• No results found

on natural pollen surfaces Hierarchical synthesis of corrugated photocatalytic TiO microspherearchitectures Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "on natural pollen surfaces Hierarchical synthesis of corrugated photocatalytic TiO microspherearchitectures Applied Surface Science"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Applied Surface Science

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full Length Article

Hierarchical synthesis of corrugated photocatalytic TiO 2 microsphere architectures on natural pollen surfaces

Deniz Altunoz Erdogan, Emrah Ozensoy

∗,1

DepartmentofChemistry,BilkentUniversity,06800,Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received12October2016

Receivedinrevisedform7January2017 Accepted12January2017

Availableonline17January2017

Keywords:

TiO2

Photocatalyst Ambrosiatrifida NO(g)oxidation RhodamineB

a b s t r a c t

Biomaterialsarechallenging,yetvastlypromisingtemplatesforengineeringunusualinorganicmaterials withunprecedentedsurfaceandstructuralproperties.Inthecurrentwork,anovelbiotemplate-based photocatalyticmaterialwassynthesizedintheformofcorrugatedTiO2microspheresbyutilizingasol-gel methodologywhereAmbrosiatrifida(Ab,Giantragweed)pollenwasexploitedastheinitialbiologicalsup- portsurface.HierarchicallysynthesizedTiO2microsphereswerestructurallycharacterizedindetailvia SEM-EDX,Ramanspectroscopy,XRDandBETtechniquesinordertoshedlightonthesurfacechemistry, crystalstructure,chemicalcompositionandmorphologyofthesenovelmaterialarchitectures.Photo- catalyticfunctionalityofthesynthesizedmaterialswasdemonstratedbothingasphaseaswellasin liquidphase.Alongtheselines,airandwaterpurificationcapabilitiesofthesynthesizedTiO2micro- sphereswereestablishedbyperformingphotocatalyticoxidativeNOx(g)storageandRhodamineB(aq) degradationexperiments;respectively.Thesyntheticapproachpresentedhereinoffersnewopportuni- tiestodesignandcreatesophisticatedfunctionalmaterialsthatcanbeusedinmicroreactorsystems, adsorbents,drugdeliverysystems,catalyticprocesses,andsensortechnologies.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Hazardouschemicalsarisingfromcombustionoffossilfuels, suchassulphurdioxide,nitrogenoxides,mercury,aswellasindus- trialwastematerialincludingorganicdyes,andsolventsareamong theprominentcontaminantscontributingtothewater,airandsoil pollution;causingawidevarietyofseverehealthandenvironmen- talproblems[1–5].Heterogeneouscatalysisplays animportant roleincopingwiththeenvironmentalpollutionattheglobalscale.

Oneofthemostabundantrenewableenergysourcesthatcanbe exploitedinheterogeneouscatalysisapplicationsinanenviron- mentallyfriendlyandeconomicalmanneristhesolarenergy.Thus, thereexistsanimmensedemandtodevelopnovelphotocatalytic materialsusinginnovativesyntheticmethodologies[6–11].

Alargevarietyofmaterialssuchasmetaloxides,metalhydrox- ides,metalcarbides,metal nitrides,carbonallotropes and their derivativeshavebeeninvestigatedintheliteratureasphotocat- alysts[12–18].Amongthem,titaniumdioxide(TiO2)hasreceived considerableattentionsincethesuccessfulgenerationofH2from waterviaelectrochemicalphotolysisof waterby Fujishimaand

∗ Correspondingauthor.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

1 Web:http://www.fen.bilkent.edu.tr/∼ozensoy

Honda[19].TiO2hasbeenthemostfrequentlyutilizedphotocat- alyticmaterialduetoitsfunctionalversatilityinawiderangeof processessuchasenergystorage/conversion,photocatalyticpollu- tionabatement,andbiotechnology[20–22].

It is well known that physical and chemical properties of materialssuchasshape, texture,particlesize,porosity,specific surfacearea,crystallinity,electronicbandgap,surfacedefectsand surfacefunctionalgroupsdirectlyinfluencethephotocatalyticper- formance. Particularly, shape and surface structural properties ofphotocatalytic materialscanbecloselylinkedtothereactiv- ity and selectivity of these systems [23–25]. One of the most efficientandsimpleapproachestopreparesophisticatedsurface structuresonmaterialsistemplating.Natural/biologicalstarting materialscanbeusedastemporalsupportsystems/sacrificialtem- platesinordertocreatewell-definedshapes,sizesandtextures onsurfaces.For instance,mesoporous hollowSnO2 microfibers were prepared using natural kapok (Ceiba pentandra) fiber as a template and were found to be photocatalytically active in methylene blue dye degradation under UV irradiation [26]. In another study, freshnatural rose (Rosa hybrida L.)petals were used as a template to synthesizeTiO2 flakes exhibiting higher photocatalyticactivitythanthecommercialDegussaP25photocat- alyst[27].Also,cerium-dopedTiO2mesoporousnanofiberswere preparedby a single-potsynthesis methodusing collagenfiber

http://dx.doi.org/10.1016/j.apsusc.2017.01.107 0169-4332/©2017ElsevierB.V.Allrightsreserved.

(2)

160 D.A.Erdogan,E.Ozensoy/AppliedSurfaceScience403(2017)159–167

biotemplates[28].A variety of synthetic techniqueshave been developedtodepositthedesiredphotocatalyticmaterialonthesur- faceofbio-templatesincludingsputtering,sol-gel,electrochemical deposition,andchemicalvapourdepositionapproaches.Usingsuch syntheticmethods,micro/nanostructuressuchaswires,tubes,rods orspherescanbefabricatedpreservingtheoriginalshapeandsize oftheinitialnaturaltemplate.Pollengrainsattractattentionasver- satilebiotemplatesduetotheiruniqueandsophisticatedsurface structuresatthemicro/nanoscale[7,29–33].

Thus,inthepresentstudy,asimplebiotemplateassistedsol- gelrouteispresentedinordertosynthesizeTiO2 photocatalytic microsphereswithuniquesurfacemorphologies,whereAmbrosia trifida (Ab, Giant ragweed) pollen is used as the starting bio- substrate. Ab is selected as a biotemplate due to its unusual micron-sizedsurfacemorphologyexhibitingconicalnano-spikes.

Upondetailed structural characterizationof this novelmaterial platform,photocatalyticfunctionalityofthesehierarchicalsystems underultraviolet-A(UVA)irradiationisalsodemonstratedattwo differentinterfacesnamely,RhodamineB(RhB)photodegradation attheliquid/solidinterfaceaswellasthephotocatalyticoxidative storageofNOx(g)atthegas/solidinterface;illustratingthecatalytic versatilityofthisnewfamilyofmaterials.

