• No results found

Numerical investigation of collision dynamics of wet particles via force balance

N/A
N/A
Protected

Academic year: 2021

Share "Numerical investigation of collision dynamics of wet particles via force balance"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

via force balance

Citation for published version (APA):

Buck, B., Lunewski, J., Tang, Y., Deen, N. G., Kuipers, J. A. M., & Heinrich, S. (2018). Numerical investigation of

collision dynamics of wet particles via force balance. Chemical Engineering Research and Design, 132,

1143-1159. https://doi.org/10.1016/j.cherd.2018.02.026

DOI:

10.1016/j.cherd.2018.02.026

Document status and date:

Published: 01/04/2018

Document Version:

Typeset version in publisher’s lay-out, without final page, issue and volume numbers

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. ContentslistsavailableatScienceDirect

Chemical

Engineering

Research

and

Design

jo u r n al ho m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c h e r d

Numerical

investigation

of

collision

dynamics

of

wet

particles

via

force

balance

Britta

Buck

a,∗

,

Johannes

Lunewski

a

,

Yali

Tang

b,c

,

Niels

G.

Deen

c

,

J.A.M.

Kuipers

b

,

Stefan

Heinrich

a

aInstituteofSolidsProcessEngineeringandParticleTechnology,HamburgUniversityofTechnology,Denickestrasse 15,21073Hamburg,Germany

bMultiphaseReactorsGroup,DepartmentofChemicalEngineeringandChemistry,EindhovenUniversityof Technology,P.O.Box513,5600MBEindhoven,TheNetherlands

cMultiphase&ReactiveFlowsGroup,DepartmentofMechanicalEngineering,EindhovenUniversityofTechnology, P.O.Box513,5600MBEindhoven,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1September2017 Receivedinrevisedform15January 2018 Accepted16February2018 Availableonlinexxx Keywords: Coefficientofrestitution Forcebalance Collision Liquidlayer Numericalmodel

a

b

s

t

r

a

c

t

Knowledgeofcollisiondynamicsofsolidmaterialsisfundamentaltounderstandand pre-dictthe behaviorofparticulatemacroprocessessuchas influidizedbeds,mixersand granulators. Especially,particlecollisionswiththepresenceofliquidsarestillnotfully understood.Manyexperimentalinvestigationsaddressenergydissipationduetothe colli-sionandtheliquidinvolved.Forthistheso-calledcoefficientofrestitutionisoftenused, whichisdefinedasratioofreboundtoimpactvelocity,assuchdescribingdissipationof kineticenergy.Inthisworkanumericalmodelbasedonforcebalancesisproposed,which predictsthecoefficientofrestitutionfornormalandobliquecollisionsofaparticleandawet plate.Themodelisvalidatedbyextensiveexperimentsregardingtheinfluenceofcollision parameterssuchascollisionvelocityandangle,liquidpropertiesaswellasinitial parti-clerotation.Goodagreementbetweenmodelandexperimentsisfoundforallinvestigated parameters.

©2018InstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1.

Introduction

Collision dynamics of particles and between particles and wallsarefundamentalknowledgeforunderstandingthe over-all dynamic behavior of particulate processes, such as in fluidizedbedsormixers.Ifliquidsareadditionallyinvolvedin theprocessasliquidlayersordropletsontheparticle,e.g.in granulationoragglomeration,orasmoistureindrying appli-cations,thecollisiondynamicsbecomeevenmorecomplex. Theparticles may stick together aftercollision forming an agglomerate,ortheymightreboundresultinginadistribution oftheliquidbetweentheparticles.Consequently,thisleadsto muchhighercomplexityalsoforunderstandingormodeling ofwetparticulateprocesses.

Correspondingauthor.

E-mailaddress:britta.buck@tuhh.de(B.Buck).

To characterize collision dynamics many authors, e.g.

