• No results found

University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sambathkumar, R. (2017). Development of MAPC derived induced endodermal progenitors: Generation of pancreatic beta cells and hepatocytes. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

    177          

 

Chapter  6  

 

 

 

 

 

 

 General  Conclusions  and  Future  Perspectives  

 

 

                                       

(3)

 

Chapter  6  

 

6.  General  Conclusions  and  Future  Perspectives    

In  the  field  of  regenerative  medicine,  numerous  groups  are  in  search  of  novel  and   renewable   cell   sources   to   generate   mature   functional   insulin   producing   β-­‐cells   to   treat   diabetes.   Likewise,   renewable   sources   of   hepatocytes   are   also   highly   sought   after  for  pharmaceutical  studies  as  well  as  regenerative  medicine.      

(6.1)   In   the   first   part   of   this   thesis,   I   tested   if   human   MAPCs,   that   can   be   easily   isolated  from  bone  marrow  and  expanded  for  up  to  70  population  doublings  could   be  used  to  create  these  cell  types.    

In  contrast  to  rodent  MAPCs,  that  generate  hepatocyte-­‐like  cells  and  β-­‐cell-­‐like  cells,   human  MAPCs  are  less  potent.  Therefore,  I  addressed  the  question  by  developing  a   method  to  transdifferentiate  hMAPCs  into  a  population  of  expandable  endodermal   progenitors  that  can  subsequently  be  differentiated  to  β-­‐cells  and  /  or  hepatocytes.       Initially   I   selected   16   TFs   based   on   their   role   in   the   endodermal   lineage   cell   fate   specification.   Upon   transduction   in   MAPC   and   culture   in   supportive   medium,   epithelial   clusters   of   cuboidal   cells   could   be   found,   accompanied   by   expression   of   endodermal   but   also   more   mature   hepatocyte   markers.   Based   on   insight   from   studies   of   direct   reprogramming   of   fibroblasts   into   induced   hepatocyte   like   cells   (iHEPs)  we  concluded  that  transduction  of  FOXA2  and  HNF1A  as  part  of  the  16TFs   might   be   responsible   for   the   generation   of   cells   already   fated   to   the   hepatocyte   lineage.   Therefore,   I   removed   FOXA2   and   HNF1A   from   the   pool   of   16   TFs,   and   transduced   hMAPCs   with   14TFs.   This   caused   the   generation   of   cuboidal   epithelial   cells   that   expressed   definitive   endoderm   markers   but   not   express   late   mature   hepatic  and  pancreatic  endoderm  markers.  The  resultant  cells  could  be  expanded  up   to  20  passages  without  significant  changes  in  the  expressed  gene  profile,  and  were   named  iENDO  cells.    

We   tested   if   the   removal   of   the   four   pluripotency   factors,   OCT4,   SOX2,   KLF4   and   CMYC  would  allow  generation  of  iENDO  cells,  but  found  none  of  the  morphological   and  gene  expression  changes  that  were  seen  when  14  or  16TFs  were  used.  However,  

(4)

         Chapter  6                                                                                                                  General  conclusion  and  Future  perspectives                      

 

  179  

factors  and  cultured  in  the  same  induction  medium,  cuboidal  epithelial  cells  could  be   seen,  but  the  cells  did  not  express  endodermal  markers  and  could  not  be  expanded.   Finally,  we  found  that  the  endodermal  induction  medium  containing  Activin-­‐A  and   Wnt3A,  low  concentration  BMP4  was  essential  for  the  generation  of  iENDO  cells  in   combination  with  the  14TFs.  It  should  be  noted  that  the  endodermal  medium  alone   did  not  induce  an  iENDO  phenotype  in  hMAPCs.  

