• No results found

University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan"

Copied!
77
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sambathkumar, R. (2017). Development of MAPC derived induced endodermal progenitors: Generation of pancreatic beta cells and hepatocytes. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

 

 

 

Chapter  1  

 

 

 

 

   General  Introduction  and  Background  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

General  Introduction  and  background   1.1.  Pancreas  structure  and  function  

The  pancreas  is  a  glandular  digestive  and  endocrine  organ.  It  is  about  15  cm  long  and   located  across  the  back  of  the  upper  left  abdomen,  behind  the  stomach.  The  head  of   the  pancreas,  on  the  right  side  of  the  abdomen,  is  connected  to  the  duodenum  via   the   pancreatic   duct.   The   tail   of   the   pancreas   extends   to   the   left   side   of   the   body   abutting  the  spleen.  The  pancreas  has  both  exocrine  and  endocrine  functions.  The   exocrine  pancreas  comprises  of  acinar  cells  that  produce  multiple  digestive  enzymes   such  as  proteases,  lipases,  amylases,  and  nucleases.  These  secretary  cells  surround   the   intercalated   ductal   cells.   Acinar   cells   contain   small   granules   of   zymogens   (inactive  proenzymes).  Once  released  in  the  duodenum,  the  zymogens  are  activated   by   enteropeptidases,   which   cleave   the   zymogens   creating   active   enzymes,   such   as   trypsin   and   chymotrypsin.   A   highly   branched   ductal   epithelial   network   transports   zymogens   and   bicarbonate   ions   into   the   intestine   for   digestion   of   food.   The   endocrine   pancreas   consists   of   five   different   cell   types   namely   alpha   (α),   beta   (β),   delta  (δ),  pancreatic  polypeptide  (PPY)  and  epsilon  (ε)  cells,  which  produce  glucagon   (GCG),   insulin   (INS),   somatostatin   (SST),   PPY,   and   ghrelin   (GHRL),   respectively.   Endocrine  cells  exist  in  clusters  of  cells  called  “Islets  of  Langerhans”.  β-­‐cells  form  the   core   of   the   islet   and   are   surrounded   by   the   other   endocrine   cells.   Within   human   islets,  60-­‐80%  of  the  cells  are  INS  producing  β-­‐cells,  15-­‐20%  GCG-­‐producing  α-­‐  cells,   and   5-­‐10%   SST-­‐producing   δ-­‐cells.   Approximately   1   million   islets   of   Langerhans   are   present  in  the  pancreas  and  each  islet  contains  100-­‐3000  cells  [1](Fig.1).  Endocrine   islet  clusters  are  scattered  throughout  the  exocrine  and  ductal  compartment  of  the   pancreas.   Endocrine   cells   are   in   close   contact   with   endothelial   cells   [2].   β-­‐cells   produce  INS  when  blood  glucose  levels  increase  after  a  meal.  INS  allows  transport  of   blood  glucose  into  the  liver,  muscle,  and  fat  tissue.  INS  inhibits  glycogenolysis  and   beta-­‐oxidation   of   fatty   acids   in   the   liver,   but   increases   glycogen   storage,   increases   fatty   acids   and   cholesterol   biosynthesis.   When   blood   glucose   levels   are   low,   e.g.   during  fasting,  α-­‐cells  produce  GCG,  which  promotes  liver  glycogenolysis  and  beta-­‐ oxidation   of   fatty   acids   into   glucose   [3].   The   other   islet   hormones,   SST,   PPY   and  

(4)

GHRL,   regulate   the   endocrine   alpha   and   β-­‐cell   function.   SST   is   a   neuroendocrine   hormone   that   regulates   secretion   of   growth   hormone   and   thyroid   stimulating   hormone.  It  may  acts  as  a  neurotransmitter  in  the  nervous  system.  In  the  pancreas,   SST  inhibits  the  secretion  of  GCG  from  α-­‐cells  and  INS  from  β-­‐cells  during  excessive   hormone   production.   In   the   gastrointestinal   tract,   it   inhibits   the   secretion   of   gastrointestinal  hormones  including  gastrin  and  secretin.  Excessive  SST  levels  can  be   found   in   patients   with   an   endocrine   tumor,   a   “somatostatinoma”   [4].   PPY,   a   36   amino  acids  polypeptide,  is  induced  upon  exercise,  fasting  and  acute  hypoglycemia   [5].  The  vagal  nerve  is  a  major  stimulator  of  PPY  secretion.  PPY  secretion  is  absent  in   obese  children  with  Prader-­‐Willi  syndrome  [6].  Finally,  GHRL  is  produced  by  ε-­‐cells.   GHRL   is   an   appetite-­‐promoting   peptide.   This   hormone   inhibits   INS   secretion   and   stimulates  GCG  production  cells  during  fasting  and  hypoglycemia  [7].    

         

Figure  1:    The  Pancreas  structure  contains  exocrine  and  endocrine  cells  a)  the  adult  mature  pancreas   located  next  to  duodenum  and  most  anterior  part  of  small  intestine.  b)  The  function  of  exocrine  cells   –  (acinar  cells)  is  to  supply  digestive  enzymes,  which  are  transported  to  the  intestine  via  pancreatic   ductal  cells.  c)  The  endocrine  pancreas  consists  of  ‘’Islets  of  Langerhans’’.  Each  islet  cluster  consists  of   five  hormone-­‐producing  cells  present:    α-­‐,  β-­‐,  δ-­‐  and  pancreatic  polypeptide  (PP)  cells.  α-­‐cells  (red)   secrete  glucagon  and  make  up  15–20%  of  the  endocrine  pancreas.  β-­‐cells  (green)  secrete  insulin  and   make  up  60–80%  of  the  endocrine  pancreas.  δ-­‐cells  (yellow)  secrete  somatostatin  and  make  up  5– 10%   of   the   endocrine   pancreas,   whereas   PP   cells   (blue)   secrete   PP   and   make   up   less   than   2%   and   epsilon  (ε)  cells  occupy  less  than  1%  of  the  endocrine  pancreas  (adapted  from  Helena  Edlund  et  al.,   Nature  Review  Genetics,  2002)[3].  (Figure  and  Legend  reproduced  with  permission  of  the  copyright   holder,  Nature  Publishing  Group).  

1.1.1.  Diabetes  mellitus:  types,  signs,  symptoms  and  complications    

Diabetes  mellitus  (DM)  is  a  chronic  disease  characterized  by  elevated  levels  of  blood   glucose.   The   International   Diabetes   Federation   (IDF)   estimated   that   387   million   people  were  affected  with  DM  worldwide,  in  2014,  and  55  million  people  in  Europe.  