Luding (1998), Davis et al. (2002), Antonyuk et al. (2009),

Hogekampetal.(1994)andGollwitzeretal.(2012),usethe so-calledcoefficientofrestitution(CoR),whichisdefinedasratio oftherelativereboundvelocityoftheparticletotherelative impactvelocity: e=|vR v|=



Ekin,R Ekin =



1−Ediss Ekin (1)

Thus, the coefficient ofrestitution describesthe energy dissipated during a collision.In industrial processes parti-cle collisions can occur normally (perpendicular) but also obliquely,inwhichcasetheCoRcanbedividedintonormal, tangentialandrotationalcomponents:

en=|vR,nv n |

(2)

https://doi.org/10.1016/j.cherd.2018.02.026

(3)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. Nomenclature ˛ collisionangle[◦] ˛d empiricalconstant[–] ıl layerthickness[m] ın normaldisplacement[m] ε surfaceroughness[m]  viscosity[Pas] ϕ half-fillingangle[◦]

sl slidingfrictioncoefficient[–] i Poissonratio[–]

ω rotationalvelocity[rads−1]  density[kgm−3]

surfacetension[Nm−1] liquidcontactangle[◦]

A,B,C non-dimensionalcoefficients[–] a* non-dimensionaldistance[–] Ca capillarynumber[–]

E* Young’selasticmodulus[Nm−2] Ekin kineticenergy[J]

Ediss dissipativeenergy[J] e coefficientofrestitution[–] Fc contactforce[N]

Fc,d dampingcontactforce[N] Fc,el elasticcontactforce[N] Fcap capillaryforce[N] Fcap, surfacetensionforce[N] Fcap,p capillarypressureforce[N] Fg gravitationalforce[N] Fvis viscousforce[N] Fvis,∞ viscousdragforce[N] Fvis,wall viscouswallforce[N] G* shearmodulus[Pa] IP momentofinertia[kgm2] kd dampingconstant[Nsm−1] kel elasticspringconstant[Nm−3/2]

m mass[kg]

Mvis viscousmoment[Nm] pc capillarypressure[Pa] Re Reynoldsnumber[–] RP particleradius[m] ra azimuthalradius[m] rm meridionalradius[m]

rc contactradiusbetweenliquidandparticle[m] Vb bridgevolume[m3]

v velocity[ms−1]

vc tangentialvelocityinthecontactpoint[ms−1] y distancefromy-axis[m]

Indices n normal R rebound t tangential ω rotational et= vR,t vt (3) eω= ωR ω (4)

Additionally,initialandpost-collisionrotation, ωandωR respectively,canbeanalyzedseparately.

Dryparticle–particleaswellasparticle–wallcollisionswere already extensively investigatedbyseveralauthors. Experi-mentalinvestigationswereforexampleconductedbyKharaz et al. (2001), Dong and Moys(2006), Antonyuket al. (2010)

andFoersteretal.(1994).Fordifferentmaterialsthenormal coefficientofrestitutionwaseitherfoundtobeindependent ofimpact velocityforelasticmaterialsortodecrease with increasingimpactvelocityfor(partly)plasticdeforming mate-rials.Forobliquecollisionstangentialmovementdependson thematerialpropertiesofthecollidingsurfaces.Theparticles might roll/stickor slideonthe walldepending onthe fric-tioncoefficientofthesurfacesandoncollisionangleFoerster etal.(1994).Furthermore,DongandMoys(2006)foundastrong dependenceofthetangentialcoefficientofrestitutionon ini-tialrotationoftheparticles.

Various contact models were developed to predict the reboundbehavior ofdifferentmaterials.Alinearmodelfor normalcontactforcesduringelasticcontactswasdeveloped by Hertz (1882), which was extended to oblique collisions byMindlinandDeresiewicz(1953).Tsujietal.(1992)further extendedthemodelsofHertzandMindlin&Deresiewiczto non-linearvisco-elasticcollisionsbyapplyingadampingforce totheelasticcontactforces.ThemodelsofHertzaswellas Tsujietal.bothfeatureaconstantnormalCoRindependence ofcollisionvelocity.Brilliantovetal.(1996), asanexample, developedamodelalsobasedonHertz,whichincludes dis-sipativeviscoelasticeffectsresultinginavelocitydependent normalCoR.Thornton(2009)developedalternativemodelsfor elasticmaterialshavingacloserlookontheinfluenceof ini-tialrotationaswellasforparticleswithinelasticdeformation behavior(Thorntonetal.,2013).Theinfluenceofadhesionon micro-particleswasincludedintomodelsforexamplebyLiu etal.(2011).Kruggel-Emdenetal.(2007)summarizedvarious dry normalforcemodels(linear,non-linear,hysteretic)ina reviewandfurtherextendedthemodels.DiRenzoandDiMaio (2004) comparednormalandtangentialcontactforce mod-els fortheirapplicabilityindiscreteelementmethod(DEM) simulations.