Thus,  a  combination  of  pluripotency  factors  and  10  other  endodermal  TFs  as  well  as   the  endoderm  supportive  medium  are  required  for  creation  of  iENDO  cells.  Future   studies  should  address  if  the  14TF  combination  can  be  further  reduced,  which  might   be   possible   based   on   studies   wherein   a   single   TF   at   the   time   was   removed,   demonstrating   that   only   removal   of   HNF6   prevented   creation   of   cuboidal   cells   (Supplementary  figure-­‐1  A-­‐C).  To  perform  such  studies  I  hypothesized  that  creating  a   MAPC   line   using   CRISPR-­‐Cas9   nucleases   mediated   knock-­‐in   reporter,   knock-­‐in   of   a   fluorochrome  in  the  SOX17  or  FOXA2  gene  locus  (without  affecting  the  transcription   of  the  gene)  might  enable  the  identification  of  the  importance  and  the  role  of  the  9   other  endodermal  TFs  in  the  creation  of  iENDO  cells  with  a  minimal  complement  of   TFs.  

I  demonstrated  that  14TF  iENDO  cells  grafted  in  Immunodeficient  mice  form  highly   vascularized   tumors   that   contain   only   endodermal   lineage   restricted   cell   types,   including   hepatocytes   or   pancreatic   endocrine   cells,   and   less   frequently   intestinal   cell  types.  However,  the  in  vivo  differentiation  varied  between  grafts.  For  example  in   one   mouse   hepatic   endoderm   was   dominant   while   in   another   mouse   pancreatic   endoderm   and   intestinal   cell   types   were   dominant,   but   less   hepatic   endoderm.   Blood  of  grafted  mice  contained  human  albumin  1  and  3  months  after  grafting  but   negligible  amounts  of  C-­‐peptide.  For  a  more  reliable  comparison  with  other  studies  it   will  be  necessary  to  measure  human  albumin  serum  levels  weekly.  The  differences  in   differentiation  in  vitro  could  be  due  to  the  heterogeneity  of  iENDO  cells.  In  addition,   it   is   not   known   yet   which   factors   drive   in   vivo   differentiation   of   iENDO   cells   into   different  endodermal  cell  types.  Future  research  will  be  required  wherein  more  mice   are   grafted   to   gain   insight   in   the   mechanisms   underlying   spontaneous  

(5)

         Chapter  6                                                                                                                  General  conclusion  and  Future  perspectives                      

  differentiation,  and  using  FACS  purified  CXCR4  positive  iENDO  cells,  to  decrease  the   heterogeneity  of  the  cells  grafted.    

It  is  highly  likely  that  the  tumor  formation  is  caused  by  the  persistent  expression  of   the   OCT4   transgene   in   the   grafted   iENDO   cells.   To   overcome   this   problem,   future   research   should   test   if   iENDO   cells   can   be   generated   using   doxycycline-­‐controlled   expression  of  (OCT4,  SOX2  KLF4  and  CMYC)  allowing  eliminating  expression  of  OCT4   in  grafted  cells  by  omitting  docycycline.  I  hypothesize  that  this  would  prevent  tumor   formation.   However,   unknown   is   whether   this   would   also   prevent   endodermal   differentiation  and  maturation.  

Based   on   the   in   vivo   differentiation   potential   of   iENDO   cells,   I   investigated   the   in   vitro   differentiation   of   iENDO   cells   in   3D   organoids   to   hepatocyte-­‐like   cells   and   pancreatic   endocrine   cells   using   modifications   of   established   differentiation   protocols.  Differentiated  cells  expressed  hepatic  and  pancreatic  endocrine  markers   at  levels  relatively  similar  to  those  of  hESC  differentiated  into  the  same  cells  types.   However,   functional   mature   hepatocyte   and   β-­‐cell   markers   were   not   expressed   at   the   same   level   in   iENDO-­‐differentiated   cells   compared   to   the   primary   hepatocytes  

and  primary  human  islets.  The  immature  phenotype  of  iENDO  cells  could  be  caused  