2. Experimental 2.1. Materials

Ambrosiatrifida(Ab,Giantragweed)pollenswereobtainedfrom Bonapola.s.Company(CzechRepublic).Titanium(IV)isopropoxide (TIP, 97%), ethanol (≥99.8%), and Rhodamine B (RhB, dye con- tent ∼95%)were purchased fromSigma-Aldrich (Germany).All chemicalswere of analytical grade and used as receivedwith- out any further treatment. Milli-Q ultra-pure deionized water (18.2Mcm)wasalsousedasasolvent.

2.2. SynthesisofbiotemplatedTiO2microspheres

BiotemplatedTiO2microsphereswerepreparedusingamethod analogousto theone described in one of ourprevious reports [7].Briefly,Ab pollenswerewashedwithanhydrousethanolto removesurfaceimpuritiesandsubsequentlydriedunderambient conditionsfor48h. Then,titanium(IV)isopropoxide(TIP,4mL) precursorwasmixedwithethanol(2mL)foraperiodof10min atroomtemperature.100mg cleanAb pollen(i.e.,biotemplate) wasaddedtothepreparedprecursorsolutionandtheslurrywas stirredvigorouslyfor30min.Afterdepositingprecursorsolution ontheoutersurface(i.e.exine)ofthebiotemplate,themixture wasfilteredtoremovetheexcessdecantate.Coatedsamplewas agedfor60minunderambientconditionsinordertoallowforthe hydrolysisandpolycondensationreactionstoproceed,formingan amorphousTiO2shellonthebiotemplatesurface.Then,calcination stepswereexecutedinamufflefurnaceatvarioustemperatures varyingwithin400C–900C(for2.5hpercalcinationstep)inair, wherethesacrificialbiotemplatewaseliminatedandthecrystal- lizationandorderingoftheTiO2overlayerwereachieved.Products obtainedattheendofthesynthesisprotocolarenamedasAbTi-X, whereXindicatesthecalcinationtemperature.

2.3. Characterization

Surfacestructureandmorphologyofthesampleswereinvesti- gatedviaaCarl-ZeissEvo40scanningelectronmicroscope(SEM) withanacceleratingvoltagevaryingwithin5–10kV.Forelemen- talanalysis,energydispersiveX-ray(EDX)analysisofthepowder samplesdispersedonanelectricallyconductivecarbonfilmwas performedusinganacceleratingvoltageof10kV.

Crystallographicchangesonthesamplesaftercalcinationwere determined via XRD measurements performed using a Rigaku (Japan)X-raydiffractometerequippedwithaMiniflexgoniometer andamonochromatedhigh-intensityCuK␣radiation(␭=1.5405Å, 30kV,15mA)source.XRDdatawerecollectedbyscanningthe2␪ rangewithin10–60 usingastepsizeof0.02s−1.Identification oftheunknownphasesin thepowder XRDdataweremadeby utilizingPowderDiffractionFile(PDF)databasemaintainedbythe InternationalCentreforDiffractionData(ICDD).

RamanexperimentswerecarriedoutusingaLabRAMHR800 spectrometer(HoribaJobinYvon,Japan)equippedwithaNd:YAG laser(␭=532.1nm,20mW)andanintegratedconfocalOlympus BX41microscope.Thesystemwascalibratedusingthereference Si Ramanshiftat 520.7cm−1 byadjusting the zero-orderposi- tionofthegrating.Powdersamplewasevenlyspreadonasingle crystalSiwaferandRamanspectrawererecordedintherangeof 100–1500cm−1withaspectralresolutionof4cm−1atroomtem- perature.

TheBrunauer-Emmett-Teller(BET)SSAmeasurementsofthe synthesized catalystsweredetermined by nitrogenadsorption- desorptionisothermsusingaMicromeriticsTristar 3000surface areaandporesizeanalyser.PriortoSSAanalysis,allsampleswere outgassedinvacuumfor2hat150C.

2.4. Liquidphasephotocatalyticactivitytestsforthedegradation ofRhB(aq)

Photocatalyticfunctionality of thebiotemplatedTiO2 micro- spheres in liquid phase was demonstrated via RhB (aq) dye degradationunderUVA irradiationat roomtemperature.RhB is afrequentlyusedmodelpollutantfortesting thephotocatalytic activityofnovelmaterialsinwater.RhBdegradationexperiments wereperformedinaphotocatalyticreactorequippedwithan8W SylvaniaUVA-lamp(F8W,T5,Black-light,368nm).Acoolingfan wasalsoinstalledinsidethereactorfortemperatureregulation.Ini- tially,a48mLaqueoussolutionofRhB(10mgL−1)wasprepared indarkand25mgofbiotemplatedTiO2microsphereswereultra- sonicallydispersedinthissolutiontoformasuspension.Then,the samplecontainerwasplacedataspecifiedpositioninsidethepho- tocatalyticreactor,wherethedistancebetweenthelightsourceand thesuspensionwasfixedat13cm.PriortoUVAlightirradiation, thesuspensionwasmagneticallystirredinsidethereactorunder darkconditions for 30minin order toestablish anadsorption- desorptionequilibriumbetweenthephotocatalystandRhB(aq).

BeforetheUVAlightexposure,a3mLaliquotwasextractedfrom thesuspensionunderdarkconditionsandtheconcentrationofthis startingsolutionwasdesignatedasC0. Then,identicalamounts ofsampleswereobtainedduringtheUVAlight irradiationafter certaintimeintervalswhoseconcentrationsweredenotedasCt.

Afterremovingthephotocatalystfromtheextractedsamplesvia centrifugation,RhBconcentrationoftheextractedsolutionswere determinedusingaUV–visspectrophotometer(Carry300,Agilent) withthehelpofacalibrationcurveutilizingtheRhBcharacteristic maximalabsorptionbandatca.553nm.Thetypicalphotonpower density(irradiance)duringtheexperimentswas7.4Wm−2which wasmeasuredbyaphotoradiometer(DeltaOhm,HD2302.0,Italy) equippedwithaUVAprobe(DeltaOhm,LP471UVA).Thephotocat- alyticdyedegradationefficiency(Deff)ofthephotocatalystswas calculatedaccordingtofollowingequation;

Deff(%)= (C0−Ct)

C0 ×100 (1)

where,C0istheinitialRhBconcentrationandCtistheRhBconcen- trationatagiventimet.