(5)

In  2035,  the  number  of  people  with  DM  is  predicted  to  reach  >  592  million  patients   [8].  Generally,  DM  is  divided  into  two  major  types,  Type  1  and  Type  2  diabetes.     Type  1  diabetes  (T1D)  is  caused  by  an  autoimmune  attack  against  β-­‐cells.  Once  the   islet  mass  decreases  to  20%  of  normal,  patients  become  insulin  dependent  and  need   to  have  insulin  injections  to  control  blood  glucose  levels.  T1D  is  more  prevalent  in   children   or   young   adults   [9].   Pathologically,   the   islets   T1D   display   insulitis,   i.e.   inflammatory   cell   infiltration   resulting   in   β-­‐cell   destruction.   CD8-­‐T   cells   are   found   predominantly  in  islets  of  T1D  patients,  with  as  well  as  macrophages,  CD4-­‐T  cells,  B-­‐ lymphocytes,  plasma  cells,  forkhead  box  P3  (FOXP3)  regulatory  T  cells,  and  natural   killer   cells.   The   result   is   necrosis   and   apoptosis   of   β-­‐cells   and   reduced   insulin   secretion  [10].    

Type-­‐2  diabetes  (T2D)  is  also  termed  non-­‐insulin  dependent  DM  or  adult  onset  DM.   T2D   is   characterized   by   insulin   resistance,   due   to   decreased   sensitivity   of   liver,   muscle  and  fat  cells  to  insulin,  leading  to  decreased  glucose  uptake.  This  results  in   hyperglycemia   due   to   relative   insulin   deficiency.   At   later   stages   the   persistent   hyperglycemia   can   cause   loss   of   the   β-­‐cell   mass.   People   with   T2D   initially   manage   with  exercise  and  diet.  However,  in  later  stages,  once  the  β-­‐cell  mass  decreases,  they   may  become  insulin  dependent.    

Other   forms   of   diabetes   occur   during   pregnancy,   termed   gestational   diabetes   (GDM),  which  is  found  in  1/25  pregnancies  and  can  be  associated  with  complications   for  both  the  mother  and  baby.  High  blood  glucose  concentrations  can  damage  the   fetal  organs,  and  as  babies  are  commonly  overweight,  this  can  cause  problems  with   child  delivery.  Gestational  diabetes  usually  disappears  after  pregnancy  [11].  Other,   rare  forms  of  diabetes  are  listed  in  table-­‐1.    

Signs   and   symptoms   of   DM   include   frequent   urination,   excessive   thirst,   increased   hunger,  blurred  vision,  and  weight  loss.  These  signs  and  symptoms  are  more  sudden   and  dramatic  in  T1D  but  in  the  T2D  they  are  often  very  mild  or  absent  [11].    People   with   DM   have   an   increased   risk   of   developing   a   number   of   serious   health   complications,  including  infections,  cardiovascular  diseases  (cardiac  ischemia,  stroke,  

(6)

peripheral   vascular   disease),   diabetic   retinopathy,   kidney   failure,   and   peripheral   nerve   disease   (PND).   Maintaining   blood   glucose   levels,   blood   pressure,   and   cholesterol   as   close   to   normal   as   possible   can   prevent   diabetes   complications.   Normal  fasting  blood  glucose  concentrations  are  70-­‐99mg/dL  and  after  a  meal  they   range   between   120-­‐140mg/dL.   The   diagnosis   of   DM   is   made   when   fasting   blood   glucose  are  above  100mg/dL  to  125mg/dL  and  post  meal  higher  than  140mg/dL  to   200mg/dL.  The  glycated  haemoglobin-­‐A1C  (HA1C)  test  is  a  standard  biomarker  used   for   diagnosis   of   chronic   hyperglycemia,   as   it   reflects   average   blood   glucose   levels   over   a   2-­‐3   month   period   of   time   and   correlates   with   microvascular   and   to   lesser   extent   macrovascular   complications.   HA1C   value   ≥   6.5%   is   the   threshold   for   diagnosis   for   DM.   This   test   is   an   important   factor   in   the   management   of   patients   with  diabetes  [11].      

Table-­‐1  Etiologic  classification  of  DM  [11].       S.no   Types  of  diabetes   Cause  and  Subtypes  

1   Type  1  diabetes   β-­‐cell  destruction,  leads  to  insulin  deficiency  

a)  immune-­‐mediated  

b)  Idiopathic  

2   Type  2  diabetes   Insulin   resistance   with   relative   insulin   deficiency   to   secretory  defect  

3   Gestational  diabetes     4   Genetic   defects   β-­‐cell  

function   a)Maturity   Onset   Diabetes   of   the   Young   (MODY)-­‐3:(chromosome-­‐12,  hepatocyte  nuclear  factor-­‐1  alpha  (HNF-­‐ 1α))    

b)   MODY-­‐1:(chromosome   20,   hepatocyte   nuclear   factor-­‐4   alpha  (HNF-­‐4α))  

c)  MODY-­‐2:  (chromosome  7,  glucokinase-­‐(GCK))    

d)   Other   rare   forms   of   MODY-­‐4   (chromosome   13,   insulin   promoter   factor-­‐1   (IPF1)),   MODY-­‐6   (Chromosome   2,   Neuronal   differentiation   1   (NEUROD1),     MODY-­‐7   (chromosome  9,  carboxyl  ester  lipase-­‐(CEL))  

e)Transient   neonatal   diabetes   (TND)-­‐   zinc   finger   protein   associated   with   apoptosis   and   cell   cycle   arrest   (ZAC)/   imprinted  in  hydatidiform  mole  (HYAMI)  imprinting  defect  

f)   Permanent   neonatal   diabetes-­‐   the   ATP-­‐sensitive   K+   channel KCNJ1  gene  encoding  kIR6.2  of  β-­‐cell  KATP  channel  

g)  Mitochondrial  deoxyribonucleic  acid  (DNA),  

h)  others-­‐Mutation  on  insulin  gene.  

5   Genetic   defects   in  

insulin  action   Type   A   insulin   resistance,   Leprechaunism,   Rabson-­‐Mendenhall  syndrome,  Lipoatropic  diabetes  ,  others    

   

(7)

6   Endocrinopathies   Several   growth   hormones   like   cortisol,   glucagon,   epinephrine   antagonize   insulin   action.   Acromegaly,     Cushing’s   syndrome,   Glucagonoma,   Pheochromocytoma,     hyperthyroidism,  somatostainoma,    Aldosteronoma,    Others  

7   Drug   or   chemical  

induced   Vacor,  Pentamidine,  Nicotinic  acid,  Glucocorticoids,  thyroid  hormone,   Diazoxide,   β-­‐Adrenergic   agonists,   Thiazides,   Dilantin,  gamma-­‐interferon  ,  others  

8   Infections   Cogenital  rubella,  Cytomegalovirus,  Others   9   Uncommon   forms   of  

immune   mediated   diabetes  

 “Stiff-­‐man””  syndrome  b)  Anti-­‐insulin  receptor  antibodies  c)   Others  

10   Other   genetic   syndromes   associated   with  diabetes  

Down   syndrome,   Klinefelter   syndrome,   Turner   syndrome,   Wolfram   syndrome,   Friedreich   ataxia,   Huntington   chorea,   Laurence-­‐Moon-­‐Biedl   syndrome,   Myotonic   dystrophy,   Porphyria,  Prader-­‐Willi  sundrome,  Others  

