) fromWaters®wasused.Thesystemwasequippedwithabinary solventmanager,asamplemanagerwithafixedloopof10␮l,a convergencemanager,anexternalAcquitycolumnovenandaPDA detector.Forallanalysespartialloopinjectionsof5␮lweredone.

Empower® 3V7.10software(2010,Waters®,Milford,MA,USA) wasusedfordataacquisitionandprocessing.

Thechromatographicconditionsweredifferentfortheanalyses performedduringtheoptimizationprocess.Forthisreasonthey arespecifiedfurther.

2.2. Materials

ThecolumnsChiralpak®AD-HandChiralcel®OD-H,OJ-Hand OZ-HwerepurchasedfromChiralTechnologies(WestChester,PA, USA).Lux® Cellulose-1,-2, and-4werepurchasedfromPheno- menex(Utrecht,TheNetherlands).Toallowafaircomparison,all columnshaddimensionsof250mm×4.6mmi.d.with5␮mpar- ticlesize.

2.3. Chemicals

Methanol (MeOH), ethanol (EtOH) and 2-propanol (2PrOH) wereHPLCgrade andpurchasedfromFisherChemicals(Lough- borough,UK).Isopropylamine(IPA)andtrifluoroaceticacid(TFA) werefromAldrich(Steinheim,Germany).CO2wasusedasadvised bythemanufacturersoftheindividualSFC instruments.Forthe Thar®equipmentthiswasquality2.7(purity≥99.7%)fromLinde Gas(Grimbergen,Belgium);fortheUPCequipmentquality4.5 (purity≥99.995%)fromMesser(Sint-Pieters-Leeuw,Belgium).

Allpercentagesexpressedinthecontextofmobile-phasecom- positionarevolumepercentages.

2.4. Chiraltestset

Forthedefinitionoftheoptimizationstepsandseparationstrat- egy,agenericchiraltestsetof56pharmaceuticalswasused.Test solutionsofthese56racemateswithaconcentrationof0.5mg/ml weremadeinmethanol.Thesolutionswerekeptat4Cwhennot used.Thetestsetwascomposedofracemateswithdiversestruc- tural,chemical, and pharmacologicalproperties.Because it was usedinearlierresearch,werefertothesepapersfordetailedinfor- mation[17,18].Toevaluatetheproposedseparation strategy, a noveltestsetcomposedof20pharmaceuticalracematesisused (Table1).TheseracemateswerealsodissolvedinMeOHatacon- centrationof0.5mg/mlandkeptat4C.

2.5. Dataprocessing

Forallenantioseparations,theresolution(Rs)iscalculatedusing theEuropeanPharmacopoeiaequationsapplyingpeakwidthsat halfheights[19].Separationsobtainedwitha resolutionhigher than1.5areconsideredasbaselineseparated.Whentheresolu- tionisbetween0and1.5theseparationsaredesignatedaspartial.

Theselectivity(˛)iscalculatedastheratiooftheretentionfactors ofthelastandfirstelutingenantiomersofapair[19].Thevoidtime wasmarkedasthefirstdisturbanceofthebaselineafterinjection ofsolvent.Theretentiontimeofthelastelutingpeakistakenas theanalysistime.

Microsoft®Excel(Microsoft®Corporation,2010)wasusedfor constructingtheplotsandgraphsandforthestatisticalinterpreta- tionofthedata(Studentt-testandANOVA).

3. Resultsanddiscussion 3.1. Screeningstep

A generic chiral screening approach was derived from the evaluationof12polysaccharide-basedchiralstationaryphasesin combination with eight mobile phases (MP) (total of 96 chro- matographic systems).The performance in terms of successful enantioseparations,andthecomplementarityofthelattersystems weretakenintoaccount,todefineascreeningsequence(Fig.1) [13].Thescreeningentailsfourexperiments,evaluatingfourcom- plementarypolysaccharide-basedstationaryphases.Thisapproach allowedtheseparationofallcompoundsfromthe56-compound testset.However,noteveryseparationisoptimal,e.g.Rs<1.5(par- tialseparations)orexcessiveanalysistimecanbeobtained.Inthese casesfurtheroptimizationimposes itselfin order toobtainthe desiredenantioseparation.Becauseanumberoffactorsinfluence enantioseparationinSFC,e.g.organicmodifier,flowrate,pressure, temperature,etc.,theoptimizationisnotalwaysevident.Inafirst partofthiswork,attentionwillbepaidtothesefactorsimpact- ingenantioseparation.Theobtainedinformation willbeusedto definespecificoptimizationstepsinthecontextofagenericchiral separationstrategy.

3.2. FactorsinfluencingenantioseparationsinSFC

3.2.1. Organicmodifiertype

In most cases, pure CO2 is not adequate to elute (pharma- ceutical) compounds. Most pharmaceutical compounds possess a structure with hydrophobic, hydrogen-bonding donor and - acceptorsites.Thisrequirestheadditionofanorganicmodifierto themobilephasetoincreasethesolventstrength,allowingelution andanalysisoftheserelativelypolarcompounds[4,5].

Itiswell-knownthattheorganicmodifiertypeinthemobile phasealterstheenantioselectivityofaCSPtowardscertainrace- mates.Thelipophilicity,polarity,basicity,i.e.thepropertiesofthe

(3)

Table1

Test-setcompoundsusedtoevaluatetheseparationstrategy.