by   the   persistent   expression   of   OCT4.   In   addition,   at   least   for   stem   cell   derived   hepatocytes,   differentiated   human   PSCs   also   do   not   yet   generate   fully   functional   hepatocytes.  Therefore,  further  improved  differentiation  protocols  will  be  required,   for   example   by   adding   small   molecules   and   missing   growth   factors,   metabolic   regulators,   overexpression   of   missing   TFs   and   non-­‐coding   microRNAs,   epigenetic   modifiers,   and   /   or   changing   the   extracellular   matrix.   Furthermore,   co-­‐culture   of   iENDO   cells   with   other   cell   types   (such   as   organ   specific   mesenchymal   cells   and   endothelial  cells)  present  during  in  vivo  liver  and  pancreas  development  might  have   a   positive   influence   on   maturation.   Once   more   mature   cells   can   be   generated,   functional   maturity   should   be   shown   by   C-­‐peptide   or   insulin   secretion   following   glucose  stimulated  for  β-­‐cells;  and  phase  I  and  II  detoxification  assays,  glycogen,  urea   production,  coagulation  factor  production,  should  be  done  to  determine  functional   hepatocyte   generation.   Finally,   transplantation   of   predifferentiated   iENDO  

(6)

         Chapter  6                                                                                                                  General  conclusion  and  Future  perspectives                      

 

  181  

hepatocyte-­‐like   and   β-­‐cell   like   cells   will   be   needed   to   demonstrate   their   functionality.  

Preliminary   studies   suggested   that   hepatocyte   committed   iENDO   progeny   did   not   result  in  the  formation  of  big  tumors,  suggesting  that  the  in  vitro  pre-­‐differentiation   reduced  the  uncontrolled  cell  proliferation.  Immunostaining  revealed  that  the  grafts   contained  a  high  number  of  ALB  expressing  cells  and  lower  levels  of  AFP,  suggesting   that  in  vivo  maturation  did  take  place.  However,  OCT4  positive  cells  were  still  found   in  the  grafts.  However,  additional  mice  will  be  required  for  full  enumeration  of  the   different  cells  present  in  the  grafts  

Once  we  can  demonstrate  that  switching  off  OCT4  does  not  interfere  with  the  final   maturation  of  iENDO  hepatocytes,  it  will  be  of  interest  to  test  of  iENDO-­‐hepatocyte   like   cells   can   repopulate   an   injured   mouse   liver,   using   for   instance   Alb-­‐uPA   mice  

(Urokinase   plasminogen   activator)/SCID   mice   or  Fah−/−/Rag2−/−/Il2rg−/−   mice   (FRG  

mice)   or   chemically   induced   liver   injury   mice   (Retrosine,   CCL4,   or   other   chemical  

xenobiotics  mouse  models).    

For  iENDO  cells  differentiated  to  β-­‐cell  like  cells  in  vitro,  transplantation  of  organoids   with  or  without  alginate  encapsulation,  in  diabetic  or  non-­‐diabetic  mice  is  ongoing.   Gene  expression  and  immunostaining  of  the  grafts  should  be  conducted  to  define  if   further   maturation   is   seen   in   vivo,   as   we   found   for   iENDO   cells   committed   to   the   hepatocyte  lineage.  In  addition,  glucose  responsiveness  of  the  mice  and  rescue  from   diabetes  should  be  analyzed.  In  addition,  future  studies  should  also  test  the  ability  of   pancreas   committed   iENDO   cells   wherein   the   OCT4   gene   can   be   switched   off   can   mature  to  functional    β-­‐cells  in  vivo.  

Overall,  I  can  conclude  that  hMAPC  cells  can  be  transdifferentiated  into  expandable   iENDO  cells.  In  vivo,  iENDO  cells  can  differentiate  towards  more  mature  endodermal   cell   types,   but   with   the   formation   of   an   endodermal   tumor.   iENDO   cells   can   also   differentiate  towards  pancreatic  endocrine-­‐like  cells  and  hepatocyte-­‐like  cells  in  3D-­‐ spheroid  cultures  in  vitro,  although  the  cells  remain  immature.    