(3)

Fig1. (a)EDXspectrumofthebare(uncoated)Abpollenobtainedfromtheblue-colouredcircularregionin(b).(b)SEMimageoftheuncoatedAbpollen.(c)Schematic describingthevariousbio-structuralsectionsoftheAbpollen.(d)EDXspectraobtainedaftercalcinationoftheuncoatedAbpollensat800C.Redandblackspectrawere obtainedfromthecircularregionswiththecorrespondingcolourspresentedin(e).(e)SEMimageoftheuncoatedAbpollensaftercalcinationat800C.(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

2.5. Gasphasephotocatalyticactivitytestsfortheremovalof gaseousnitricoxide

Inordertodemonstratethefunctionalversatilityofthesyn- thesizedbiotemplatedTiO2microspheres,inadditiontotheliquid phase photocatalytic tests, obtained materials were also used inphotocatalyticoxidative storageofNO atthesolid/gasinter- face. Photocatalytic removal of NO(g) over biotemplated TiO2 microsphereswasperformedatroomtemperatureinacustom- madecontinuousphotocatalyticflowreactorwhichwasdesigned consideringtheISO22197-1:2007standard[8–10,34].Thispho- tocatalyticreactionsystemwascomposedofa gassupply unit, aflat-bedphotoreactorchamberhousingthesample,aUVAillu- minationsourceand a chemiluminescentNOxanalyser (Horiba APNA-370) for continuous inline monitoring of the NO, NO2 andtotalNOxconcentrations[8–10].Inthegassupplyunit,NO (100ppm NO in N2 balance, Linde GmbH) was mixed withO2 (99.998%,LindeGmbH) andN2 (99.998%, LindeGmbH)atroom temperature.Thetotal gasflow rateinthereactorwaskeptat ca.1.0SLM(standardlitersperminute)viamassflowcontrollers (MFCs, MKS,1479A)byadjusting theflowrateof eachgas(i.e.

N2=0.75 SLM,O2=0.25 SLM, and NO=0.01 SLM).The gasmix- turewasalsopassedthroughawaterbubblerbeforethereactor forhumidificationandtherelativehumidity(RH)ofthegasmix- turewasmeasuredviaaHannaHI9565humidityanalyzeratthe samplepositionin thephotocatalytic reactoratroomtempera- ture.RHwasdetectedtobetypicallyca.70%atroomtemperature duringthemeasurements.Synthesizedphotocatalystpowdersam- ples(250mg)weregentlypressedonapoly-methylmethacrylate (PMMA)sample holder (2×20×20mm3) toproduce a smooth

surface. Inorder toactivatethephotocatalysts and remove the initialsurfacecontaminants,beforethegasphasephotocatalytic activitymeasurements,sampleswereexposedtoUVAirradiation underambientconditionsfor18h.Then,thesamplewasplaced intothephotocatalyticreactor,whereaUVAlamp(SylvaniaUV- lamp,black-light,F8W,T5,368nm)wasplacedabovethereactor.

Next,thegasmixturewasfedtothephotocatalyticreactor,where thegasfeedsweptthesurfaceofthepowderphotocatalystsample.

Afterestablishingtheadsorption-desorptionequilibriuminsidethe photocatalyticreactor,UVAilluminationsourcewasactivatedto initiatethephotocatalyticreaction.Controlexperimentscarried out intheabsence ofa photocatalyst(i.e.in theempty reactor undertheUVAillumination)revealednocatalyticconversion.Pho- tocatalyticconversion efficiencyfor NOand photocatalyticNO2 productionefficiency(␨%)overTiO2microsphereswerecalculated asfollows:

%=nNOxornNO2

nphoton ×100 (2)

where, nNOx is thedecreaseinthetotal numberof molesof all gaseous NOx species and nNO2 is the number of moles of NO2 generatedin 60min(i.e.over thecourseofafullphotocatalytic NOxremovalexperiment).Inthisequation,nphotoncorrespondsto thetotalnumberofmolesofincidentUVAphotonsimpingingon thecatalystsurfaceduringthe60mintime interval.nphoton was calculatedby usingthephoton powerdensityoftheUVAlamp (I=7.4Wm−2), representativeemission wavelengthof the UVA lamp(␭=368nm),surfaceareaofthesampleholderthatisexposed to theUVA irradiation (S=2cm×2cm=4cm2), duration of the

(4)

162 D.A.Erdogan,E.Ozensoy/AppliedSurfaceScience403(2017)159–167

Fig.2.SchematicillustrationofoneofthepossiblesyntheticroutesleadingtotheformationofbiotemplatedTiO2microspheres:(i)coatedAbpollen,(ii)biotemplatedTiO2

microspheresaftertheremovaloftheAbpollenbycalcination.

photocatalytictest(t=3600s),Avogadro’snumber(NA),Planck’s constant(h),andthespeedoflight(c)asshowninEq.(3)below:

nphoton= ISt

NAhC (3)

3. Resultsanddiscussion 3.1. Structureandmorphology

Surface elemental composition and the morphology of the uncoatedAbpollengrainswereinvestigatedusingSEMandEDX techniques(Fig.1aandb).Macroscopicstructuralcomponentsof theAbpollenswerealsoschematicallydescribedinFig.1c.Ascan beseeninFig.1c,Abpollensarecomposedoftwonestedlayers coveringthelivingmatterandprotectingitagainsttheexternal physicaland chemical adverseeffects [35,36].The robustouter surfacecalledexine(Fig.1c)iscomposedofahighlycrosslinked organicsubstancethatcanincludefattyacids,phenylpropanoids, andphenolicsporopollenins.Theinnerlayerofthepollen(Fig.1c)is calledtheintineandisprimarilycomposedofcellulosicmaterials andpolysaccharides[35,36].Inordertostudythemorphological andstructuralalterationsoccurringuponcalcination,uncoatedAb pollensampleswereinvestigatedcomparativelybySEMandEDX analysisbeforeandaftercalcination(Fig.1a–e).Fig.1bshowsthat, uncoatedAbpollenshaveasphericalshapewithanaveragepollen sizeof23.5±1.5␮mdecoratedwithconicalnano-spikes/thorns.