Deformation behavior of dry particles during collisions werefurtherinvestigatedviafiniteelement(FEM)simulations byWuetal.(2003b,2003a,2009)andZhengetal.(2012).Feng etal.(2009)modeledtheadhesionofmicro-particles.

Knowledge about dry contact forces is the basis for understanding wet particle collisions. However, the liquid introduces additional forces such as viscous and capillary forces,whichleadtothecomplexbehaviorofwetparticulate processes.Therefore,extensiveresearchregardingthe influ-enceoftheliquidoncollisionsdynamicsisalsonecessary.

Several authors considered particle–wall or particle–particle collisions immersed in liquid in normal direction (Josephet al., 2001; Davis et al., 1986)as well as foroblique impacts(e.g. Josephand Hunt(2004)aswell as

YangandHunt(2006)).Theyfoundthenormalcoefficientof restitutiontobestronglyreducedduetoviscousforcesinthe liquidandadependenceontheStokesnumberSt= mPvn

6 R2 P

was described. For oblique collisions the tangential movement was found todiffer if the surfaces are eithervery smooth and someliquidispresentbetweenthe surfaceduringthe complete collision,or if asolid–solid contact happens due tosurfaceroughness.Forroughsurfacestheinteractionsof immersedparticlesintangentialdirectionnearlyequalthose ofdrycollisions,whileforsmoothsurfacefrictionisstrongly

(4)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. reducedbyuptooneorderofmagnitude(JosephandHunt,

2004).

Considerableworkwasalsodoneinexperimental investi-gationsofparticlescollidingwithwallscoveredbythinliquid layers,e.g.innormaldirectionbyBarnockyandDavis(1988),

Hogekampetal.(1994),Davisetal.(2002),Kantaketal.(2005),

Antonyuketal.(2009), Sutkaretal.(2015), Gollwitzeretal. (2012),Fuetal.(2004)aswellasinCrügeretal.(2016a).Wet oblique collision experiments with thin liquid layers were exemplaryconductedbyKantakandDavis(2004),Maetal. (2013,2015,2016),Crügeretal.(2016b),Bucketal.(2017).In comparisontocollisionsimmersedinliquid,inthecaseof thinlayersthelayerthicknesshasadditionallytobetaken intoaccount.Furthermore,capillaryforcesmaynotbe neg-ligible,sincealiquidbridgeformsbetweenliquidlayerand reboundingparticles,rupturingatacriticallength.

Besidesexperiments,volumeoffluid(VOF)combinedwith immersedboundary(IB)methodsareusedforsimulatingwet particle collisionstofurtherinvestigate collisiondynamics, especially for configurations, which are difficult to realize experimentally(verythinlayers,smallvelocities).LinandLin (2013) forexample performed immersed boundary simula-tionsinvestigatingtheflowfieldofaparticlemovingnormally inthedirectionofawall.Jainetal.(2012)combinedVOFandIB methodstomodelaparticleimpactingnormallywithaplate, whichiscoveredbyaliquidlayer. TheresultsofCoRagree wellwithexperiments,howevertheformationoftheliquid bridgedidnot.Hence,Tangetal.(2017)extendedthisVOF/IB modelbyfurtherimplementingatensileforcemodelanda contactmodel.Thisledtoamuchbetteragreementbetween modelandexperimentsregardingtheoverallcollision dynam-icsincludingliquidbridgeshapeandlifetimeaswellasthe dependenceoftheCoRonseveralparameters(collision veloc-ity,layerthickness,liquidviscosity,surfacetension).Kanetal. (2015)usedacomputationalfluiddynamicsapproachto inves-tigatetheeffectofcollisionvelocityonthecapillarybridge forceaswellastheinfluenceofparticlewettabilityon colli-siondynamicsduringnormalparticle–particlecollisions(Kan etal.,2016).Wuetal.(2016)useddirectnumericalsimulation (DNS)topredictliquidbridgeformationbetweenwetparticles andliquidtransportduringcollisionofparticles (Wuetal., 2017).