Racemate Structure Origin

Carprofen Sigma–Aldrich,Steinheim,Germany

Carteolol MadausAG,Köln,Germany

Celiprolol Originunknown

Ceterizine Sigma–Aldrich,Steinheim,Germany

Clopidogrel Originunknown

Cyclopentolate GiftfromPhenomenex

Econazol Janssenresearchfoundation,Beerse,Belgium

Felodipine Hassle(Astra),Sweden

Fluoxetine Sigma–Aldrich,Steinheim,Germany

Indapamide Sigma–Aldrich,Steinheim,Germany

Indoprofen Sigma–Aldrich,Steinheim,Germany

Isradipine Originunknown

(4)

Table1(Continued)

Racemate Structure Origin

Lorazepam Wyeth,NY,USA

Miconazol Janssenresearchfoundation,Beerse,Belgium

d/l-Nebivolol Janssenresearchfoundation,Beerse,Belgium

Ondansetron GlaxoWellcome,Belgium

Temazepam Originunknown

Terazosine Sigma–Aldrich,Steinheim,Germany

Thioridazine Originunknown

trans-Stilbeneoxide Originunknown

organicmodifieraffecttheinteractionsbetweenthesoluteandsta- tionaryphase[20].Consequently,bychangingtheorganicsolvent inthemobilephase,differentenantioseparationscanbeachieved onthesameCSP.InchiralSFC,methanol,2-propanolandethanol aremostoftenusedasmodifiers[6,12,7,21–23].Inourexperience,

MeOHisslightlymoresuccessfulonthepolysaccharide-basedCSPs, followedby2PrOHandEtOH.MeOHofferstheadditionaladvan- tagethatitsboilingpointislowerthanthatof2PrOHandEtOH, makingsolventevaporationafteranalysiseasier.Theviscosityof MeOHisalsoloweranditsuseposesthuslessstressontheCSPs.

(5)

Fig.1. Schemeofthescreeningstepasdefinedin[13].Inthetoprowthechiralstationaryphasesarepresented,whilethesecondrowrepresentstheusedmodifier concentrationinthecarbon-dioxidebasedmobilephase.

Inearlierresearch,12 polysaccharide-basedchiralstationary phases wereevaluated witheight MeOH- or 2PrOH-containing mobile phases [13]. On eight of these twelve CSPs, a MeOH- containingmobilephaseprovidedthehighestsuccessrate.Forthis reasonweslightlyfavourMeOHover2PrOH.

Asfarasenantioselectivityisconcerned,itisimpossibletopre- dictwhich solventwill providethemostfavourable separation conditionsforagivenracemate.Earlierweselectedfoursuccess- fulandcomplementarychromatographicsystems,usingageneric compound test set. We included these systems in a screening approach [13]. For most compounds, executing this screening shoulddeliverappropriateselectivitytoachievethedesiredenan- tioseparation.Wewereabletoseparate(baselineorpartially)the entire56-compoundtestsetusingMeOHincombinationwithOZ- H(orLC-2)andOD-H(orLC-1);andusing2PrOHwithAD-Hand LC-4.

However,in caseno(satisfying) separation isobtainedafter thisscreening, itis advisabletoscreen thesameCSPswiththe alternativemodifier,i.e.2PrOH(forOZ-H/LC-2andOD-H/LC-1)or MeOH(forAD-HandLC-4),sincethisbroadenstheenantioselective range.Differentenantioselectivities,wereobservedwhenconsid- eringbothmodifiers.InmostcasesMeOHyieldsmoreseparations (Table2).AD-Hseemsanexceptiontothistrend,since2PrOHis muchmoresuccessfulthanMeOHonthisCSP.Nevertheless,on eachCSP,anumberofuniqueseparationsisprovidedbybothmod- ifiers.Thisexplainsthesecondstepinourscreeningstrategy,which proposestoscreentheselectedCSPswithanalternativemodifier.

Wealsonoticedauniqueenantioselectivityofsomestationary phasesincombinationwithEtOH.Incasenoenantioselectivityis obtainedafterscreeningwithMeOHor2PrOH,EtOHcantherefore betestedasalternativemodifier.However,giventhelowergen- eralsuccessrateofEtOH,itwouldbelessadvisabletoincludethis modifierinafirstscreeningattempt.

3.2.2. Concentrationoftheorganicmodifier

Inlowconcentrations(<2–5%),theorganicmodifiercompetes withtheanalytesforinteractionwithresidualsilanolgroupson thestationaryphase.Bysurroundingtheactivesilanolsites,the stationaryphasebecomesmoreuniformintermsofpolarityand consequentlypeak shapesbecomemoresymmetrical.Hence,in

Table2

Numberofseparationsobtainedwiththe56-compoundtestsetusing20%methanol (MeOH)or2-propanol(2PrOH)inthemobilephase(with0.1%isopropylamine and0.1%trifluoroaceticacidaddedtothemodifier).Theseparationsthatareonly obtainedwithonemodifieronagivenstationaryphaseareconsideredasunique separations.

Baselineseparations Partialseparations Uniqueseparations

MeOH 2PrOH MeOH 2PrOH MeOH 2PrOH

OZ-H 27 22 18 10 15 2

AD-H 12 25 11 12 3 17

OD-H 27 25 14 10 7 2

LC-4 28 24 14 12 9 4

thelower concentrationrange, an increase in modifier content is advantageous for theresolution of the separations. Once all silanolsitesarecoveredbymodifiermolecules,afurtherincrease inmodifierconcentrationnegativelyinfluencestheresolutionby impacting the solvent strength of the mobile phase [24]. The separationefficiencyalsotendstodeteriorate,since theanalyte diffusionthroughthecolumnisinhibitedbytheincreasingmobile phaseviscosity[25].