Afterthecalcinationoftheuncoatedpollensat 800C, obvious structuraland morphological changes wereobserved signifying visible geometric deformation (Fig. 1e). According to the EDX spectragiveninFig.1a,whileuncoatedmicrosphereshaveacar- bonaceousoutermostlayerexhibitingmainlyCandOsignalsbefore calcination,uponcalcinationat800C,pollensseemtolosetheir structuralintegrityanddeformfromtheiroriginalshapes,reveal- ingavarietyofEDXsignalscorrespondingtoelementssuchC,O, Mg,P, S, K,and Ca(Figs.1dand e). It islikely that duringthe calcinationprocess,outerexinelayerof theuncoatedpollensis partiallydestroyedandthebiologicalmaterialinsidetheintinecap- sule,whichmayinvolvevariousmineralsforvitality,diffusetothe

Fig.3.SEMimageandthecorrespondingEDXspectrumoftheAbbiotemplateafter titanium(IV)isopropoxide(TIP)depositionat25C(AbTi-25).

surfaceatelevatedtemperatures,leadingtothedetectionofthe EDXelementalsignalsforC,O,Mg,P,S,K,andCa(Figs.1dande).

Inthecurrentwork,Abpollenswereselectedasabiotemplate todirecttheformationofbiomorphicTiO2microspheresusingthe

(5)

sol-gelprocess.Fig.2providesoneofthepossiblereactionpath- waysforthesol-gelsyntheticrouteusedherein.Asillustratedin Fig.2,after thealcoholysisreaction,metalalkoxidespecies are expected tobind tothe naturally functionalizedsurface of the pollentemplate throughcondensationandhydrolysis reactions.

Extent of themetalalkoxide depositionand thecorresponding thicknessoftheultimateTiO2 overlayerwerecontrolledbythe composition/concentrationoftheprecursorsolutionaswellasthe durationofthealcoholysisreaction.AftertheformationoftheTiO2 overlayer,calcinationprocessleadstotheformationofabiomor- phicTiO2surfacepreservingmostoftheoriginalshape,size,and morphologyoftheAbbiotemplate.

Fig. 3 shows the SEM image and the corresponding EDX spectrum of the TiOx deposited Ab pollens after hydrolysis andpolycondensationreactionsatroomtemperature(i.e.before calcination). SEM image reveals the formation of a homoge- neous/continuous TiOx overlayer preserving the characteristic microstructureofthenascentpollensurface.Thisisalsoevident bytheEDXspectruminFig.3,indicatingastrongTisignalover- whelmingthatoftheotherpre-existingelementsonthesurface suchasCa,S,K,andP.

Calcination was employed in order to convert amorphous TiOx coating onthe Ab pollensinto crystallineTiO2 overlayers (Fig.4).Low-magnificationSEMimage(Fig.4a)shows thatTiO2

microspheresare relativelywell-dispersed rather than severely aggregated.Whilethecalcinationprocessinducesthecrystalliza- tionoftheTiOxoverlayertoTiO2,italsoleadstomorphological modificationsatthenanometerscaleresultingintheformationofa spongy/porousandacorrugatednetworkonthesurface(Fig.4b–d andf).ComparisonofthebareAb(Fig.1b)orcoatedAbpollens beforecalcination(AbTi-25,Fig.3),withtheonesobtainedaftercal- cination(e.g.600Cand800C)suggestsdeformationofthesharp conicalspikes(Fig.4b–dandf),inadditiontotheshrinkingofthe pollenstoasmalleraveragediameterofca.13␮m.

Aftercalcination(Fig.4e),P,K,andCasignalsoriginatingfrom thebiotemplatebecomesdiscernibleontheAbTi-600andAbTi-800 surfaces.ItcanbeseeninFigs.4band4ethatanaperturewith anapproximatediameterof2.5␮mexistsintheAbpollenstruc- ture,fromwhichthepollentubeextendsatgerminationtofertilize theovum.Thus,itisfeasiblethatduringthecalcinationprocess,the interiorpartofthepollen(i.e.intineandotherbiologicallivingmat- terdepictedinFig.1c)diffusesoutboundthroughthisapertureand spilledoverontheTiO2surfaceatelevatedtemperatures.

Fig.5aandbillustratethephasechangesoccurringontheAbTi materialsasa function ofcalcinationtemperature viaXRDand Ramanspectroscopy,respectively.Itisapparentthatthediffraction signalsinFig.5a intensifyand sharpenwithincreasingcalcina- tiontemperaturessuggestingorderingandcrystallizationofthe TiO2 overlayer on the AbTi surface. XRD patterns of the AbTi microspheresrevealpredominantlyanatasephase atcalcination temperatures≤600C;while twodifferentorderedTiO2 phases namely,anatase(ICDDNo.00-021-1272)andrutile(ICDDNo.00- 021-1276)arevisibleforthecalcinationtemperaturesabove600C (Fig.5a).Also,Fig.6depictsrelativemassfractionofanataseand rutilephasesforvarioussamplescalculatedusingtheXRDdatavia SpurrandMyersapproach[37].Itisclearthattheanatasetorutile phasetransitionontheAbsurfacestartstooccurpredominantlyat T≥800C.RutilemassfractionincreasesdrasticallyforT≥800C, whilefortheAbTi-900sample,anataseandrutilephasesreveal almostequalmassfractions.

Averagecrystallitesizesoftheanataseandrutilephaseswere alsocalculatedusingtheanatase(101)andrutile(110)diffraction signalsviaScherrerequation[38,39](Fig.6).Theseresultssuggest thatanataseandrutiledomains havesimilaraveragecrystallite sizes(ca.20–30nm)forAbTi-700andAbTi-800sampleswhilethey drasticallydivergefromeachotherfortheAbTi-900sample,where

rutilecrystallitesizesurpassesthatoftheanatase(ca.47nmfor anataseandca. 134nm forrutile).Fig.6indicatesthatincreas- ingcalcinationtemperaturesresultsinamonotonicincreaseinthe crystallitesizesofanataseandrutiledomainsduetosintering.

Ramanspectroscopic measurementswerealso performedin ordertoconfirmthestructuralpropertiesofthebiotemplatedTiO2 microspheres.Fig.5bdisplaystheRamanspectraofthesamples preparedby calcinationof thecoatedAbTi samplesat different temperatures.CharacteristicanataseRamanscatteringfeaturesat 147cm−1(Eg),397cm−1(B1g),515cm−1(A1g),and641cm−1(Eg) areobservedforallsamplesexcepttheAbTi-400sample.Forthe AbTi-900sample, additionalRamanpeaks at445cm−1 (Eg)and 612cm−1 (A1g)arevisiblewhichcanbeattributedtotherutile phase.In goodaccordancewiththecurrent XRDmeasurements (Fig.5a),RamandatainFig.5balsoindicatethattherutilecontent ofthesamplesincreaseswithincreasingcalcinationtemperatures.