Severalotherauthorsworkedonadescriptionofcollision dynamicsforwetparticlecollisionsbasedonforceorenergy balances.Enniset al.(1991)proposedalimiting criteriafor stickingoftwoparticlesduetoviscouseffectscharacterizedby acriticalstokesnumber.Capillaryforcesareneglectedthough, whilethesolid–solidcontactisaccountedforbyagiven“dry CoR”.Darabiet al.(2009) usedasimilar approachasEnnis etal.predictingnormal,limitingcasesforcollisions,where capillaryforcesorviscousforcesaredominating.Antonyuk etal.(2009)proposedaforce balancemodelincluding con-tactforces,drag,capillaryandviscousforcestopredictthe reboundbehaviorofaparticlenormallycollidingwithawet targetplate.AlsoMüllerandHuang(2016)developedanenergy balanceincludingviscouseffectsfornormalwetparticle–wall collisions.Mikami etal.(1998)implementedcontactforces, dragaswellascapillaryforcesintoaDEMsimulationto simu-lateawetfluidizationprocess.AlsoNaseetal.(2001)proposed aDEMmodelforwetgranularsystemsincludingviscousand capillaryforcesandvalidatedthemodelbycomparing simu-lationandexperimentofthestaticangleofreposeaswellas tumblerexperiments.

However,noforcebalancemodelfornormalandespecially obliquewetparticle-wallorparticle-particlecollisionsexistin literatureyet,whichisfullyvalidatedbyextensivesingle par-ticlecollision experiments.Therefore,this workproposesa forcebalancemodelthatpredictsnormalandoblique colli-siondynamicsofparticlesandwallscoveredbyaliquidlayer. Contactforcesandgravitationalforceareconsideredaswell asviscousandcapillaryforcestorepresentthedissipationof energyintheliquidlayer.Previousexperimentalresultsofour groupCrügeretal.(2016a),Crügeretal.(2016b)andBucketal. (2017)areusedtovalidatetheforcebalancemodelforalarge rangeofparameters.

2.

Methodology

2.1. Forcebalancemodel

Aforcebalanceisusedforsimulatingcollisiondynamicsfora particleimpactingawetplateinthiswork.Forthisthenormal partofacollisionisdividedintofoursubsections(Fig.1)ascan alsobefoundinAntonyuketal.(2009)orSutkaretal.(2015). Firsttheparticlepenetratesintotheliquidlayerresultingin viscousFvis,n andcapillaryforcesFcap,n actingonthe parti-cle.Whenreachingthesolidsurfaceorthewallelasticand dissipativecontactforcesFc,nleadtoareboundoftheparticle changingthedirectionofmotion.Thewallisassumedtohave aninfinitemasscomparedtotheparticleandthusgainsno movement.Duringthethirdphasetheparticleemergesback tothesurfaceoftheliquidagainaccompaniedbyviscousand capillaryforces.Whenemergingfromthesurfaceofthe liq-uidaliquidbridgeisformed,whichstretchesuntilacritical rupture lengthofthe bridgeisreachedand thebridge rup-tures.Duringthisphasestillviscousandcapillaryforcesact. Afterruptureapartoftheliquidstaysonthelowerpartofthe particle,whiletheremainingfractionfallsbackintotheliquid layer.Furthermore,throughoutallphasesagravitationalforce Fg,nactsontheparticle.

Formodelinganobliquecollisionasuperpositionofnormal andtangentialmovementisassumed,exceptforthe tangen-tialcontactforce(phaseII),whichdependsonthedeformation innormaldirection.Thus,themotioninnormaldirectionis modeledasdescribedabove,whileintangentialdirection dur-ingphaseIIanadditionalcontactforceintangentialdirection isadded(Fc,t),whichincludesCoulomb’sfrictionlawas lim-itingfactor,andinphaseIandIIIatangentialviscousforce (Fvis,t)andviscousmomentum(Mvis)areincluded.Fig.2shows schematicallytheactingforcesduringphaseIIIandIVofan obliquecollision.

Theparticle’smovementwithtimeiscalculatedbysolving Newton’slawofmotioninMatlabforallphasesofthecollision viausingthefunctionode45:

mPdvn dt =



Fn (5) mPdvt dt =



Ft (6) IP dω dt =Fc,tRP+Mvis (7)

Contactforcesactingduringacontactbetweentwosolid surfacescanbecalculatedbythemodelofTsujietal.(1992), whichisbasedonthemodelsofHertz(1882)andMindlinand Deresiewicz(1953).Thecontactforceconsistofoneelasticpart

(5)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.1–Schematicofcollisionsubsections:(phaseI)penetrationofparticleintoliquid;(phaseII)contactofsolidsurfaces; (phaseIII)particleemergingfromliquid;(phaseIV)formationandruptureofliquidbridge.