11   Diseases   of   the  

exocrine  pancreas   Pancreatitis,   Trauma/Pancreatectomy,   Neoplasia,   Cystic  fibrosis,   Hemochromatosis,   Fibracalculous   pancreatopathy,   Others  

1.1.2.  Current  treatment  for  diabetes  mellitus  

The  discovery  of  insulin  in  1921-­‐22  was  a  major  breakthrough  in  the  treatment  of   T1D.   However,   multiple   daily   insulin   injections   do   not   provide   perfect   metabolic   regulation.   This   has   been   significantly   improved   over   the   last   years,   thanks   to   the   development  of  insulin  pumps  combined  with  continuous  glucose  monitoring,  with   computer  algorithms  or  integrated  closed  loop  systems  that  can  more  finely  regulate   insulin   administration   in   response   to   blood   glucose   levels   [12,   13].   Nevertheless,   despite  these  advances,  complications  of  hypo-­‐  and  hyperglycemia  eventually  ensue.   T1D  management  may  also  include  the  use  of  insulin  analogues  (Incretins,  Glucagon-­‐ like   peptide-­‐1   (GLP1),   and   Leptin)   and  pramlintide  or   amylin  (a  37-­‐residue  peptide   hormone   that   delays   gastric   emptying,   inhibits   glucagon   secretion;   averting   postprandial  increases  in  blood  glucose  levels).    

For  T2D  diabetes,  before  exhaustion  of  the  β-­‐cell  pool,  patients  can  be  treated  with   Metformin,   which   augments   insulin   release;   2-­‐Sulphonylureas,   which   increases   insulin   sensitivity;   Bromocriptine,   which   antagonizes   dopamine   D2   and   serotonin   receptors;   GLP1   analogues,   Alpha-­‐glucosidae   inhibitors,   Dipeptidyl   peptidase   4   (DPP4)  inhibitors;  or  Sodium  dependent  glucose  cotransporter  2  (SGLT2)  inhibitors   [10,  14].    

(8)

The   most   physiological   method   of   achieving   normoglycemia   without   the   risk   of   hypoglycemia  in  T1D  patients  is  to  restore  the  β-­‐cell  pool.  This  can  be  achieved  by   whole-­‐pancreas   transplantation.   This   improves   the   metabolic   control   of   blood   glucose   without   the   need   of   exogenous   insulin   and   can   lead   to   long-­‐term   insulin   independence   [15].   The   major   limitations   associated   with   this   therapy   are   the   shortage  of  organs,  the  invasiveness,  toxicity  of  immunosuppression  regimens,  risk   of  immunorejection,  and  nephrotoxic  side  effects  of  the  immunosuppressive  drugs   [16].   Also   the   procedure   is   associated   with   major   surgery   and   high   morbidity.   For   that   reason   transplantation   of   only   the   islets   is   preferred.   This   can   occur   via   the   Edmonton  protocol  developed  by  the  Shapiro  group  [17,  18].  This  approach  is  less   invasive  as  islets  retrieved  from  donor  pancreata  can  be  infused  into  portal  system,   where  they  survive  long-­‐term  in  the  liver  sinusoids.  Long-­‐term  insulin  independence   was  achieved  following  islet  transplantation  in  selected  T1D  recipients.  However  to   reach  sustained  metabolic  control  for  one  year,  at  least  2  million  β-­‐cells/kg  of  body   weight  are  needed,  which  requires  2-­‐3  donor  pancreata.  After  5  years,  only  20%  of   transplanted  patients  maintained  a  functioning  graft.  One  drawback  remains  the  loss   of  high  amounts  of  islets  (up  to  80%)  in  the  immediate  period  after  transplantation   due   to   the   instant   blood   mediated   reaction   but   also   graft   rejection   and   recurrent   autoimmunity  are  an  issue  [17-­‐19].  To  overcome  the  problem  of  graft  rejection  and   recurrent  autoimmunity,  methods  have  been  developed  for  immunoisolation  of  β-­‐ cells,   by   encapsulation   in   a   biomaterial   that   can   protect   the   graft   from   immune   attacks   [20].   However,   this   approach   does   not   protect   the   graft   from   cytokine   induced  β-­‐cell  stress  [21-­‐27].  Despite  this  periods  of  graft  survival  up  to  years  have   been  reported.  This  technology  of  encapsulation  also  holds  the  promise  of  the  use  of   alternative  sources  for  islets  such  as  the  use  of  xenogeneic  sources  or  stem  cells  to   alleviate  the  shortage  of  human  islets  [28].      

1.1.3.  Rationale  for  creation  of  β-­‐cells  from  stem  cells  

The   limited   number   of   available   donor   organs   as   well   as   the   immunological   issues   restricts  current  treatments  such  as  whole  pancreas  or  islet  transplantation  for  T1D.   An  alternative  source  for  human  cadaveric  islets  would  be  to  generate  INS-­‐producing   β-­‐cells  from  stem  cells.  Over  the  last  decade  generation  of  functional  pancreatic  β-­‐

(9)

cells  from  human  embryonic  stem  cells  (hESC)  and  human  induced  pluripotent  stem   cells   (hiPSC)   has   become   possible,   using   methods   mimicking   in   vivo   pancreatic   development   [29-­‐32].   However,   differentiation   from   adult   human   bone   marrow   (BM)  mesenchymal  stem  cells  and  human  MAPCs  is  not  possible.  However,  the  low   risk  for  tumorigenesis  associated  with  adult  stem  cells  (ASCs)  make  them  a  favorable   choice.  To  extend  the  use  of  ASCs,  many  groups  are  evaluating  whether  it  is  possible   to  extend  their  tissue  restricted  differentiation  ability  to  also  generate  β-­‐cells.  

1.2  Liver  structure  and  function  

The  liver  is  the  second  largest  organ  in  the  human  body,  located  in  the  upper  right   portion   of   the   abdominal   cavity,   beneath   the   diaphragm.   The   liver   has   multiple   functions  including  metabolization  of  glucose,  lipids,  proteins  and  amino  acids,  and   detoxification   of   xenobiotics   such   as   drugs,   alcohol   and   toxins   as   well   as   urea   production.  The  liver  also  produces  and  secretes  bile,  and  plasma  proteins,  such  as   clotting  factors  and  albumin  and  stores  vitamins  A,  D,  E,  K  and  B12  [33].  The  liver  is   composed   of   parenchymal   and   non-­‐parenchymal   cells.   Parenchymal   cells   are   represented  by  the  hepatocytes  and  the  non-­‐parenchymal  cells  by  biliary  epithelial   cells   (BEC)   or   cholangiocytes,   kupffer   cells   (KCs),   liver   sinusoidal   endothelial   cells   (LSEC),  hepatic  stellate  cells  (HSCs),  and  pit  cells  (intrahepatic  lymphocytes  or  natural   killer  cells).  The  Internal  structure  of  the  liver  is  made  up  of  around  100,000  small   hexagonal  functional  units  known  as  lobules.  Each  lobule  consists  of  a  central  vein,   which  is  surrounded  by  6  hepatic  portal  veins,  combined  with  a  hepatic  artery  and  a   hepatic  bile  duct  at  each  of  the  six  corners  of  the  lobule,  known  as  the  portal  triad   (Fig.2).   The   portal   vein   and   hepatic   artery   supply   blood   to   each   lobule.   The   portal   vein   receives   partially   deoxygenated   nutrient   rich   blood   from   the   stomach,   duodenum,   gall   bladder,   pancreas,   spleen   and   small   intestine.   The   hepatic   artery   receives  oxygenated  blood  from  the  dorsal  aorta.  These  blood  vessels  are  connected   by   a   series   of   capillary   like   tubes,   called   sinusoids,   which   extend   from   the   portal   veins  and  arteries  to  meet  in  the  central  vein  from  which  nutrients  are  taken  up  by   the   hepatocytes   and   xenobiotics   are   detoxified.   The   blood   leaving   the   liver   tissue   collects  into  the  hepatic  veins  that  lead  to  the  vena  cava  and  returns  to  the  heart.   The   liver   cell   plate   consists   of   15-­‐25   hepatocytes   organized   alongside   a   sinusoidal  