Inadditiontothesesignals,someoftheRamanspectrainFig.5balso includesanadditionalfeatureat484cm−1(labelled“withthesym- bol“”inFig.5b)whichcantentativelybeattributedtocomplex temporalspeciesgeneratedduringthecalcinationofthebiopoly- mermatrixoftheunderlyingAmbrosiatemplate[7].

3.2. PhotocatalyticactivityofthebiotemplatedTiO2microspheres

Fig.7apresentsthephotocatalyticRhB(aq)degradationstudies performedunderUVAirradiationatroomtemperaturebyusing biotemplatedTiO2microspherescalcinedatvarioustemperatures.

Fig.7bshowsatypicalseriesoftime-dependentUV–visabsorp- tionspectraoftheRhB(q)containingtheAbTi-800sampleobtained duringtheUVAirradiation.ItisapparentthatthecharacteristicRhB absorptionbandat553nmgraduallydecreaseswhilethephotocat- alyticdyedegradationreactionproceeds.After120minUVAlight exposure,colororiginatingfromRhBdyeisvirtuallydisappearsevi- dentbythevanishingabsorptionsignalat553nm.Notethatthe photocatalyticRhB(aq)degradationperformanceoftheAbTi-400 sampleisnotreportedinFig.7.Thisisduetothefactthatsuchlow calcinationtemperaturesdonotallowthecompleteremovalofthe biotemplatewhichinturn,leadstotheformationofgrainswithlow materialdensitythatcanfloatonthetopoftheRhB(aq)solution preventingtheirhomogenousmixinganduniformirradiation.

Asastandardcontrolexperiment,measureddecreaseinRhB concentrationoftheRhB(aq)solutionunderUVAirradiationinthe absenceofacatalystwasalsomonitoredinordertoinvestigatethe non-catalyticselfphotodegradationoftheRhBdye(Fig.7a).Ascan beseeninFig.7a,within500–800C,increasingcalcinationtem- peratureleadstoamonotonicenhancementinthephotocatalytic RhB(aq)degradation.However,calcinationathighertemperatures suchas900CresultsinanattenuationofthephotocatalyticRhB (aq)decompositionperformance.Basedonthestructuralcharac- terizationdataprovidedinFig.6andtheliquidphasephotocatalytic activitydatagiveninFig.7,itcanberealisedthattheoptimum photocatalyst samplefor RhB (aq) degradation (i.e.AbTi-800)is comprisedofbothanataseandrutiledomainswithaspecificsur- faceareaofca.7–8m2/g.Itisalsoapparentthatthemonotonic increaseinthephotocatalyticRhB(aq)decompositionperformance within500–800Cisconcomitanttotheincreaseinthecrystallinity aswellastheaveragesizeoftheanatasedomains,wherethelatter convergestoca.30nmfortheAbTi-800sample.Fig.6alsosuggests thattheAbTi-800sampleiscomprisedof94.9%anataseand5.1%

rutilebymass.Ontheotherhand,atelevatedcalcinationtempera- turessuchas900C,relativerutilemassfractionincreasestovalues abovetheoptimalvalue,leadingtoattenuationinthephotocat- alyticperformance(Figs.6and7).Itisapparentthattheoptimum bio-templatedphotocatalyststudiedinthecurrentworkforthe RhB (aq) degradation processes possesses co-existing anatase and rutile domains functioning in a synergistic manner with

(6)

164 D.A.Erdogan,E.Ozensoy/AppliedSurfaceScience403(2017)159–167

Fig.4.SEMimagesofthebiotemplatedTiO2microspherescalcinedfor2.5hinairat(a)800C(lowmagnificationimage,AbTi-800)(b)600C(AbTi-600),and(c,d,and f)800C(AbTi-800).Image(d)alsoemphasizestheSEMimageshowingthedetailedmorphologyoftheAbTi-800pollensurfaceexhibitingaporousandacorrugatedTiO2

overlayerstructure.(e)EDXspectraobtainedfromthecircledregionslabelledas1,2,3in(f).

Fig.5.(a)XRDpatternsand(b)theRamanspectraofthebiotemplatedTiO2microspherescalcinedat400,500,600,700,800,and900Cfor2.5hinairaftercoating.“A”and

“R”letterscorrespondtoanataseandrutilephases;respectively(seetextfordetails).

(7)

Fig.6.VariationoftheanataseandrutileaveragecrystallitesizesandmassfractionsonthecoatedAbTisamplesasafunctionofcalcinationtemperature.

Fig.7. (a)PhotocatalyticRhB(aq)degradationperformanceofbiotemplatedTiO2microspheresunderUVAilluminationatroomtemperature.Measurementlabelledasthe

“RhBSolution”wasperformedintheabsenceofaphotocatalystunderUVAirradiation.(b)Time-dependentUV–visabsorptionspectraoftheAbTi-800sampleduringthe photocatalyticRhB(aq)degradationprocess.

particularcrystallitesizesandauniquemassfraction.Thisobser- vationisinperfectagreementwithformerphotocatalyticstudies onotherTiO2-basedsystemsintheliterature[40–42].Itshould benotedthatthephotocatalyticactivityofAbTisystemsaretyp- icallylowerthanthatofaconventionalbenchmarkcatalystsuch asDegussaP25revealing%photonicefficienciesof0.45and0.11 forNO2(g)productionandNOxstorage;respectively.Thiscanbe attributedtothehigherSSAofP25(ca.50m2/g).

Afterhavingdemonstratedthephotocatalyticwaterpurifica- tioncapabilitiesoftheAb-tempaltedTiO2microspheresunderUVA irradiation,weperformedfurtherstudiesinordertoestablishthe photocatalyticactivityofthisnewfamilyofmaterialsinphotocat-

alyticairpurificationapplications.Alongtheselines,photocatalytic NO(g)oxidationandstorageexperimentswerecarriedoutusinga custom-madephotocatalyticflow reactorunderUVA irradiation [8–10].Fig.8presentsresultsofthesegasphasephotocatalytic activitytests.Theresultingtypicaltime-dependentconcentration profilesforthephotocatalyticNOoxidativestorageexperimentis alsoshownintheinsetofFig.8.InthehistogramsofFig.8,per centphotonicefficiencyvaluesfortotalNOxremoval(bluebars) andNO2production(redbars)areshown.Itisworthmentioning thatanidealphotocatalystforgasphaseDeNOxapplicationsshould exhibita highNOx(g)storage/removalefficiencyaswellaslow NO2(g)generation/releasecharacteristics.Photocatalyticoxidative