Thesetrendsareclearlyseenintheseparationofclopidogrelon Chiralpak®AD-H(Fig.2).Whenthemodifiercontentisincreased from5to10%theresolutionincreasesfrom3.8to4.6.Increasingthe modifiercontentabove10%,decreasestheresolution.Ontheother hand,theanalysistimeisimpactedbythemobilephasestrength.A decreasefrom7.98to2.75minoccurswhenthemodifierincreases from5to20%.Furtherincreasingthemodifierinthemobilephase to40%decreasestheanalysistimeto1.72min.However,therela- tionbetweentheanalysistimeandmodifiercontentisnotlinear andtheobserveddecreaseinanalysistimeishigherinthelower concentrationrange(5–20%).

Conclusivelyitcanbestatedthatthemostappropriatemodifier contentinthemobileshouldbeacompromisebetweenanalysis timeand resolution.Inourstrategywe proposetoincrease the modifiercontentwhenshorteranalysistimesaredesired.Ifhigher

Fig. 2. Separation results of clopidogrel on Chiralpak® AD-H with (2PrOH+0.1%TFA+0.1%IPA) in the mobile phase in varying concentrations.

(a)Obtainedresolutionsand(b)thetotalanalysistimeinfunctionofthepercentage modifiercontent.

(6)

Fig.3. ResultsoftheenantioseparationofcetirizineonChiralpakAD-Hwith20%(2PrOH+0.1%IPA+0.1%TFA)inthemobilephaseasafunctionoftheflowrate.(a)Overlay oftheobtainedchromatograms;(b)analysistime;(c)resolutionandselectivityasafunctionoftheflowrate.

resolutionsaredesiredweadvisetheopposite.Asacompromise 20%modifierisusedinthescreening.

3.2.3. Flowrate

Supercriticalfluidchromatographyissuitableforfastanalyses.

Becausethesub-orsupercriticalmobilephasehasalowviscosity andhighdiffusivity,higherflow ratescanbeusedcomparedto HPLC.Flowratesupto5.0mlperminarenoexceptioninanalytical SFC.Increasingtheflowratewillfastenananalysissignificantly, withoutcompromisingtheseparationefficiencytoodrastically.

Forexample,whentheflowratefortheenantioseparationof cetirizineisincreasedfrom1to6ml/min,theanalysistimereduces with84%(from16.8to2.6min), theRsdecreaseslessthan50%

(from12.42to6.41),while˛remainsalmostunchanged(Fig.3).

Theseparationat6ml/minisstilllargelyacceptable,andrequires 14minlessthanthatatflowrate1ml/min.Increasingtheflowrate above6ml/minwasnotpossibleduetopressurelimitationsofthe CSP.

Aboveanexampleisshownwhichactuallyisvalidforallchi- ralSFC-separations.Thisisexplainedbytheflatterprofileofthe VanDeemtercurveinSFCcomparedtoHPLC,allowinganalysesat highermobilephasevelocitieswithoutasubstantiallossineffi- ciency[5]. Hence, when optimizing analysistimes in SFC, it is advisabletoincreasetheflowrate,sincetheimpactonthereso- lutionremainsratherlimited.Thelimitingfactorsinthisapproach arethepressurerestrictionsimposedbytheequipmentandthe chromatographiccolumn.

3.2.4. Backpressure

Toguaranteeaconstantmobile-phasedensity,aback-pressure regulatorisemployedinSFCcontrollingthepressure.Themobile- phasedensityhasadirectimpactonthemobile-phasestrength, thus on the (enantio)selectivity and retention. A higher back

pressuremeansahighermobile-phasedensity,and-strength,and shorterretentiontimes.Asaconsequence,theselectivitymight alsodecrease.

However,whenexploringa pressurerangein thesearchfor optimalseparationconditions,auserisrestrictedbythelimita- tionsofthepolysaccharide-basedcolumnandtheequipment.In practice,backpressuresbetween125and250bararecommonly usedforchiralSFCseparations.Usinglowerpressuresharmsthe chromatographicresultssignificantlysincethesub-criticalstateof themobilephaseisnolongerguaranteed[26].

Inthispressurerange(125–250bar),theactualimpactofthe backpressure ontheretention andselectivityis rather limited andconsiderablylowerthanthatoftheorganicmodifiercontent.

In otherwords,whena largechangein retentionor selectivity isdesired,thefirststepshouldbetoadoptthemodifiercontent intheMP.Whenfine-tuningaseparation,thebackpressurecan bechanged.For shorter retention/analysistimes thebackpres- sureshouldbeincreased,whiledecreasingisadvisablewhenthe selectivityshouldbeimproved.

Fortheseparationofeconazole,adoublingofthebackpressure from125to250bardecreasestheretentionofthelastelutingpeak from8.5to6.4min(Fig.4).Asaconsequence,thepartialresolution islostwhenthebackpressureiselevatedabove200bar.

