• No results found

University of Groningen Colloidal quantum dot solids Balázs, Dániel Máté

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Colloidal quantum dot solids Balázs, Dániel Máté"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Colloidal quantum dot solids

Balázs, Dániel Máté

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Balázs, D. M. (2018). Colloidal quantum dot solids: Nanoscale control of the electronic properties. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Colloidal Quantum Dot Solids

Nanoscale control of the electronic properties

(3)

Zernike Institute PhD thesis series 2018-3 ISSN: 1570-1530

ISBN: 978-94-034-0365-6 (print version) ISBN: 978-94-034-0364-9 (electronic version)

The work in this thesis was performed in the Photophysics and OptoElectronics group of the Zernike Institute for Advanced Materials at the University of

Groningen in The Netherlands. The research was funded by the European Research Council through the ERC Starting Grant No. 306983 (HySPOD). Reuse of any materials published in this thesis is only permitted following the copyright license of the publication mentioned on the corresponding chapter title page.

Cover design: Rebeka Balazs M.A. The pattern is an abstract representation of the superlattice of rhombicuboctahedra, the structure observed in Chapters 3,5 and 6.

Printed by Gildeprint

(4)

Colloidal Quantum Dot Solids

Nanoscale control of the electronic properties

PhD thesis

to obtain degree of PhD at the University of Groningen

on the authority of the Rector Magnificus Prof. E. Sterken

and in accordance with the decision by the College of Deans. This thesis will be defended in public on Friday 16 February 2018 at 16:15 hours.

by

Dániel Máté Balázs

born on 1June 1989 in Budapest, Hungary

(5)

Supervisor

Prof. M. A. Loi

Co-supervisor

Prof. M. V. Kovalenko

Assessment committee

Prof. B. Noheda Pinuaga Prof. A. Facchetti Prof. T. Hanrath

(6)

Table of contents

1. Introduction to colloidal quantum dot solids ... 3

1.1. Solution-processed semiconductors ... 4

1.2. Colloidal quantum dots ... 5

1.3. Quantum dots in proximity ... 8

1.4. Surface-based property control ... 11

1.5. Characterization methods for novel semiconductors ... 13

1.6. Outline of the thesis ... 18

1.7. References ... 19

2. Reducing charge trapping in PbS colloidal quantum dot solids ... 23

2.1. Introduction ... 24

2.2. General characteristics of the PbS FETs ... 25

2.3. Effect of ambient conditions ... 26

2.4. Conclusion ... 30

2.5. Experimental methods ... 31

2.6. References ... 32

3. Counterion-mediated ligand exchange for PbS colloidal quantum dot superlattices ... 33

3.1. Introduction ... 34

3.2. Nanostructure: influence of the counterions and epitaxial fusion ... 35

3.3. Optical properties ... 38

3.4. Transport properties determined by the ligand exchange conditions ... 40

3.5. Catalytic mechanism of the ligand exchange process ... 44

3.6. Conclusions ... 47

3.7. Experimental methods ... 48

(7)

4. Colloidal quantum dot inks for single-step-fabricated

field-effect transistors ... 53

4.1. Introduction ... 54

4.2. Ink formation and properties ... 54

4.3. Ink-based FETs ... 57

4.4. Effect of post-deposition washing... 59

4.5. Conclusion ... 63

4.6. Experimental methods ... 63

4.7. References ... 65

4.8. Appendix ... 67

5. Stoichiometric control of the density of states in PbS colloidal quantum dot solids ... 69

5.1. Introduction ... 70

5.2. Chemically controlled stoichiometry in PbS CQD solids ... 71

5.3. Stoichiometry-dependent transport properties ... 75

5.4. Electrolyte-gated transport properties ... 77

5.5. Evaluation of the results... 79

5.6. Conclusions ... 80

5.7. Experimental Methods ... 81

5.8. References ... 85

6. Electron mobility above 24 cm2 /Vs in PbSe colloidal quantum dot superlattices ... 87

6.1. Introduction ... 88

6.2. Nanostructure of PbSe CQD superlattices ... 89

6.3. Electrical transport in PbSe CQD superlattice FETs ... 95

6.4. Conclusions ... 100 6.5. Experimental methods ... 100 6.6. References ... 104 6.7. Appendix ... 106 Summary ... 109 Samenvatting ... 111

Referenties

GERELATEERDE DOCUMENTEN

Deze begrippen zijn, waaronder GDA, open geformuleerd en kunnen hierdoor verschillend worden geïnterpreteerd door de AIVD, haar toezichthouders en de politiek.. Deze begrippen

Waar respondenten aangeven de hoogte van de afvalstoffenheffing van belang te vinden en melden graag meer mogelijkheden tot subsidie hierop te zien, vormt dit voor de

length FET prepared using EDA; (e) transfer curves of a 2 μm channel length FET prepared using EDA, showing stable slope, but shifting intercept upon multiple scans; (f) statistics

Such flexibility in the properties is only achievable in nanostructured materials with large surface are, demonstrating the relevance of CQD solids is designing electronic

Voor vaste stoffen uit CQD’s zijn liganduitwisseling vanuit vloeistof en blade coating (een depositietechniek waarbij inkt wordt uitgespreid over een substraat

JSAP International Meeting, March 2017, Yokohama, Japan: Stoichiometric control of the density of states in PbS colloidal quantum dot solids. Next-Gen III: PV Materials, July

8 Charge carrier mobility around 10 -4 cm 2/ Vs for holes and 10 -2 cm 2 /Vs for electrons, and current modulation (on/off ratio) around 10 3 has been reported in lead-sulfide

Colloidal quantum dots are superior to bulk semiconductors in flexibility of tuning the optical and electronic properties, for example electronic structure engineering is