(8)

166 D.A.Erdogan,E.Ozensoy/AppliedSurfaceScience403(2017)159–167

Fig.8. PhotocatalyticNO(g)oxidationandstorageperformanceresultsobtainedviaUVAirradiationatroomtemperatureforbiotemplatedTiO2microspheresinitially calcinedatvarioustemperatures(insetshowsthetypicaltime-dependentconcentrationprofilesfortotalNOx(g),NO(g),andNO2(g)overAbTi-600.(Forinterpretationofthe referencestocolourintext,thereaderisreferredtothewebversionofthisarticle.)

storageofNO(g)includesoxidationsteps[11,34,43,44]involving theformationofNO2(g),wheretheeventualstorageofNOxspecies onthecatalystsurfacemayoccurintheformofchemisorbedNO, NO2/NO2,N2O,andNO3.Thus,maximizingtheoxidativeNOx storageatthesolidstate,whilesimultaneouslyminimizingthegas phasereleaseoftoxicNO2(g)requiresoptimizationofthechemical, electronicandsurfacestructureofthephotocatalysts.

Alongtheselines,photocatalyticDeNOxperformanceofthesyn- thesizedAbTi photocatalysts were investigated asa function of thecalcinationtemperatureusedinthesyntheticprotocol,inan attempttomonitorthestructure-functionalityrelationships.Pho- tocatalyticactivitydatapresentedinFig.8canbeanalysedinthe lightofthesearguments(Figs.1–6).Itisapparentthatunlikethe liquidphaseRhB(aq)degradationresultsgiveninFig.7,suggesting AbTi-800astheoptimumcatalystintheliquidphase,Fig.8shows thatAbTi-800haslimitedphotocatalyticNOxabatementcapability ingasphase.Thisobservationmaysuggestrelativelydifferentreac- tionmechanismsandinvolvementofdissimilaractivesitesforthe photocatalyticliquidphasewaterpurificationprocessesascom- paredtothegasphasephotocatalyticDeNOxprocessesoccurring onthesamecatalystsurface.

The highest total photocatalytic gas phase activity can be assignedtotheAbTi-600catalystgivenin Fig.8 duetothefact thatthiscatalyst revealsmaximumNOxremoval efficiencyand maximum photocatalyticoxidation of NO(g) toNO2(g). On the otherhand,AbTi-600shouldnotbeidentifiedasthephotocata- lystofchoiceduetoitshighNO2(g)releasetotheatmosphere.

Comparisonof theAbTi-600catalyst withAbTi-500 revealsthat theAbTi-500hasacomparableNOxstorageefficiencytothatof theAbTi-600catalyst,whileexhibitingmuchlowerNO2(g)release.

Hence,AbTi-500canbeconsideredasthepreferablecatalyst in theseriesforgasphasephotocatalyticDeNOx applications.It is likelythatthegasphasephotocatalyticoxidationofNO(g)requires thepresenceoforderedanatasedomains,whilepreventionofthe NO2(g)sliptotheatmosphererequiresaporous/highsurfacearea catalystthatcanoptimizecapture/adsorption/solidstatestorage ofthegeneratedNO2(g).Thisisconsistentwiththeobservation thattheAbTi-400catalystobtainedaftera low-temperaturecal- cinationstephaslimitedNOxremovalefficiencyaswellaslow NO2(g)production,duetothelackoforderedanatasedomainsand

presenceofsmallanataseparticlesanddisordered(amorphous) domains.Inotherwords,themainreasonforthepoorperformance ofAbTi-400seemstobeitslimitedphotocatalyticoxidationcapa- bilityratherthanitslackofsurfaceareaforNOxstorage.Incontrast, forthecatalystscalcinedatT≥700C,themaincatalyticdisadvan- tagecouldbeshrinkingofthepollensathightemperatures(i.e.

decreaseintheavailablesurfacesitesforadsorptionandstorage ofoxidizedNOxspecies)anddecreaseinthenumberofexposed activesites,whichinturnhinderthestorageofphotocatalytically producedNO2species,resultingindetrimentalNO2releasetothe atmosphere.Comparisonoftheliquidphasephotocatalyticactiv- ityofAbTisystemswiththatofabenchmarkcatalyst(i.e.Degussa P25)revealsthatthelattersystemhasahigherphotocatalyticactiv- ity,where100%decolourizationefficiencycanbereachedafterca.

70min.Thisobservationcanbeassociatedwiththehighersurface areaofthelattersystem.

4. Conclusions

A novel biotemplate-based photocatalytic material platform wassynthesizedbyutilizingAmbrosiatrifida(Ab,Giantragweed) pollenastheinitialbiologicalsupportsurface.Structuralcharac- terizationofthesynthesizedbiotemplatedTiO2microsphereswas performedusingSEM-EDX,Ramanspectroscopy,and XRDtech- niques.Photocatalyticfunctionality ofthesynthesizedmaterials wasdemonstrated both in gasphase (via photocatalytic oxida- tiveNOxstorage)as wellasin liquid phase (viaphotocatalytic Rhodamine B(aq)degradation)asa function ofthecalcination temperatureusedinthesyntheticprotocol.Optimumcatalystfor RhB(aq)photocatalyticdegradationintheliquidphasewasfound tobeAbTi-800,whiletheoptimumcatalystforgasphasephotocat- alyticoxidativeNOxstoragewasAbTi-500;emphasizingdifferent structural/functionalrequirementsfordifferentcatalyticreactions occurringonthesamecatalyticsurface.Thesyntheticapproach presentedhereinoffersnewopportunitiesforobtainingadvanced functionalmaterialswhichcanhavepotentialprospectiveapplica- tionsinmicroreactorsystems,adsorbents,drugdeliverysystems, catalyticprocesses,andsensortechnologies.

(9)

Acknowledgments

EOacknowledgesfinancialsupportfrom“TheScienceAcademy”

(Turkey) through “Young Scientists Award Program (BAGEP)”.

AuthorsalsoacknowledgethescientificcollaborationwithTARLA projectfoundedbytheMinistryofDevelopmentofTurkeyunder grantnoDPT2006K-120470.

References

[1]F.Dong,Y.Sun,M.Fu,W.Ho,S.C.Lee,Z.Wu,NovelinsituN-doped(BiO)2CO 3hierarchicalmicrospheresself-assembledbynanosheetsasefficientand durablevisiblelightdrivenphotocatalyst,Langmiur28(2012)766–773.