(10)

capillary   from   the   portal   triad   to   the   central   vein   [34,   35].   Bile   secreted   by   the   hepatocytes   is   collected   in   the   gall   bladder,   and   secreted   in   the   duodenum   for   digestion   of   fats.   Putative   hepatic   progenitors   cells   (HPCs)   reside   in   the   Canals   of   Herring  present  between  the  peripheral  branches  of  bile  duct  and  hepatocytes.  They   are  considered  a  source  of  hepatic  progenitors  that,  upon  severe  (>80%)  damage  of   the   liver,   can   differentiate   into   hepatoblasts   and   subsequently   into   hepatocyte   or   cholongiocytes,   [34,   36-­‐38].  The   hepatic   progenitors   cell   niche   consists     of   LSECs,  

KCs,  HSCs,  pit  cells,  and  other  inflammatory  cells  that  produce  hormones  and  growth   factors  that  induce  HPC  proliferation  and  differentiation.      

  Figure  2:    Schematic  overview  of  liver  lobule  structure  a)  Structure  of  a  portion  of  liver  lobule[35]  b)   the  portal  triad  includes  the  portal  vein,  hepatic  artery,  and  bile  ducts.  Blood  from  the  portal  vein  and   the   hepatic   artery   flows   toward   the   central   vein   between   the   hepatocytes   through   the   sinusoids   surrounded  by  fenestrated  liver  sinusoidal  endothelial  cells  (LSECs).  Bile  produced  by  hepatocytes  is   collected  into  bile  ducts   via  the  bile  canaliculi.  Kupffer  cells,  resident  macrophages  of  the  liver,  are   located   at   the   luminal   side   of   sinusoids,   while   hepatic   stellate   cells   (HSCs)   are   positioned   in   close   proximity  to  LSECs  at  the  ‘‘space  of  Disse,’’  a  location  between  hepatocytes  and  a  sinusoid.  The  canal   of  Herring  is  the  junctional  region  between  hepatocytes  and  bile  ducts  (Adapted  from  Karim  Si-­‐Tayeb   et  al.  Developmental  Cell,  2010  [3]  and  Atsushi  Miyajima  et  al.  Cell  Stem  Cell,  2014)[34]  (Figure  and   legend  reproduced  with  permission  of  the  copyright  holder,  Elsevier).  

1.2.1  Parenchymal  liver  cells:  Hepatocytes    

Hepatocytes   are   polarized   parenchymal   epithelial   cells   with   cuboidal   or   polygonal   shape,  which  form  the  liver  cell  plate.  They  represent  60%  of  all  liver  cells  and  80%  of   the  liver  volume.  They  regulate  most  of  the  biochemical  and  metabolic  functions  of   the  liver.  Most  hepatocytes  have  a  single  nucleus,  but  binucleated  cells  are  common.   Hepatocytes  contain  large  numbers  of  mitochondria,  lysosomes  and  peroxisomes  for   metabolic   and   detoxification   functions.   Approximately   15%   of   the   hepatocyte   volume   consists   of   smooth   and   rough   endoplasmic   reticulum   (SER/RER).   K.  

(11)

Jungermann  et  al.,  demonstrated  that  the  function  of  hepatocytes  depends  on  their   position   along   the   periportal   to   central   vein   axis,   a   concept   named   liver   zonation   [39].  Zone  1  (periportal  (PP)  region)  comprises  6  to  8  hepatocytes  where  oxygenated   blood   enters.   Consequently,   periportal   hepatocytes   display   oxidative   metabolism   (carbohydrates,   lipids   and   aminoacids,   fatty   acids),   gluconeogenesis   and   glycogen   synthesis   from   lactate   or   dietary   products,   urea   synthesis,   cholesterol   and   lipid   biosynthesis,   and   albumin   and   blood   clotting   factors   production.   Zone   3   (centrilobular   or   perivenous   (PV)   region)   comprises   of   2-­‐3   hepatocytes   located   around   the   central   veins,   where   oxygenation   is   poor.   Consequently,   perivenous   hepatocytes   display   different   functions   than   periportal   hepatocytes,   including   glycolysis,  lipogenesis  and  ketogenesis,  glutamine  synthesis,  bile  acid  synthesis,  and   xenobiotic   metabolism   by   cytochrome   p450   enzymes   as   well   as   monooxygenases   (Fig.  3).  Zone  2  (midlobular  region)  comprises  of  6-­‐10  hepatocytes  located  between   zone   1   and   zone   3   that   have   mixed   functions   [40,   41].   Maturation   of   hepatocytes   begins   from   the   periportal   zone   and   moves   across   the   liver   plate   towards   the   perivenous  zone.  Regardless  of  their  position,  all  hepatocytes  can  self-­‐renew  for  liver   homeostasis  and  to  repopulate  the  pool  of  cells  upon  minor  hepatocyte  injury  or  loss   [42].                

Figure  3:  The  structure  and  function  of  a  zonated  liver  lobule.  a)  The  liver  cell  plate  blood  circulation   indicated  in  red  moves  from  the  PP  region  to  the  PV  region,  and  bile  flow  indicated  in  green  moves   from  the  PV  region  to  the  PP,  in  opposite  direction  to  the  blood.  Oxygen  and  hormone  concentrations   decrease  from  the  PP  to  the  PV  area  (Adapted  from  book  chapter-­‐2,  Liver  Zonation,  Sabine  colnet  &   Christine  Perret,  2011)[41].  b)  Liver  functions  are  zonated:  PP  hepatocytes  display  β-­‐oxidation  of  fatty   acids,  and  gluconeogenesis  while  glycolysis,  lipogenesis,  ketogenesis,  triglyceride  synthesis  are  typical   for  PV  hepatocytes  (Adapted  from  Birchmeier  et  al,  Nature  cell  biology,  2016)[43].  (Figure  and  legend   reproduced  with  permission  of  the  copyright  holder,  Springer  publishing  group  and  Nature  publishing   group).  