Forscreeningpurposes,itisproposedtosetthebackpressure at150barasacompromisebetweenretentiontimeandenantio- selectivity.Consequently,reducingthebackpressuretothelower limitof125barwouldonlyresultinaminimalgaininenantioselec- tivity.Thereforethisstepisnotincludedinthepartialseparation branchofthestrategy(seefurther).Ontheotherhand,tospeed uptheanalysis,itismoreeffectivetoincreasetheflowrateand/or modifiercontentthanthebackpressure.Therefore,anincreasein backpressureisonlyrecommendedasathirdchoicetoreducethe analysistimeofbaselineseparations(seefurther).

(7)

Fig.4.OverlayofthechromatogramsofeconazoleonChiralcel®OZ-Hwith20%(MeOH:IPA:TFA,100:0.1:0.1,v/v/v)inthemobilephase.Aflowrateof3ml/minand temperatureof30Cwasused.Thebackpressureswere(1)125bar;(2)150bar;(3)175bar;(4)200bar;(5)225bar;and(6)250bar.(ResultsgeneratedwiththeUPC2 system.)

3.2.5. Temperature

Temperature also influences the mobile-phase density. An increase resultsin a decreaseof the mobile-phase density and hastheabove-mentionedconsequences.Itisimportanttorealize thatbyreducingthetemperature,thechromatographicconditions deviatefurtherfromthesuper-intothesubcritical region.This doesnot createpractical issues untilthe subcritical stateturns intoa two-phasestate,whichwould deterioratethechromato- graphic results significantly and prevents proper analyses.The vapour–liquidcurveofthepressure–temperaturephasediagram separatesthetwo-phase regionfromthesubcritical region.For (chiral)SFCseparationsitisthusimportanttoremainabovethat vapour–liquidcurve,buttherearenofurtherrestrictionstothe chosen conditions.SFC separations can thus alsobeperformed below31C,i.e.thecriticaltemperatureofpurecarbondioxide[26].

For polysaccharide-basedcolumns,the temperaturerange is limitedfrom5to40–50C,varyingbycolumn-manufacturerinfo.

Theactualimpactofthetemperatureontheretentionandselectiv- ityinthisworkablerangeisratherlimited.Whenthetemperature isincreasedfrom10to45C(a350%increase),theretentionofthe lastelutingpeakofcarprofenonlydecreasesfrom2.70to2.56min (adecreaseof 5%)(Fig.5).Theresolution andselectivityofthe separationarehardlyaffectedbythistemperaturechange.

Summarized,it canbestatedthat althoughthetemperature hasanimportantimpactonSFCseparations,theworkabletem- peraturerangewithpolysaccharide-CSPsistoolimitedtohavea significantgain inanalysistime orselectivity.Forthis reason,a temperatureoptimizationisnotincludedinthefinalseparation strategy(seefurther).Thetemperaturewasthereforesetat30C forallexperiments,basedonthestudyofMaftouhetal.[12].

3.2.6. Additives

Inthescreening,0.1% isopropylamine(IPA) and0.1%trifluo- roaceticacid(TFA)areaddedtothemodifier,ofwhichonly20%

inusedinthemobilephase.Hence,thefinalconcentrationinthe MPis0.02%IPAandTFA.Nevertheless,theiraddition,eveninthese lowconcentrations,affectstheinteractionsbetweentheanalytes andthestationaryphase.Withoutthepresenceofadditivesinthe MP,chromatographicresultstendtodeterioratesignificantly.IPA

and otherbasic amine-additivesshield silanol sitesonthe sta- tionaryphase, decreasingthenon-specificretentionofanalytes.

Theyalsocompetewiththebasicfunctional groupsof analytes forinteractionswithspecificsitesonthestationaryphase.These additivesalsoneutralizechargedgroupsofbasicanalytes,whichis

Fig.5. ChromatogramsoftheenantioseparationofcarprofenonChiralcel®OZ-H with20%(2PrOH:IPA:TFA,100:0.1:0.1,v/v/v)inthemobilephase.Atotalflowrate of4ml/minandbackpressureof150barwasused.Thetemperatureswere(a)10C;

(b)15C;(c)20C;(d)25C;(e)30C;(f)35C;(g)40C;and(h)45C.

(8)

Fig.6.Chiralseparationstrategyforpolysaccharide-basedcolumnsinSFC.

importantfortheinteractionswithneutralchiralselectors,suchas polysaccharide-derivatives[18,27].Acidicadditives,suchasTFA, suppresstheionizationofacidicanalytes.

Forpolysaccharide-basedchiralcolumns,theseeffectsdonot seemdirectlyrelatedtotheconcentrationoftheadditivesintheMP

[28].Weinvestigateddifferentadditiveconcentrationsinarange from0.1to0.25%andsawonlyaminorimpactontheretentionor resolution.Peakshapestendtobeslightlysharperwithincreasing additiveconcentrations.Ontheotherhand,addinglessthan0.1%

tothemodifierwasnotsufficienttoinducethedesiredeffect;peak

Table3

Forseparationstrategy:separationresultsandoptimalseparationconditionsforthe20compoundsfromthetestset.