[2]F.Dong,S.C.Lee,Z.Wu,Y.Huang,M.Fu,W.Ho,S.Zou,B.Wang,Rose-like monodispersebismuthsubcarbonatehierarchicalhollowmicrospheres:

one-pottemplate-freefabricationandexcellentvisiblelightphotocatalytic activityandphotochemicalstabilityforNOremovalinindoorair,J.Hazard.

Mater.195(2011)346–354.

[3]S.Shen,M.Burton,B.Jobson,L.Haselbach,Perviousconcretewithtitanium dioxideasaphotocatalystcompoundforagreenerurbanroadenvironment, Constr.Build.Mater.35(2012)874–883.

[4]S.W.Verbruggen,TiO2photocatalysisforthedegradationofpollutantsingas phase:frommorphologicaldesigntoplasmonicenhancement,J.Photochem.

Photobiol.CPhotochem.Rev.24(2015)64–82.

[5]X.Shao,W.Lu,R.Zhang,F.Pan,C.Tio,EnhancedphotocatalyticactivityofTiO 2−Chybridaerogelsformethylenebluedegradation,Sci.Rep.3(2013)1–9.

[6]D.A.Erdogan,M.Sevim,E.Kısa,D.B.Emiroglu,M.Karatok,E.I.Vovk,M.

Bjerring,Ü.Akbey,Ö.Metin,E.Ozensoy,Photocatalyticactivityofmesoporous graphiticcarbonnitride(mpg-C3N4)towardsorganicchromophoresunder UVandVISlightillumination,Top.Catal.59(2016)1305–1318.

[7]D.A.Erdogan,T.Solouki,E.Ozensoy,Aversatilebio-inspiredmaterial platformforcatalyticapplications:micron-sizedbuckyball-shapedTiO2 structures,RSCAdv.5(2015)47174–47182.

[8]D.A.Erdogan,M.Polat,R.Garifullin,M.O.Guler,E.Ozensoy,Thermal evolutionofstructureandphotocatalyticactivityinpolymermicrosphere templatedTiO2microbowls,Appl.Surf.Sci.308(2014)50–57.

[9]A.M.Soylu,M.Polat,D.A.Erdogan,Z.Say,C.Yildirim,Ö.Birer,E.Ozensoy, TiO2-Al2O3binarymixedoxidesurfacesforphotocatalyticNOxabatement, Appl.Surf.Sci.318(2014)142–149.

[10]M.Polat,A.M.Soylu,D.A.Erdogan,H.Erguven,E.I.Vovk,E.Ozensoy,Influence ofthesol-gelpreparationmethodonthephotocatalyticNOoxidation performanceofTiO2/Al2O3binaryoxides,Catal.Today241(2015)25–32.

[11]W.Lu,A.D.Olaitan,M.R.Brantley,B.Zekavat,D.A.Erdogan,E.Ozensoy,T.

Solouki,Photocatalyticconversionofnitricoxideontitaniumdioxide:

cryotrappingofreactionproductsforonlinemonitoringbymass spectrometry,J.Phys.Chem.C120(2016)8056–8067.

[12]G.Shi,B.Zhang,X.Xu,Y.Fu,Grapheneoxidecoatedcoordinationpolymer nanobeltcompositematerial:anewtypeofvisiblelightactiveandhighly efficientphotocatalystfor,DaltonTrans.44(2015)11155–11164.

[13]Q.Zhang,Y.Huang,L.Xu,J.Cao,W.Ho,S.C.Lee,Visible-light-activeplasmonic Ag-SrTiO3nanocompositesforthedegradationofNOinairwithhigh selectivity,ACSAppl.Mater.Interfaces8(2016)4165–4174.

[14]Y.Zhu,P.Wu,S.Yang,Y.Lu,W.Li,RSCadvancessynergeticeffectof functionalizedcarbonnanotubesonZnCr−mixedmetaloxidesforenhanced solarlight-drivenphotocatalyticperformance†,RSCAdv.6(2016) 37689–37700.

[15]L.Pan,T.Muhammad,L.Ma,Z.Huang,S.Wang,L.Wang,J.Zou,X.Zhang, MOF-derivedC-dopedZnOpreparedviaatwo-stepcalcinationforefficient photocatalysis,Appl.Catal.BEnviron.189(2016)181–191.

[16]G.Meenakshi,A.Sivasamy,G.A.S.Josephine,S.Kavithaa,Preparation, characterizationandenhancedphotocatalyticactivitiesofzincoxidenano rods/siliconcarbidecompositeunderUVandvisiblelightirradiations,J.Mol.

Catal.AChem.411(2016)167–178.

[17]G.Jiang,X.Zheng,Y.Wang,T.Li,X.Sun,Photo-degradationofmethyleneblue bymulti-walledcarbonnanotubes/TiO2composites,PowderTechnol.207 (2011)465–469.

[18]H.Guo,J.Chen,W.Weng,S.Li,HydrothermalsynthesisofC-dopedZn3(OH) 2V2O7nanorodsandtheirphotocatalyticpropertiesundervisiblelight illumination,Appl.Surf.Sci.257(2011)3920–3923.

[19]A.Fujishima,K.Honda,Electrochemicalphotolysisofwaterata semiconductorelectrode,Nature238(1972)37–38.

[20]K.Nakata,A.Fujishima,TiO2photocatalysis:designandapplications,J Photochem.Photobiol.CPhotochem.Rev.13(2012)169–189.

[21]R.Daghrir,P.Drogui,D.Robert,ModifiedTiO2forenvironmental photocatalyticapplications:areview,Ind.Eng.Chem.Res.52(2013) 3581–3599.

[22]J.Tian,Z.Zhao,A.Kumar,R.I.Boughton,H.Liu,Recentprogressindesign, synthesis,andapplicationsofone-dimensionalTiO2nanostructuredsurface heterostructures:areview,Chem.Soc.Rev.43(2014)6920–6937.

[23]J.Shi,S.Chen,Z.Ye,S.Wang,P.Wu,FavorablerecyclingphotocatalystTiO 2/CFA:effectsofloadingpercentofTiO2onthestructuralpropertyand photocatalyticactivity,Appl.Surf.Sci.257(2010)1068–1074.

[24]A.Simpraditpan,T.Wirunmongkol,S.Pavasupree,W.Pecharapa,Effectof calcinationtemperatureonstructuralandphotocatalystpropertiesof nanofiberspreparedfromlow-costnaturalilmenitemineralbysimple hydrothermalmethod,Mater.Res.Bull.48(2013)3211–3217.