(12)

However,  a  recent  study  by  Wang  et  al.,  using  lineage  tracing  for  Wnt  and  Axin-­‐2  in   mice  suggested  that  proliferating  and  self-­‐renewing  hepatocytes  can  be  found  in  the   PV   region   of   the   liver   lobule.   Perivenous   hepatocytes   are   diploid   and   express   the   hepatic  stem  cell  marker  Tbx3,  whereas  mature  hepatocytes  are  polyploid  and  are   Tbx3  negative.  They  further  demonstrated  that  central  vein  endothelial  cells  secrete   Wnt   proteins   that   provide   the   niche   to   maintain   the   PV   cells   proliferative,   whose   descendants  can  replenish  40%  liver  cell  mass  in  normal  conditions  (Fig.4)[44].  

             

Figure  4:  Perivenous  hepatocytes  can  contribute  to  everyday  liver  regeneration.  The  endothelial  cell   lining  of  the  central  vein  produces  Wnt  signals  that  activate  the  expression  of  Wnt  responsive  genes   in  adjacent  PV  hepatocytes.  Wang  et  al.  [44].  reported  that  these  signals  stimulate  the  proliferation  of   PV  hepatocytes.  The  cells  give  rise  to  descendants  that  reside  beyond  the  reach  of  Wnt  signals,  and   that  replicate  more  slowly  than  their  parents  (some  of  the  descendants  have  more  than  one  nucleus).  

In  this  way,  perivenous  hepatocytes  contribute  to  the  maintenance  of  liver  mass.  (Adapted  from  Zaret  

et   al.   Nature,   2015   [45]).   (Figure   and   Legend   reproduced   with   permission   of   the   copyright   holder,   Nature  Publishing  Group).  

1.2.2  Non-­‐parenchymal  liver  cells    

The  non-­‐parenchymal  fraction  represents  40%  of  the  total  number  of  liver  cells  and   occupies   6.5%   of   the   liver   volume,   while   the   remaining   13.5%   of   the   liver   volume   consists  of  vascular  and  ductular  networks.  The  non-­‐parenchymal  cells  include  bile   duct  epithelial  cells  or  cholangiocytes,  LSECs,  HSCs,  KCs  and  Pit  cells.  These  cells  play   important  roles  in  the  regulation  of  hepatocyte  proliferation  and  function,  including   growth  factor  production,  transport  and  metabolism,  scavenging  of  foreign  material,   storage  of  extracellular  matrix,  vitamins  and  fats,  and  inflammation  responses  [46].    

(13)

1.2.3  Biliary  Epithelial  ductal  tree  or  cholangiocytes  

Tight   junctions   formed   between   hepatocytes   create   microscopic   bile   canaliculi.   Several   bile   canaliculi   combine   to   form   larger   bile   ducts   forming   the   left   and   right   intrahepatic  bile  duct  tree  found  throughout  the  liver.  This  bile  duct  trees  collect  bile   from  the  different  liver  lobes  and  join  together  to  form  the  extra  hepatic  bile  ducts   consisting  of  the  common  hepatic  ducts,  gall  bladder,  cystic  duct,  bile  duct,  and  the   common   hepato-­‐pancreatic   duct,   which   reaches   the   duodenum.   Most   of   the   bile   produced  by  the  liver  is  stored  in  the  gall  bladder,  until  it  is  needed  for  digestion.  The   bile  duct  trees  are  formed  by  cholangiocytes  [47].  Intrahepatic  bile  ducts  consist  of   small   and   large   cholangiocytes.   Small   cholongiocytes   are   considered   committed   biliary   progenitors.   They   have   a   cuboidal   morphology,   a   relatively   high   nucleus   to   cytoplasm   ratio,   and   express   more   cell   proliferation   genes.   By   contrast,   large   cholongiocytes   have   a   columnar   morphology,   a   low   nucleus   to   cytoplasm   ratio,   abundant   Golgi   and   RER,   and   express   functional   mature   genes.   A   large   number   of   perbilliary   (PB)   glands   are   found   within   the   duct   wall   of   intra-­‐   and   extra-­‐hepatic,   cystic,   and   the   common   hepato-­‐pancreatic   ducts   (Fig.5).   They   contain   multipotent   stem   and   progenitor   cells   in   humans   of   all   ages   [48],   which   self-­‐replicate   and   can   differentiate  into  hepatocytes  and  cholangiocytes  or  pancreatic  islets  depending  on   the  niche  microenvironment  [47].  

               

(14)

             

Figure  5:    Schematic  overview  of  stem  cell  niches  in  the  intrahepatic  and  extrahepatic  biliary  tree.   Stem  cell  niches  within  the  liver  are  located  in  the  Canals  of  Herring  (red  circles).  Hepatic  stem  cells   are  precursors  to  hepatoblasts,  which  are  presumed  to  be  the  transit  amplifying  cells  that  first  give   rise  to  committed  progenitors,  and  then  to  hepatocytes  and  cholongiocytes.  Perbilliary  glands  contain   stem  cell  niches  within  the  biliary  tree  (blue  circles).  These  glands  are  along  the  biliary  tree  from  the   hepatopancreatic   common   duct   near   the   duodenum   up   to   the   septal   ducts.   High   numbers   of   peribiliary  glands  occur  in  the  cystic  duct,  hilum  and  periampular  regions.  The  progenitor  and/or  stem   cells  within  peribiliary  glands  probably  act  as  sources  for  cell  turnover  of  the  entire  biliary  tree  distal   to   the   interlobular   bile   ducts.   (Adapted   from   Vincenzo   Cardinale   et   al.,   Nature   Reviews   Gastroenterology  and  Hepatology,  2012)[47]  (Figure  and  Legend  reproduced  with  permission  of  the   copyright  holder,  Nature  Publishing  Group).  

1.2.4.  Liver  diseases    

Liver   diseases   can   be   inherited   or   caused   by   a   variety   of   factors,   such   as   viruses,   drugs  or  alcohol.  They  are  extremely  costly  in  terms  of  human  suffering,  premature   loss  of  productivity  and  affect  millions  of  people  worldwide.  In  2013,  liver  cirrhosis   accounted   for   1.8%   of   all   deaths   (170,000   deaths   per   year)   and   liver   cancer   accounted   for   around   47,   000   deaths   in   Europe,   according   to   the   World   Health   Organization    (WHO).  Approximately,  29  million  people  in  the  European  union  suffer   from  chronic  liver  disease  [49].        

