• No results found

/Q Q /Q Q 1 2 1 2 S/SS/S

N/A
N/A
Protected

Academic year: 2022

Share "/Q Q /Q Q 1 2 1 2 S/SS/S"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Maarten Kleinhans Bifurcation evolution in meandering rivers with adapting widths

Acknowledgements

• grantALW-VENI-863.04.016

• Kim Cohen, Esther Stouthamer, Marco van Egmond

• Jantine Hoekstra, Janneke IJmker

• Norm Smith

• Erik Mosselman, Kees Sloff, Bert Jagers

H51A-0172

Objective

:

• model bifurcation evolution and avulsion duration

• determine most important factors for duration with model

• verify on the worlds best-mapped case: the river Rhine

0 500 1000 1500 2000 2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (years)

Q-Nederrijn / Q-Rhine

Waal wins Nederrijn wins

same length Waal 14% shorter same length +bend Waal 14% shorter +bend no width adaptation

0 500 1000 1500 2000 2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Waal 14% shorter same length 10% longer 20% longer 30% longer

0 500 1000 1500 2000 2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R/W=-4 R/W=-10 R/W=-100 R/W=inf R/W=100 R/W=10 R/W=4

0 500 1000 1500 2000 2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (years)

Q-Nederrijn / Q-Rhine

R/W=inf sin amp 1000m 250yr sin amp -1000m 250yr sin amp 2000m 250yr sin amp -2000m 250yr

0 500 1000 1500 2000 2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (years)

Q-Nederrijn / Q-Rhine

R/W=inf sin amp 1000m 500yr sin amp -1000m 500yr sin amp 2000m 500yr sin amp -2000m 500yr

0 500 1000 1500 2000 2500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time (years)

W-Nederrijn and/or W-Waal / W-Rhine

sin amp 2000m 500yr

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1300 1400 1500 1600 1700 1800 1900 2000

year (AD)

frequency (31 yr window) (1/yr) freq Rijn

HW Rijn ice dams less floods less bank erosion

more floods more bank erosion

Fig. 2. Meander migration at the bifurcation (historical maps redrawn by Van de Ven 1976)

Duration of the last major Rhine avulsion

Fig. 3. 1595 AD map

1751 AD map

Residual Rhine channel far downstream.

Silt/clay + organics fill.

Residual Rhine channel near entrance (view on Lobith).

Fining-upward sand fill on old sand-gravel channel bed.

(Prelim hand coring results Hoekstra & IJmker)

Processes at the bifurcation: meandering and width adaptation

Conclusions

1. Avulsion/bifurcation evolution is strongly forced by meandering

in competition with gradient advantage

migrating bend at bifurcation causes fluctuations in discharge division

migrating bends give net faster change than gradient advantage alone 2. Dynamically stable bifurcations do not exist

except when highly asymmetrical i.e. as residual channels, or when exactly equal bifurcates

bifurcations only stabilise (statically) by bank and bed protection (e.g. armouring, resistive clay, vegetation, bank protection works) of the enlarging bifurcate

evolution can be very slow when gradient advantage and bend effects balance 3. Avulsion is strongly slowed down by width adaptation,

i.e. bank and floodplain evolution

too simplified here but nothing better available!

4. Nederrijn-Waal avulsion evolution forced by meandering

and gradient advantage

but slowed down by width-adaptation

not affected by sea level rise or tectonics

modelled avulsion duration with realistic bends 1500-2500 years in agreement with data

Avulsion duration: ~2000 years defined as 10→90% discharge

Initiation: last centuries BC

• several parallel channels

Evolution:

• in 325 AD one Waal channel

• 12thcentury discharge Nederrijn decreased

Meander bend upstream of/at bifurcation:

• migrated downstream into bifurcation

• favoured Waal with flow and favoured Nederrijn with sediment

Fig. 1. Geological maps showing the avulsion of the river Rhine to the south

Width and depth evolution

Nederrijn silted up and narrowed further, vegetated

1700: avulsion finished

Q

H Model formulation

1. Three 1D model branches: 1 upstream and 2 bifurcates

• Specified: upstream discharge Q, downstream water level H, roughness ks, initial slope S or length L to the sea, grain size D

2. Branches connected at a nodal point

• flow division: from backwaters of bifurcates

• sediment division: nodal point relation Kleinhans et al. WRR 3. Width W adjustment to discharge

• Weq= aQb, dW/dt = (Weq-W)/TW(relaxation, conserve sediment in bed)

4. Nodal point relation

sediment division proportional to width, but

• modified by transverse slope effect and spiral flow of bend with radius R 5. Novelty:

• meander effect at bifurcation

• coupling bank erosion / bank deposition to bed sediment balance

1D model ‘validation’ on 3D model

Detailed data unavailable, consider detailed 3D model as ‘truth’

• Delft3D model software

• curvilinear grid, preformed bend, fixed banks

• same parameters as in 1D model

• scenarios for gradient versus bend advantage

0 1 0 2 0 3 0 4 0 5 0

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Q2/Q1

A 3 D d is c h a r g e d iv is io n

0 1 0 2 0 3 0 4 0 5 0

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

ti m e ( yr ) Q2/Q1

B 1 D d is c h a r g e d iv is io n

S/SS/S

Delft3D flow division

1D flow division inner-bend bifurcate wins

outer wins

inner-bend bifurcate wins

outer wins Fig. 4.