[25]Y.Obukuro,S.Matsushima,K.Obata,T.Suzuki,M.Arai,EffectsofLadopingon structural,optical,electronicpropertiesofSr2Bi2O5photocatalyst,J.Alloys Compd.658(2016)139–146.

[26]Y.J.Kim,X.Xing,D.-Y.Choi,C.-H.Hwang,C.Choi,G.Kim,S.Jin,K.-J.Hwang, J.-Y.Park,Studyofthephotocatalyticpropertiesofbio-mimickedhollowSnO 2microstructuressynthesizedwithCeibapentandra(L.)Gaertn.(kapok)asa naturaltemplate,NewJ.Chem.39(2015)7754–7758.

[27]B.Li,J.Zhao,J.Liu,X.Shen,S.Mo,H.Tong,Bio-templatedsynthesisof hierarchicallyorderedmacro-mesoporousanatasetitaniumdioxideflakes withhighphotocatalyticactivity,RSCAdv.5(2015)15572–15578.

[28]G.Xiao,X.Huang,X.Liao,B.Shi,One-potfacilesynthesisofcerium-dopedTiO 2mesoporousnanobersusingcollagenfiberasthebiotemplateandits applicationinvisiblelightphotocatalysis,J.Phys.Chem.C(2013)9739–9746.

[29]A.AhamedFazil,J.UdayaBhanu,A.Amutha,S.Joicy,N.Ponpandian,S.

Amirthapandian,B.K.Panigrahi,P.Thangadurai,Afacilebio-replicated synthesisofSnO2motifswithporoussurfacebyusingpollengrainsof Peltophorumpterocarpumasatemplate,MicroporousMesoporousMater.

212(2015)91–99.

[30]F.Cao,D.-X.Li,Morphology-controlledsynthesisofSiO2hollowmicrospheres usingpollengrainasabiotemplate,Biomed.Mater.4(2009)25009.

[31]Z.He,W.Que,Y.He,Synthesisandcharacterizationofbioinspired

hierarchicalmesoporousTiO2photocatalysts,Mater.Lett.94(2013)136–139.

[32]J.Qian,Z.Chen,C.Liu,X.Lu,F.Wang,M.Wang,Improvedvisible-light-driven photocatalyticactivityofCeO2microspheresobtainedbyusinglotusflower pollenasbiotemplate,Mater.Sci.Semicond.Process.25(2014)27–33.

[33]W.Zhu,H.Huang,W.Zhang,X.Tao,Y.Gan,Y.Xia,H.Yang,X.Guo,Synthesis ofMnO/Ccompositesderivedfrompollentemplateforadvancedlithium-ion batteries,Electrochim.Acta152(2015)286–293.

[34]A.Mills,S.Elouali,ThenitricoxideISOphotocatalyticreactorsystem:

measurementofNOxremovalactivityandcapacity,J.Photochem.Photobiol.

AChem.305(2015)29–36.

[35]B.J.Howlett,R.B.Knox,J.Heslop-Harrison,Pollen-wallproteins:releaseofthe allergenantigenefromintineandexinesitesinpollengrainsofragweedand cosmos,J.CellSci.13(1973)603–619.

[36]S.L.Atkin,S.Barrier,Z.Cui,P.D.I.Fletcher,G.Mackenzie,V.Panel,V.Sol,X.

Zhang,UVandvisiblelightscreeningbyindividualsporopolleninexines derivedfromLycopodiumclavatum(clubmoss)andAmbrosiatrifida(giant ragweed),J.Photochem.Photobiol.BBiol.102(2011)209–217.

[37]R.A.Spurr,H.Myers,Quantitativeanalysisofanatase-rutilemixtureswithan X-raydiffractometer,Anal.Chem.29(1957)760–762.

[38]P.Scherrer,BestimmungderGrößeundderinnerenStrukturvon KolloidteilchenmittelsRöntgenstrahlen,GöttingerNachrichtenGesell2 (1918)98–100.

[39]M. ˇCerná,M.Vesel ´y,P.Dzik,C.Guillard,E.Puzenat,M.Lepiˇcová,Fabrication, characterizationandphotocatalyticactivityofTiO2layerspreparedbyinkjet printingofstabilizednanocrystallinesuspensions,Appl.Catal.BEnviron.138 (2013)84–94.

[40]Z.G.Xiong,H.Wu,L.H.Zhang,Y.Gu,X.S.Zhao,SynthesisofTiO2with controllableratioofanatasetorutile,J.Mater.Chem.A2(2014)9291–9297.

[41]S.Li,J.Chen,F.Zheng,Y.Li,F.Huang,Synthesisofthedouble-shell anatase-rutileTiO2hollowsphereswithenhancedphotocatalyticactivity, Nanoscale5(2013)12150–12155.

[42]C.C.Pei,W.W.F.Leung,Enhancedphotocatalyticactivityofelectrospun TiO2/ZnOnanofiberswithoptimalanatase/rutileratio,Catal.Commun.37 (2013)100–104.

[43]M.M.Ballari,Q.L.Yu,H.J.H.Brouwers,ExperimentalstudyoftheNOandNO2 degradationbyphotocatalyticallyactiveconcrete,Catal.Today161(2011) 175–180.

[44]X.Ding,X.Song,P.Li,Z.Ai,L.Zhang,Efficientvisiblelightdriven photocatalyticremovalofNOwithaerosolflowsynthesizedB,N-codoped TiO2hollowspheres,J.Hazard.Mater.190(2011)604–612.

Referenties

GERELATEERDE DOCUMENTEN

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

In this paper we propose a sub- space projection-based approach which improves the output performance of the blind LCMV beamformer based on the projection of the individual

3p 9 Geef de vergelijking van de reactie van calciumcarbonaat met opgelost salpeterzuur waarbij onder andere CO 2 en opgelost calciumnitraat ontstaan. In het experiment in

De bodem van het meer bestaat uit poreuze klei, dat veel calciet ( CaCO 3 ) bevat.. Het bodemvocht in de poriën van de klei heeft een pH van rond

Both methods may have their advantages and disadvantages depending on the usage and many examples for both are available in literature [9–12]. An efficient approach, used for

Influence of the calcination temperature on the structural properties and the photocatalytic activity of these systems under UVA excitation were investigated both in the gas phase

Using theoretical arguments and Monte Carlo simulations of a classical XY-model confined to a sur- face with zero Gaussian and finite mean curvature, we showed that: (i) the XY-model

Together, the four observations presented in this Letter, (i) the low-velocity increase in friction, (ii) the new lattice period in the stick-slip motion, different from that