1.2.4.a.   Metabolic   liver   diseases:   Metabolic   diseases   are   characterized   by   a   deficiency   in   a   hepatic   enzyme   or   protein   leading   to   hepatic   and/or   extrahepatic   diseases   such   as:   Crigler   Najjar   syndrome   type   I   (CN1)   (lack   of   functional   uridine   diphosphate   glucuronosyltransferase   (UDPGFT)   enzyme);   urea   cycle   disorders   (deficiency   in   one   of   the   six   enzymes   of   the   urea   cycle);   familial   hypercholesterolaemia   (absence   of   the   low-­‐   density   lipoprotein   receptor   (LDLR));   α1-­‐antitrypsin  (A1AT)  deficiency  (caused  by  autosomal  recessive  disorder  caused  by  

(15)

mutations   in   the   A1AT   encoding   SERPINA1   gene;   retention   of     A1AT   misfolded   polymers   within   the   hepatic   ER   cause   hepatic   dysfunction);   familial   transthyretin   amyloidosis   (FTA),   caused   by   mutations   in   the   transthyretin-­‐encoding   gene   (TTR)   leading  to  secretion  of  monomeric  misfolded  TTR  proteins  by  the  liver  and  formation   of  extracellular  fibrils  as  amyloid  in  target  organs  in  the  brain  and  heart);    Wilson’s   Disease  (WD)  (caused  by  mutations  in  the  of  ATP7B  gene,  an  ATPase  expressed  in   hepatocytes   that   aids   in   excretion   of   copper   into   the   bile   and   blood   stream);   glycogen  storage  disease  type  I  (GSD1a)  (deficiency  of  the  hepatic  enzymes  glucose-­‐ 6-­‐phosphatase   or   the   glucose-­‐6-­‐phosphate   transporter   due   to   rare   autosomal   disorder   caused   by   mutations   in   G6PC   encoded   gene);   infantile   Refsum   disease   (reduced   peroxisome   function);   coagulation   factor   deficiencies,   like   hemophilia   A   (lack   of   factor   VIII)   and   hemophilia   B   (lack   of   factor   IX);   progressive   intrahepatic   cholestasis;  phenylketonuria  (deficiency  of  enzyme  phenylalanine  hydroxylase  (PAH);   tyrosinaemia   (deficiency   of   the   enzyme   fumarylacetoacetate   hydrolase   (FAH));     acute   intermittent   porphyria   (deficiency   of   the   hepatic   haemenzyme   porphobilinogen   (PBG)   deaminase;   maple   syrup   urine   disease   (accumulation   of   branched  chain  amino  acids  (BCAAs)  because  of  a  deficiency  of  the  enzyme  branched   chain  keto  acid  dehydrogenases  (BCKDH))[50-­‐52].  All  these  diseases  could  be  treated   by   transplantation   of   hepatocytes.   In   fact,   after   several   studies   in   mouse   models,   transplantation   of   adult   hepatocytes   has   been   used  relatively  successfully  in  these   settings  [50,  52,  53].    

1.2.4.b.   Acute   Liver   disease   (ALD):   is   characterized   by   rapid   decline   in   hepatic   synthetic   function   (loss   of   function   of   80-­‐90%   liver   cells),   with   significant   risk   of   mortality.  Nowadays,  treatments  are  largely  supportive.  An  alternative  is  the  use  of   bioartificial   liver   devices   (BAL),   in   which   the   patients   blood   or   plasma   is   perfused   through  an  extracorporeal  bioreactor  filled  with  hepatocytes  [54],  or  isolated  human   hepatocyte  transplantation[55].  Drug  induced  liver  injury  (DILI)  is  the  most  common   reason  for  pharmaceutical  drug  withdrawal  from  the  market.  DILI  accounts  for  50%   of  acute  liver  failure  [49].  

(16)

 

1.2.4.c.  Chronic  Liver  Disease  (CLD):  CLD  is  caused  by  viral  hepatitis,  alcoholic  liver   disease   or   non-­‐alcoholic   fatty   liver   disease   (NAFLD).   These   cause   hepatic   injury,   which   when   sustained   for   long   time,   leads   to   progressive   fibrosis,   cirrhosis   and   hepatocellular   carcinoma   (HCC).   In   the   chronic   stage,   there   is   infiltration   of   polymorphonuclear  leukocytes  in  the  liver,  with  focal  or  zonal  necrosis,  destruction   of   hepatocytes   and   architectural   disarray.   The   liver   is   susceptible   to   multiple   viral   infections,   including   Yellow   fever   virus,   Dengue   virus,   and   hepatitis   virus   A   -­‐   E,   of   which   B   (HBV)   and   C   (HCV)   are   major   causes   for   CLDs   and   HCC.   Alcoholic   liver   disease  occurs  after  long  periods  of  alcohol  abuse,  whereas  and  Non-­‐Alcoholic  liver   diseases   (NALD)   is   a   term   that   includes   several   phenotypes   ranging   from   simple   steatosis   (deposition   of   fat   in   the   hepatocytes)   to   non-­‐alcoholic   steatohepatitis,   progressive   fibrosis,   cirrhosis   and   HCC.   HCC   accounts   for   70-­‐90%   of   primary   liver   cancers.   HCC   is   rapidly   fatal   without   any   treatment   with   5-­‐year   survival   rates   of   around  5%  [49,  56,  57].  

1.2.4.d.  Liver  regeneration  and  transplantation  

It  is  well  known  that  the  liver  has  a  high  regenerative  capacity.    The  first  response,  if   damage   is   limited,   is   re-­‐entry   of   quiescent   hepatocytes   into   the   cell   cycle,   and   replacement   of   the   damaged   and   lost   hepatocytes.   When   hepatocyte   loss   is   more   profound   or   when   hepatocyte   proliferation   is   impaired   due   to   infection,   HPCs   present  in  the  “canals  of  Herring”,  biliary  tree  stem  cells  in  the  perbiliary  glands  of   the   intra-­‐   and   extra-­‐hepatic   biliary   ducts,   or   cholongiocytes   (SOX9+,   keratin-­‐19   (KRT19),   epithelial   cell   adhesion   molecule   (EPCAM),   CD133-­‐prominin   positive   cells)   are   activated   and   differentiate   into   hepatocytes   and   cholongiocytes   [34,   47,   58].   When  both  repair  systems  are  exhausted,  acute  and/or  chronic  liver  failure  ensues.   The  only  cure  is  orthotropic  liver  transplantation  of  which  >5,500  are  performed  in   Europe   per   year,   with   a   survival   rate   of   83%   after   one   year.   Major   imitations   are   shortage  of  organs,  adverse  effects  due  to  long-­‐term  immunosuppression,  and  graft   rejection.    

(17)

1.2.5.  Use  of  hepatocytes  in  the  pharmaceutical  industry  

As  discussed  above,  DILI  accounts  for  50%  of  the  acute  liver  failure.  One  reason  for   DILI   to   occur   is   that   preclinical   drug   testing   uses   animal   models   that   do   not   fully   mimic  the  physiology  and  function  of  the  human  liver,  due  to  species  difference  in,   for   instance,   drug   metabolization   gene   expression.   Therefore,   there   is   a   need   for   mature  human  hepatocytes  for  predicting  drug  toxicity  and  bioavailability.  Currently,   freshly   isolated   primary   hepatocytes   (PHH)   or   cryopreserved   PHHs   are   used   for   testing   drug   metabolism   and   toxicity,   because   they   express   the   complete   set   of   phase  1  and  phase  2  metabolization  enzymes  (e.g  cytochrome  P450  (CYPs))  and  drug   transporters  (e.g.  organic  anionin  polypepetide  1B1  (OATPB1),  Na+-­‐  taurocholate  co-­‐ transporting   polypeptide   (NTCP),   bile   salt   export   pump   (BSEP),   and   multidrug   resistance  protein  -­‐2  (MRP-­‐2)  involved  in  hepatic  drug  clearance  [59,  60].    