Separationresults Selectedoptimalseparationconditions

Rs ˛ AT(min) CSP Flowrate(ml/min) Modifier(%) Modifiertype

Carprofen 1.6 1.2 2.6 OZ-H 4.0 20 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Carteolol 2.6 6.5 1.3 OD-H 4.0 30 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Celiprolol 1.5 1.3 3.8 AD-H 4.0 15 EtOH:IPA:TFA,100:0.1:0.1,v:v:v

Ceterizine 5.5 2.4 2.2 AD-H 4.0 35 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Clopidogrel 2.5 1.5 1.4 AD-H 4.0 35 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Cyclopentolate 4.8 1.7 2.8 AD-H 3.0 20 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Econazole 1.6 1.1 5.3 OZ-H 4.0 20 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Felodipine 2.0 1.2 4.9 AD-H 4.0 10 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Fluoxetine 1.3 1.1 15.0 OZ-H 2.0 5 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Indapamide 1.5 1.3 3.6 OD-H 4.0 30 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Indoprofen 2.7 1.2 4.5 AD-H 4.0 35 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Isradipine 1.6 1.1 7.2 LC-4 3.0 10 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

Lorazepam 3.0 1.4 2.9 OZ-H 4.0 35 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Miconazol 2.0 1.2 5.4 AD-H 4.0 15 2PrOH:IPA:TFA,100:0.1:0.1,v:v:v

d/l-Nebivolol 2.2 1.5 1.9 OZ-H 4.0 25 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Ondansetron 3.4 1.4 3.0 OD-H 4.0 40 MeOH:IPA,100:0.1,v:v

Temazepam 2.0 1.2 4.2 OZ-H 4.0 35 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

Terazosine 1.7 1.2 3.7 AD-H 4.0 30 MeOH:IPA,100:0.1,v:v

Thioridazine 1.8 1.2 3.4 OZ-H 4.0 35 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

trans-Stilbeneoxide 4.4 1.6 1.9 OZ-H 3.0 20 MeOH:IPA:TFA,100:0.1:0.1,v:v:v

(9)

Fig.7.Separationstrategyappliedontheracematethioridazine.Chromatogramsa–d:experimentsfromthescreeningstep,e:optimizedconditions.

shapesandchromatographicresultswereunacceptable.Hence,in thescreening,theadditiveconcentrationissetat0.1%IPAandTFA inthemodifier.

Earlier,weobservedasignificantdifferenceinenantioselectiv- itybetweenthesimultaneoususeofIPAandTFAandtheindividual useoftheseadditives[18].Inthelattercase,TFAisusedforacidic compoundsandIPAforallothercompounds.Sincethesuccessrate tendedtobehigherwhencombiningtheadditives,weadviseusing thisapproachinascreeningstage[18].Moreover,thebenefitis thatthescreeningconditionsarethesameforallcompounds,inde- pendentoftheirchemicalproperties.However,incasethedesired enantioseparationisnotachieved,itcanbeusefultotryonlyone singleadditiveinthemodifier.Thisisthereforerecommendedin thepartialseparationbranchofthestrategy(seefurther).

3.3. Separationstrategy

Basedontheaboveinformationandearlierexperience,asepa- rationstrategy wasdefined(Fig.6).Thisstrategywasevaluated withanoveltest setof 20pharmaceuticalracemates(Table1).

Afterexecutingthescreeningexperiments,18/20compoundswere separated.Afterapplyingtheentirestrategy,allcompoundswere baselineseparated,withtheexceptionof fluoxetine,which was partiallyseparated(Rs=1.3)(Table3).

Analysistimefortheseoptimizedseparationswasin16/20cases below5min,for19/20below10minandforfluoxetine15min.

Theseparationstrategyappliedontworacemates,i.e.thiori- dazineandclopidogrelispresentedinFigs.7and8,respectively.

Thechromatograms(a–d)clearlyshowthecomplementarityofthe

Fig.8. Separationstrategyappliedonclopidogrelracemate.Chromatogramsa–daretheresultsfromthescreeningstep,eistheresultafteroptimization.

(10)

Fig.9.TransferofthechromatographicconditionsfromconventionalSFC(Tharequipment)toultraperformanceSFC(UPC2equipment).TheseparationsareobtainedonLux Cellulose-2,with20%(MeOH:IPA:TFA,100:0.1:0.1,v:v:v)inthemobilephase,flowrate3.0ml/min,30C,detectionat220nm,andabackpressureof150bar.(a)Mepindolol, (b)naringenin,(c)mianserine.

chromatographicsystemsincludedinthescreeningstep.Afterthe optimizationsteps,goodbaselineseparationswithsatisfyingpeak shapesandshortanalysistimesareobtained.

3.4. MethodtransferfromconventionalSFCtoUHP-SFC

Thescreening conditions from the separation strategy were transferred from a conventional SFC to an ultra-performance (UPC2)SFCequipment.Toevaluatethetransfer,the56-compound testsetusedasforthedefinitionofthescreening wasapplied.

We refer to these earlier papers for more information on its composition[13,17,18].Thefourchromatographicsystemsfrom the screening were evaluated, i.e. OZ-H and OD-H, with 20%

(MeOH:IPA:TFA,100:0.1:0.1,v:v:v),andAD-HandLC-4,with20%

(2PrOH:IPA:TFA,100:0.1:0.1,v:v:v)intheMP.Thesamecolumns andconditionswereusedonbothinstruments.

Generally the method transfer from conventional to ultra- performance SFC seems rather straightforward. Usually similar separation results are achievedwhen applying thesame chro- matographicconditionsinconventionalandultra-performanceSFC (Fig.9).

However,the success rates on all chromatographic systems obtainedwith theultra-performance system are slightly lower (Fig.10).Inthiscontext,itisimportanttoanalyzetheresultsfur- thersincethedifferenceinsuccessratemayoriginatefromsmall differencesin resolution. A partialseparation is anyseparation witharesolutionhigherthanzero,whilebaselineseparationshave Rs>1.5.Hence,incaseaseparationwithresolution0.2isobtained ononeinstrument,asmalldecreaseinRsontheothermayresult inalossoftheseparation.