Discharge division evolving in 50 years:

3D and 1D model show similar behaviour.

Bed elevation maps in 3D model after 6 years illustrating bend morphology and bifurcation response (coordinates in m)

Model results

Fig. 5. Discharge division evolving in 2500 years:

Effects of gradient advantage of one bifurcate and/or a fixed bend at the bifurcation

Fig. 6. Discharge division and width evolving in 2500 years:

Effects of migrating sinusoidal bends at the bifurcation Standard scenarios

• same length or Waal 14% shorter

• bend R/W=4 much larger effect

• faster without width adaptation

Gradient of the Waal

• with bend R/W=4

• bend compensates ~15% longer

Fixed bend at bifurcation

• with Waal 14% shorter

• bends in both directions

Fast migrating bend

• net faster than gradient advantage alone

Slow migrating bend

• much faster than fast bend

• avulsion duration depends on initial position of the bend

Width of slow migrating bend

• time-adaptation nearly immediate

• wide residual channels

• sudden rapid changes Faculty of Geosciences

Utrecht University the Netherlands www.geog.uu.nl/fg/mkleinhans m.kleinhans@geo.uu.nl

How general is meandering effect and narrowing?

Clear cases where meander at bifurcation favours outer-bend branch:

1. two man-made bifurcations in the Netherlands 2. Ganges-Gorai bifurcation

3. two Saskatchewan bifurcations in the Cumberland Marshes (see Smith et al. (1998): Old Channel

New Channel

Saskatchewan New Channel

Steamboat channel

Centre Angling abandoned channel

in outer bend:

older but kept open

abandoned channel in inner bend: younger and more closed

Work in progress

1. This work extended:

Kleinhans (River Flow 2008); Kleinhans, Cohen & Stouthamer (in prep) 2. 3D modelling of bifurcations in meandering rivers:

Kleinhans, Jagers, Mosselman & Sloff WRR (in review) 3. Case study of avulsion splay and upstream channel evolution:

Kleinhans, Weerts & Cohen (RCEM 2007)

4. Sediment transport and morphodynamics at three Rhine bifurcations:

Frings & Kleinhans Sedimentology (accepted)

Kleinhans, Wilbers and Ten Brinke (2007) Netherlands J. of Geoscience 5. Sedimentology of closed bifurcates and residual channels in the Rhine

Kleinhans, Hoekstra, IJmker & Cohen (in prep)

Problem

:

What determines bifurcation stability and avulsion duration?

bend R/W=100 bend R/W=10 bend R/W=4(sharpest) Only bend, equal bifurcates:

bend R/W=100 bend R/W=10 bend R/W=4(sharpest) Inner-bend branch 10% steeper:

Wang Bolla Other nodal point relations:

x x + + North Sea

Belgium 100 km

Netherlands England

Germany Waal system

Nederr ijn system

Bifurcation/avulsion after Berendsen & Stouthamer (2000)

Paleogeography 3200 yr BP

Paleogeography 1250 yr BP

Referenties

GERELATEERDE DOCUMENTEN

Volgens het antwoordmodel moet je de formule afleiden door de richtingsco¨ effici¨ ent van y te bepalen, en vervolgens de formule zo te krijgen dat y = f (x) in het punt p.. Ik vind

The goal of this chapter is to introduce the notion of coverings, in particular Galois cov- erings, from the topological point of view, and to give a classification of the

• The use of computer, calculator, lecture notes, or books is not allowed. • Each problem is worth

[r]

Het gebied is, onverminderd de wettelijke mogelijkheden van de beheerder of het Agentschap om het geheel of gedeeltelijk, voor alle of bepaalde categorieën bezoekers

Krachtige bezuiniging door doeltreffende organisatie der huis- Zoodanige wijz beschermde pers houding van den Staat, mits de sociale voorzieningen daaronder voor verlofzaken..

• door de gebruikers van de radarinstallatie op de verkeerscentrale Hansweert wordt voor een periode van minimaal zes (6) weken de performance geëvalueerd;. • door het BET -SRK zal

Nieuw te vormen