   

(7)

         Chapter  6                                                                                                                  General  conclusion  and  Future  perspectives                      

 

(6.2)  Epigenetic  induction  of  definitive  and  pancreatic  endoderm  cells  fate  (linked   to  chapter  4)  

A  number  of  studies  have  shown  that  pre-­‐treatment  of  fibroblasts  or  other  somatic   cells   with   epigenetic   modifiers   prior   to   TF   overexpression   or   addition   of   small   molecules   after   TF   overexpression   can   promote   iPSCs   generation   and   direct   reprogramming   of   one   somatic   cell   into   another.   In   mice   and   rats   pancreatic   and   non-­‐pancreatic   endodermal   cells   types   can   be   reprogrammed   into   cells   with   some   insulin   producing   β-­‐cell   features   by   overexpression   of   three   key   pancreatic   TFs,   PDX1,  NGN3  and  MAFA.  However,  overexpression  of  these  TFs  in  mouse  and  human   fibroblasts  have  not  succeeded  in  the  creation  of  β-­‐cells  till  now.  To  overcome  this   problem   several   studies   have   tested   if   mouse   and   human   fibroblasts   can   be   reprogrammed  into  pancreatic  β  cells  by  a  combination  of  epigenetic  modifiers  and   specific   culture   media   alone   and/or   in   combination   with   transient   expression   of   pluripotency  TFs.  However,  these  studies  were  performed  using  embryonic  origin  of   fibroblasts   and   it   is   not   known   yet   whether   this   might   also   work   for   adult   human   fibroblasts.  

In   this   thesis,   I   demonstrated   that   the   histone   deacetylase   inhibitor   (HDACi),   Trichostatin   A   (TSA)   combined   with   the   chromatin   remodeling   medium   (CRM)   can   induce  transiently  the  expression  of  definitive  endoderm  and  pancreatic  endoderm   markers   in   adult   human   fibroblasts   and   this   without   inducing   pluripotency,   hepatocyte   and   endothelial   markers,   even   if   the   skeletal   muscle   master   gene,   MYOD1,  was  also  induced.    Combining  TSA  with  the  DNA  methyltransferase  inhibitor   (DNMTi),   5’Azacytidine   (5’AZA),   did   not   increase   the   expression   levels   of   the   endodermal   and   pancreatic   genes   compared   to   TSA   treatment   alone.   However,   removal  of  TSA  and  CRM  caused  gene  expression  to  return  to  baseline.  

Therefore,   I   hypothesize   that   to   convert   adult   fibroblasts   permanently   into   insulin   producing   functional   β   cells,   overexpression   of   key   pancreatic   β-­‐cell   TFs   such   as   PDX1,  NGN3,  MAFA  and  PAX4,  NKX6.1  and  /  or  NEUROD1  before  or  after  addition  of   the  epigenetic  modifier,  TSA,  and  culture  in  β-­‐cell  specific  conditions  may  promote   generation  of  insulin  producing  β-­‐cells  from  adult  fibroblasts.  Likewise  it  will  be  of  

(8)

         Chapter  6                                                                                                                  General  conclusion  and  Future  perspectives                      

 

  183  

with  the  TFs  used  to  create  iENDO  cells  in  Chapter  3  would  enhance  the  ability  to   transdifferentiate   hMAPCs   in   iENDO   cells   and   subsequently   in   mature   endodermal   progeny.

Referenties

GERELATEERDE DOCUMENTEN

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the

Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)..

Duration of antibiotic treatment and symptom recovery in community-acquired pneumonia.. El

The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an

Nadat hij dit voorbeeld behandeld had, wierp Fourier de vraag op of men ook een willekeurige periodieke functie f (t) – stel voor de eenvoud maar weer dat de periode van die functie

Mijn dank gaat in eerste instantie uit naar alle studenten theaterweten- schap van de Universiteit van Amsterdam die in de loop van vier jaar door hun deelname aan het onderwijs