Wethuscomparedtheresolutionsandanalysistimes(AT)of the56compounds.TheobtainedRsandanalysistimesaresimilar

buttendtobeslightlylowerontheUPC2thanontheconventional equipment(Fig.11).Theselowerresolutionsarereflectedinthe lowersuccessratesontheUPC2.Toassessthesignificanceofthe differenceinRsand ATbetweenbothinstruments,atwo-tailed pairedStudentt-testwasperformed.

Table4summarizestheresultsinterms ofthecalculated t- andp-values.Fortwochromatographicsystems,i.e.AD-HandLC- 4with2-propanolinthemobilephase,theresolutionswerenot significantlydifferentontheconventionalTharSFCandUPC2.For OD-HandOZ-Hwithmethanol,thedifferencewasdeterminedto besignificant.

TheanalysistimeswereslightlylowerontheUPC2thanonthe conventionalTharinstrument.Thisdifferencewasdeterminedto besignificantforallchromatographicsystems,withtheexception ofOD-Hwithmethanolinthemobilephase.

Fig.10.Numberofbaseline(Rs>1.5)andpartial(0<Rs<1.5)separationsachieved withtheTharSFCandUPC2systemsonthefourchromatographicsystemsofthe screening.

(11)

Table4

Two-tailedpairedStudentt-testappliedonthedataobtainedforthe56compounds(58enantiomerpairs)ontheTharandUPC2. ChiralcelOZ-H20%

MeOH:IPA:TFA

ChiralpakAD-H20%

2PrOH:IPA:TFA

ChiralcelOD-H20%

MeOH:IPA:TFA

LuxCellulose-420%

2PrOH:IPA:TFA

Rs t-Value 3.11 1.66 3.10 0.41

p-Value 1.46×10−3 5.15×10−2 1.50×10−3 3.42×10−1

AT t-Value 2.06 1.71 1.50 4.43

p-Value 2.20×10−2 4.62×10−2 6.93×10−2 2.14×10−5

WithRstheresolutionandATtheanalysistimeasresponses.NullhypothesisH0:XThar=XUPC2,withXagivenresponse(RsorAT).t57,˛=0.05=1.67.Significantt-andp-values aremarkedinbold.

Hence,toconcludeitcanbestatedthat,ingeneral,theanalysis timesontheUPC2areshorterthanontheconventionalSFCsys- tem.Thiscanberelatedtotheminimizationofthevoidvolume inthisequipment,resultinginalowervoidtime.However,this isnottranslatedintoseparationswithhigherresolutions.Inmost cases,theresolutionswereslightlylowerontheultra-performance SFCsystem,ontwoofthefoursystems,thisdecreasewassignifi- cant.Thus,theresolutionsarerathercomparablebetweenthetwo systems,whileagaininanalysistimeisobtainedwiththeultra- performancesystem.

However,themaximalpotentialoftheUHP-SFCsystemmight notbeachievedwiththe5␮mparticlecolumnsusedinthisstudy.

Reducingtheparticlesizetosub-2␮mdimensions,wouldpossi- blyincreasetheseparationefficiencysignificantly[15,16].Sofar, nosub-3␮m chiral polysaccharide-based stationary phases are commerciallyavailable.Thecoatingofthepolysaccharide-based selector on the silica and the uniform and reproducible pack- ingofthesesmallerparticlesappearstobeverytedious.Hence, morepotentialliesinUHP-SFCforchiralseparationsprovidedthat adaptedCSPbecomeavailable.

Forthisstudy,wherethesamecolumnswereused,themethod transferfromtheconventional totheultra-performancesystem wasveryeasyandstraightforward.

3.5. Precisionstudy:conventionalSFCvsUPC2

Toevaluatetheprecisionofexperimentsonbothsystems,six enantioseparations;bopindolol,mepindolol,methadone,mianser- ine,naringenin,andsotalol,wereselectedandrepeatedtwiceover sixconsecutivedays.Thesamechromatographicconditionswere usedonbothsystems.LuxCellulose-2wasusedasstationaryphase,

with20%MeOH:IPA:TFA(100:0.1:0.1)in themobilephase.The totalflowratewas3.0ml/min,thetemperature30Candbackpres- sure150bar.Detectionwasdoneat220nm.Thesampleloopwas 10␮landpartialinjectionsof5␮lweredoneforeachsample.

Theinter-andintra-dayvariabilitiesandtheintermediatepre- cision(expressedinvariance)wereestimatedforeachseparation usingANOVA.Table5showstheresultsforallseparationsonboth systems.Tworesponseswereconsidered:theresolutionandthe analysistime(AT).Thevariancesobtainedwithbothsystemswere comparedwithanF-test.

Theintra-dayvarianceontheRswasnotsignificantlydifferent betweentheUPC2andTharforthreecompounds.Formethadone and sotalol the variance was smalleron the Thar than on the UPC2,formepindololtheoppositewasseen.Theinter-dayvari- abilitywasnotsignificantlydifferentforthreecompounds,while formepindolol,mianserine,andsotalolitwaslowerontheUPC2. Theintermediateprecisionwassignificantlydifferentfortwosep- arations:thevarianceformepindololwaslowerontheUPC2and formethadoneontheTharsystem.Theseresultsindicatethatthere isnodistinctbenefitofonesystemovertheotherconcerningthe repeatabilityofexperimentswhenconsideringtheresolutionas response.