However,  PHH  de-­‐differentiate  very  fast  in  culture  with  loss  of  metabolic  enzymes   and  transporters.  Moreover,  there  is  a  scarcity  of  healthy  donor  organs  for  use  in  the   pharmaceutical   industry   and   there   is   considerable   variability   between   donors   [61-­‐ 64].    Alternatives  for  PHH  are  liver  tumor-­‐derived  or  immortalized  cells,  such  as  the   HepG2   and   HuH7.5   cell   lines,   which   do,   however,   have   minimal   to   no   drug   metabolization   and   detoxification   ability.   Alternatively,   the   Fa2N-­‐4   (derived   from   PHH   immortalized   by   transfection   with   SV-­‐40   larger   T   antigen)   and   HepaRG   cells   possess  substantially  higher  drug  metabolization  and  transporter  functions,  including   CYP1A2,   CYP2B6,   CYP2C9,   CYP2E1   and   CYP3A4,  constitutive   androstane   receptor  

(CAR),  pregnane   X   receptor   (PXR)   and  aryl   hydrocarbon   receptor   (AHR)   at   levels   similar  to  PHH.  However,  these  cell  lines  are  derived  from  only  a  single  donor  and   are  transformed  [36,  65].    

1.2.6.    Rationale  for  creation  of  hepatocytes  from  stem  cells  

Due  to  the  shortage  of  human  healthy  livers  and  the  fast  dedifferentiation  of  PHHs  in   culture,  the  number  of  patients  that  can  be  treated  with  hepatocyte  or  whole  liver   transplantation   is   limited,   and   reliable   drug-­‐screening   models   are   not   readily   available   for   the   pharmaceutical   industry.   To   overcome   this   problem,   generation  

(18)

hepatocytes   from   stem   cells   is   seen   as   an   alternative   method   to   generate   hepatocytes   for   drug   screening   and   cell   based   therapy   applications.   Many   groups   have   developed   protocols   to   differentiate   human   pluripotent   stem   cells   (PSC),   including   embryonic   stem   cells   (ESCs)   to   into   hepatocyte   like   cells   (HLC)[66-­‐72].   Human   PSCs-­‐derived   HLCs   express   hepatocyte   marker   genes   and   display   some   mature   hepatocyte   functions   such   as   ALB   secretion,   urea   synthesis,   and   glycogen   storage  but  however,  they  still  mimic  a  fetal  phenotype  compared  to  the  PHH  [73,   74].  Adult  stem  cells  such  as  mesenchymal  stem  cells  (MSCs)  from  bone  marrow  [75-­‐ 81],   wharton   jelly   [82,   83],   umbilical   cord   [84,   85],   amniotic   fluid   [86],   adipose   tissue[87-­‐90],   and   multipotent   adult   progenitors   (MAPCs)[91]   do   not   robustly   differentiate  into  HLCs.    This  demonstrates  a  continued  need  for  the  creation  of  fully   functional   hepatocytes   suitable   for   transplantation   and   drug   metabolization   and   toxicity  studies.  

1.3.  Pancreas  and  Liver  development  

To   use   stem   cells   for   the   generation   of   specific   cells,   it   is   important   to   identify   extrinsic   factors   that   stimulate   differentiation.   Therefore,   knowledge   of   the   processes  that  operate  during  normal  embryogenesis  that  regulate  cell  proliferation,   differentiation   and   specialization   is   required   as   many   signaling   pathways   play   important  roles  during  development  are  highly  conserved.  In  this  introduction  I  will   discuss  some  important  findings  regarding  endoderm  development  and  hepatocyte   and  pancreas  organogenesis.  

1.3.1  Endoderm  development  

During   the   third   week   of   human   development   or   at   E6.5   in   mouse   development,   pluripotent  epiblast  cells  undergo  a  series  of  gastrulation  events,  including  epithelial   to  mesenchymal  transition  (EMT)  and  migration  to  form  the  primitive  streak  (PS)  at   the  posterior  region  of  the  epiblast.  PS  formation  is  an  essential  step  for  gastrulation   to  occur  correctly.  When  embryos  fail  to  form  a  PS,  gastrulation  fails  [92].  The  PS  is   marked   by   expression   of   Mix   paired-­‐like   Homeobox   1   (Mixl1),   Eomesdermin   (Eomes),  LIM  homeobox  1  (Lhx1),  Brachury-­‐T,  Goosecoid  (Gsc)  and  the  Forkhead  Box   A2  (Foxa2)  genes.  In  the  process  of  differentiation,  mesendoderm  (ME)  precursors   migrate   through   the   PS   to   create   mesoderm   in   the   middle   and   endoderm   in   the  

(19)

outer   layer   of   the   embryo.   Based   on   Nodal   signaling   in   the   embryo,   the   PS   is   patterned  into  anterior  and  posterior  regions.  A  mouse  epiblast  fate  map,  created   using   intracellular   tracer   studies,   showed   that   at   E7.0-­‐E7.5,   anterior   definitive   endoderm   (DE)   arises   from   the   most   anterior   primitive   streak,   expressing   (Foxa2,   Hematopoietically   expressed   homeobox   (Hhex),   Gsc,   and   Eomes),   where   nodal   signaling   is   high   [93].   SRY   (sex   determining   region   Y)   related   HMG   (high   mobility   group)-­‐Box  17  (Sox17)  is  required  in  the  development  of  the  posterior  DE  [94-­‐96].   Their   timing   of   expression   correlates   with   their   activities;   Foxa2   is   expressed   first,   while  Sox17  is  expressed  slightly  later,  when  posterior  definitive  endoderm  emerges   from   the   anteriormost   primitive   streak.   The   posterior   primitive   streak   generates   mesoderm   expressing   Even-­‐Skipped   Homeobox   1(Evx1)   and  mesoderm   posterior  

basic   helix-­‐loop-­‐helix   transcription   factor   1 (Mesp1)   [97,   98],   as   a   result   of   lower  

levels  of  nodal  signalling.  Initial  cells  that  exit  the  PS  give  rise  to  anterior  DE  and  axial   mesoderm.  The  cells  that  exit  later  from  the  PS  form  the  posterior  DE.  The  primitive   endoderm  (PrE)  gives  rise  to  the  extraembryonic  endoderm,  which  later  contributes   to  the  yolk  sac.  The  parietal  endoderm  cells  grow  with  minimal  cell-­‐cell  contact  and   are  scattered  on  the  inner  surface  of  the  trophoblast.  They  secrete  copious  amounts   of   basement   membrane   proteins   to   form   the   Reichert’s   membrane   in   conjugation   with  the  trophoblast  cell  layer.  The  PrE,  in  contact  with  extra  embryonic  ectoderm   and  epiblast  differentiates  into  an  epithelial  cell  layer  called  visceral  endoderm  (VE).   VE   cells   covering   the   trophoblast   have   a   columnar   and   cuboidal   morphology   and   express   the   TF   SRY-­‐Box   7   (SOX7).   VE   cells   covering   the   epiblast   have   a   more   epithelial   like   morphology   and   express   alpha-­‐fetoprotein   (AFP)[99].   At   the   end   of   gastrulation,   DE   cells   invade   and   replace   the   extraembryonic   VE   cells.   However,   there   is   evidence   that   some   VE   cells   can   be   found   in   the   DE   layers   and   in   the   primitive  gut  in  mouse  [100].  At  the  end  of  gastrulation  events,  the  DE  sheet  of  cells   surrounds  the  outer  surface  of  mouse  embryo  [101,  102].  