Next,weconsideredtheanalysistimeasresponse.Threesep- arationsyieldedasignificantlydifferentintra-dayvariability,i.e.

bopindolol,methadoneandnaringenin.Thefirsttwoseparations showedalowervariabilityontheTharsystem,whiletheopposite situationwasseenforthelast.Theinter-dayvariabilitywassignif- icantlylowerontheTharsystemforbopindololandmethadone and on the UPC2 for mianserine, sotalol and naringenin. The intermediateprecisionontheAT,waslowerforbopindololand methadoneontheTharsystemandfornaringeninontheUPC2.

Table5

ResultsofthesixprecisionstudiesoftwosampleinjectionsonsixconsecutivedaysontheUPC2andTharsystems,expressedinvariances.

Intra-dayvariability Inter-dayvariability Intermediateprecision

UPC2 Thar UPC2 Thar UPC2 Thar

Bopindolol

Rs 3.86×10−2 2.03×10−2 1.14×10−1 5.85×10−2 1.53×10−1 7.88×10−2

AT 2.47×10−2 6.23×10−3 4.19×10−3 6.58×10−4 2.89×10−2 6.88×10−3

Mepindolol

Rs 1.57×10−3 1.44×10−2 4.98×10−3 1.78×10−1 6.56×10−3 1.93×10−1

AT 2.06×10−2 7.67×10−3 1.18×10−2 1.89×10−3 3.24×10−2 9.56×10−3

Methadone

Rs 9.9×10−4 1.89×10−5 2.99×10−4 4.06×10−4 1.29×10−3 4.25×10−4

AT 2.06×10−2 3.87×10−3 1.18×10−2 9.17×10−5 3.24×10−2 3.96×10−3

Mianserine

Rs 1.88×10−3 8.06×10−4 7.03×10−5 1.39×10−3 1.95×10−3 2.20×10−3

AT 8.78×10−4 1.08×10−3 6.33×10−6 2.50×10−5 8.84×10−4 1.11×10−3

Sotalol

Rs 2.03×10−3 3.14×10−4 5.30×10−5 7.43×10−4 2.08×10−3 1.06×10−3

AT 3.46×10−3 2.80×10−3 7.17×10−6 4.17×10−5 3.46×10−3 2.84×10−3

Naringenin

Rs 2.48×10−3 7.13×10−2 2.03×10−4 1.33×10−3 2.68×10−3 7.26×10−2

AT 8.87×10−4 4.15×10−2 3.75×10−6 2.65×10−4 8.91×10−4 4.18×10−2

WithRstheresolutionandATtheanalysistime.TheresultsobtainedontheUPC2andThararecomparedwithanF-test,thesmallestvarianceofbothismarkedinboldif thedifferenceiscalculatedtobesignificant,F11,11;˛=0.05=2.82.

(12)

Fig.11.Comparisonofthescreeningresultsofthe56-compoundtestsetonthe ultra-performanceandconventionalSFCequipment.(a)Resolutions(Rs),(b)anal- ysistimes.Straightline=lineofequality.

Hence,theintra-andinter-dayvariabilityandintermediatepreci- sionoftheanalysistimesbetweenbothsystemsarecomparable, andnodistinctadvantageofonesystemovertheotherwasseen.

Conclusively,theseexperimentsshowedthatintermsofpreci- siontheperformanceofbothsystemsweresimilar.

4. Conclusions

Todefineagenericseparationstrategy,theimpactofdifferent parametersonchiralSFCseparationswasinvestigated.Theinflu- enceoforganicmodifiertypeand–concentration,flowrate,back pressure,temperatureandadditives,wereconsidered.

Whendissimilar enantioselectivity is sought, it is advisable toscreendifferentmodifiersinthemobilephase.Methanolwas favouredover2-propanolandethanol,sincethismodifiertended togeneratehighersuccessratesonthepolysaccharide-basedCSPs, although a broad complementarity exists between MeOH and 2PrOH.Toextendtheenantioselectiverecognition,itisthusadvis- abletoscreenaCSPwithbothmodifiers.

Whenhigherresolutionsaredesired,themodifierconcentra- tioncanbedecreased.Whenaimingtodecreasetheanalysistime, theflowratecanbeincreasedwithoutcompromisingtheefficiency much.Thebackpressureandtemperatureonlyexertminorinflu- encesontheresolutionoranalysistimeofchiralSFCseparations onpolysaccharide-derivatives.Thelatterinformationwasusedto definea separation strategy, which applicability wasevaluated withanoveltestsetof20pharmaceuticalracemates.Allracemates

couldbebaselineseparated,withtheexceptionoffluoxetine.Anal- ysistimeswerebelow10minforallseparatedcompounds.

Thedevelopedapproachwastransferredfromaconventional toanultra-performanceSFCsystem.Similarseparationresultsin termsofRsweregeneratedbybothsystems,whiletheanalysis timeswereslightlylowerontheultra-performancesystem.The methodtransferthusprovedtobeveryeasyandstraightforward.

AprecisionstudywasperformedforsixseparationsontheThar andUPC2system.Resultsshowednodistinctadvantageofonesys- temovertheotherconcerningtheintra-,andinter-dayvariabilities ortheintermediateprecisionoftheresolutionandanalysistimeof theseparations.

Moreefficientseparationscouldpotentiallybeachievedusing sub-2␮m columns. However, sofar,no CSPsare commercially availablewiththeseparticledimensions.Undoubtedly,therestill remainsawholeunexploreddomaininthiscontextforchiralsep- arations.

Conflictofinterest

Theauthorsdeclarednoconflictofinterest.

Acknowledgement

ThisworkwasfinanciallysupportedbytheResearchFoundation FlandersFWO(projects1.5.114.10N/1.5.093.09N.00).

References

[1]G.Terfloth,J.Chromatogr.A906(2001)301.

[2]G.Guiochon,A.Tarafder,J.Chromatogr.A1218(2011)1037.

[3]B.Chankvetadze,J.Chromatogr.A1269(2012)26.

[4]K.W.Phinney,Anal.Chem.72(2000)204A.

[5]Z.Wang,in:S.Ahuja(Ed.),ChiralSeparationMethodsforPharmaceuticaland BiotechnologicalProducts,Wiley,Calabash,NC,USA,2011,p.299.

[6]L.Miller,J.Chromatogr.A1250(2012)250.

[7]L.Miller,M.Potter,J.Chromatogr.B:Analyt.Technol.Biomed.LifeSci.875 (2008)230.

[8]E.R.Francotte,J.Chromatogr.A906(2001)379.

[9]H.Ates,D.Mangelings,Y.VanderHeyden,in:S.Ahuja(Ed.),ChiralSeparation MethodsforPharmaceuticalandBiotechnologicalProducts,Wiley,Calabash, NC,USA,2011,p.383.

[10]H.Ates,D.Mangelings,Y.VanderHeyden,J.Pharm.Biomed.Anal.48(2008) 288.

[11]D.Mangelings,Y.VanderHeyden,Adv.Chromatogr.46(2008)175.

[12]M.Maftouh,C.Granier-Loyaux,E.Chavana,J.Marini,A.Pradines,Y.Vander Heyden,C.Picard,J.Chromatogr.A1088(2005)67.

[13]K.DeKlerck,D.Mangelings,Y.VanderHeyden,J.Supercrit.Fluids80(2013)50.

[14]T.Ikai,Y.Okamoto, in:A.Berthod(Ed.),ChiralRecognitioninSeparation MethodsMechanismsandApplications,Springer-Verlag,Berlin-Heidelberg, Germany,2010,p.33.

[15]T.A.Berger,Chromatographia72(2010)597.

[16]C.Sarazin,D.Thiebaut,P.Sassiat,J.Vial,J.Sep.Sci.34(2011)2773.

[17]K.DeKlerck,G.Parewyck,D.Mangelings,Y.VanderHeyden,J.Chromatogr.A 1269(2012)336.

[18]K.DeKlerck,D.Mangelings,D.Clicq,F.DeBoever,Y.VanderHeyden,J.Chro- matogr.A1234(2012)72.

[19]TheEuropeanPharmacopoeia,DirectoratefortheQualityofMedicinesofthe CouncilofEurope(EDQM),Cedex,France,2005.

[20]G.O.Cantrell,R.W.Stringham,J.A.Blackwell,Anal.Chem.68(1996)3645.

[21]L.Miller,J.Chromatogr.A1256(2012)261.

[22]C.Hamman,M.Wong,M.Hayes,P.Gibbons,J.Chromatogr.A1218(2011) 3529.

[23]P.Franco,T.Zhang,J.Chromatogr.B:Analyt.Technol.Biomed.LifeSci.875 (2008)48.

[24]D.Leyendecker,in:R.M.Smith(Ed.),SupercriticalFluidChromatography,Royal SocietyofChemistry,Loughborough,UK,1988,p.53.

[25]K.W.Phinney,in:G.Subramanian(Ed.),ChiralSeparationTechniques,aPrac- ticalApproach,Wiley,Weinheim,Germany,2001,p.301.

[26]A.Tarafder,G.Guiochon,J.Chromatogr.A1265(2012)165.

[27]Y.K.Ye,K.G.Lynam,R.W.Stringham,J.Chromatogr.A1041(2004)211.

[28]K.W.Phinney,L.C.Sander,Chirality15(2003)287.

Referenties

GERELATEERDE DOCUMENTEN

Door voor en na de warmwa- terbehandeling 4 dagen 20°C te geven kunnen ook Oriëntals een warmwaterbehandeling bij 41°C en zelfs 43°C verdragen. Om de kans op dubbelneuzen

In de bossen die werden gedomineerd door een uitheemse boomsoort heeft de noodverjonging - via aanplant en natuurlijke verjonging van vooral inheemse boomsoorten - geleid tot een

Professioneel handelen betekent echter ook dat er niet alleen gekeken moet worden naar de kernwaarden van het gebouw, maar dat er ook gehandeld moet kunnen worden op basis van

Vincent and Elinor Ostrom, who spent half a century compiling a large body of empirical evidence on various types of commons as well as developing a framework for understanding

Causality in economics is the measurement of the ability of time series to predict future values by using past values of another time series (Granger, 1969). The results of the

Toch behoren deze liedjes tot het cultuurgoed van de Nederlandse taal en kunnen ze uitstekend benut worden als toelichting bij het onderwijs in de moedertaal en de andere

Om op de plaats van het scherm aan de vereiste continuiteitsvoorwaarden te kunnen voldoen worden er hogere modes (LSE-morlea) opgewekt)1. Deze hogere modes kunnen

The study functions on the assumption that a wilderness rites of passage programme can serve as a valuable intervention strategy for school communities aiming to support youth who