1.3.1.1  Molecular  mechanisms  underlying  endoderm  morphogenesis  

During   gastrulation,   cell   migration,   cell   adhesion   and   cytoskeletal   dynamics   are   linked   with   endoderm   formation   and   patterning.   Nodal,   fibroblast   growth   factor  

(20)

(FGF),   and   Wingless-­‐type   MMTV   integration   site   family   member   (Wnt)   signaling   is   essential  for  the  coordinated  series  of  cell  movements  that  drive  ME  morphogenesis.   The   dorsal   ME   elongates   via   polarized   cell   intercalations   in   a   process   known   as   convergent-­‐extension,  which  is  controlled  by  FGF  and  non-­‐canonical  Wnt/planar  cell   polarity   (PCP)   signaling.   On   the   other   hand,   the   anterior   endoderm   cells   exhibit   directional   migration   [103]   controlled   by   Nodal   signaling   and   are   mediated   by   dynamic  cell-­‐cell  adhesion  and  integrin-­‐  extra  cellular  matrix  (ECM)  interactions  [104,   105].   Further,   ME   migration   is   controlled   by   Mixl1,   Eomes,   Lim1,   Foxa2   and   GATA   Binding-­‐protein  4-­‐6  (Gata4-­‐6)  [106-­‐111].  Nodal  also  activates  the  C-­‐X-­‐C  chemokine   receptor  type  4  (Cxcr4)  [112]  and  the  ligand  stromal  derived  factor  (Sdf1)  [113,  114],   which   serves   as   chemoattractant   for   CXCR4   expressing   endoderm   cells.   Another   target   of   Nodal   is   Fibronectin-­‐leucine   rich   transmembrane   (Flrt3),   which   regulates   cadherin-­‐dependent   cell   adhesion   and   ME   migration   via   the   small   guanosine   triphosphate  (GTPase)  RAS-­‐related  Nuclear  protein  (Ran  1)  [115].    Flrt3-­‐/-­‐  knock-­‐out  

(KO)  mouse  embryos  have  defects  in  DE  migration  [116,  117].  In  the  mouse  gastrula,   FGF,   mitogen-­‐activated   protein   kinase   (MAP)   kinase   signaling,   and   Eomes   are   essential   to   downregulate   E-­‐cadherin   in   epiblast   cells   and   allow   them   to   undergo   EMT   and   ingress   through   the   primitive   streak   [108,   118,   119].   However,   what   regulates  the  subsequent  migration  of  definitive  endoderm  and  their  incorporation   into   the   visceral   endoderm   is   less   known   [102]   (Genes   involved   in   endoderm   formation  are  listed  in  table-­‐2).  

1.3.1.2  Endoderm  patterning  

At  the  end  of  gastrulation,  the  developing  embryo  consists  of  an  inner  germ  layer  of   definitive   or   naïve   endoderm   cells.   After   48   hours,   the   endoderm   layer   forms   the   primitive   gut   tube   from   which   endodermal   organ   buds   emerge.   Endoderm   patterning  occurs  by  a  series  of  growth  factors  signals  from  the  adjacent  mesoderm   along  the  anterior-­‐posterior  (A-­‐P)  axis,  into  foregut,  mid-­‐  and  hindgut  domains  and   then,  subsequently,  into  committed  organ  primordia.    

The  anterior  foregut  gives  rise  to  the  lungs,  trachea,  thyroid,  esophagus,  and  thymus.   The  posterior  foregut  gives  rise  to  the  liver,  biliary  system,  pancreas,  stomach  and  

(21)

duodenum,   while   the   midgut   (MG)/hindgut   (HG)   give   rise   to   the   small   and   large   intestine  [102,  120](Fig.6).                

Figure   6:   Schematic   overview   and   timeline   of   endoderm   organ   formation:  a)  The  major  events  in   endoderm  organ  formation  are  listed  in  order  of  development  b)  Images  of  mouse  embryo  at  E7.5   (top),  E8.5,  and  E9.5  of  development,  (endoderm  regions  shaded  in  yellow),  A  schematic  illustration   of  a  cross  section  of  a  E9.5  embryo  illustrates  the  characteristic  arrangement  of  the  germ  layers  with   the  endoderm  lining  of  gut  tube  (yellow),  surrounded  by  MD  (red),  and  ectoderm  (blue).  C)  Schematic   illustrations  of  endoderm  cell  lineage  of  the  gastrointestinal  tract,  Fg;  foregut,  mg;  midgut;  and  Hg;   hindgut   (Adapted   from   Aaron   Zorn   and   James   wells   et   al,   Annual   Reviews,   2009)[102].   (Figure   and   Legend  reproduced  with  permission  of  the  copyright  holder,  Annual  Reviews).  

The  different  gut  tube  domains  can  be  identified  by  the  expression  of  Hhex,  SRY  (Sex   determining  region  Y)  related  HMG  (high  mobility  group)-­‐Box  2-­‐(Sox2),  and  Foxa2  in   the  anterior  half  of  the  embryo,  and  Caudal  type  Homeobox  1(Cdx1),  2  (Cdx2)  and  4   (Cdx4)  found  in  the  posterior  half  of  the  embryo  [94].  During  gastrulation,  dynamic   tissue   movements   result   in   the   juxtaposition   of   the   endoderm   with   different   mesodermal   tissues   that   secrete   patterning   factors   [106,   121,   122](Fig.7).   Mesodermal   fibroblast   growth   factor   4   (FGF4),   (Wnt)/β-­‐Catenin,   bone   morphogenetic   protein   (BMP4)   and   Retinoic   acid   (RA)   signaling   promotes   the   expression  of  hindgut  endoderm  and  represses  the  anterior  foregut  genes  Hhex  and   Foxa2  [123-­‐127].  

   

Referenties

GERELATEERDE DOCUMENTEN

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the

Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)..

Duration of antibiotic treatment and symptom recovery in community-acquired pneumonia.. El

The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an

Nadat hij dit voorbeeld behandeld had, wierp Fourier de vraag op of men ook een willekeurige periodieke functie f (t) – stel voor de eenvoud maar weer dat de periode van die functie

Mijn dank gaat in eerste instantie uit naar alle studenten theaterweten- schap van de Universiteit van Amsterdam die in de loop van vier jaar door hun deelname aan het onderwijs