Fig.2–SchematicrepresentationofthemodelassumptionsinphaseIIIandIV.

Fc,elandonedissipativepartFc,d.Innormaldirectionitcanbe expressedas:

Fc,n=Fc,el,n+Fc,d,n (8)

=kel,n·ı3/2n +kd,n·vn (9) withınrepresentingthedisplacementinnormaldirection. Withtheassumptionoftheplatenotgettingdeformedand beingstatic,thenormaldisplacementcanbecalculatedfrom particleradiusRPandthepositionoftheparticleiny-direction:

ın=RP−y (10)

kel,nandkd,naretheelasticspringrateanddamping coef-ficient,respectively: kel,n= 4 3 E∗ √ R∗ (11) kd,n=˛d



m∗·kel.n ı1/4n (12)

Thestar*indicatesaveraged propertiesofbothcollision partnersregardingmassm*,radiusinthecontactareaR*and

elasticmodulusE*.˛

disadampingconstantdependingonthe drycoefficientofrestitutioninnormaldirectionen,dry:

m∗=



1 mi + 1 mj



−1 (13) R∗=



1 Ri + 1 Rj



−1 (14) E∗=



1−2i Ei + 1−2 j Ej



−1 (15) ˛d=−ln(en,dry)·



5 ln2(en,dry)+ 2 (16)

Thecontactforceintangentialdirectionissimilardefined asthatinnormaldirection:

Fc,t=Fc,el,t+Fc,d,t (17) =kel,t·ıt+kd,t·vt (18)

withelasticstiffness kel,t=8·G∗

(6)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Tsujietal.(1992)proposethatthetangentialdamping coef-ficientcanbeassumedtoequalthatofthenormaldirection: kd,t=kd,n=˛d·



m∗·kel,n·ı1/4n (20) whereinG*istheaverageshearmoduluscomposedofthe shearmodulusofbothcollidingmaterialsGi:

Gi=

E i 2· (1+i)

(21) G∗=



2−2 i Gi + 2−2 j Gj



−1 (22)

Thetangentialdisplacementıtaccountsforthetangential movementoftheparticleinthecontactpointincluding rota-tionoftheparticleandiscalculatedaccordingtoDiRenzoand DiMaio(2004):

ıt= (x−x0)+ rot·RP (23) withx0asthex-coordinateoftheparticlecenter,when par-ticleandwallaretouchingthefirsttime,and rottheangleof rotation.

The tangential contact force however is limited by Coulomb’s friction law. When the tangential contact force reachestheproductofslidingfrictioncoefficientsland nor-malcontactforce,slidingoccurs:

Fc,t=

Fc,el,t+Fc,d,t ifFc,t<sl·Fc,n sl·Fc,n ifFc,t≥sl·Fc,n

(24)

Viscous(ordrag)forcesaccountfortheresistancedueto the liquid shear flow, which results from the moving par-ticle displacing the liquid. They are investigated by many researchers,e.g.ShiandMcCarthy(2008),LinandLin(2013)

andPitoisetal.(2000).White(2006)proposeamodelfora par-ticlemovinginaninfiniteliquid,whichisvalidinawiderange ofReynoldsnumberRe<2×105.ApplyingaparticleReynolds number(Eq.(26)),wherethecharacteristiclengthisdefined asdiameteroftheparticlefraction,whichissubmergedina liquidlayeronaplate,thismodelwasapproximatedforthe caseofaparticleimpactingawetplate:

Fvis,n,∞=6 lRPsin(ϕ)vn·



1+ ReP 4·

1+√ReP

+ReP 60



(25) ReP=2RPsin(ϕ)vnl l (26) withϕastheso-calledhalf-fillingangle,characterizingthe fractionoftheparticle,whichiscoveredbyliquid.

Foraparticleapproachingclosetoawallseveralauthors (ChanandHorn,1985;Matthewson,1988;Lianetal.,2001) pro-poseadifferentequationdependingonthedistancebetween bothsolidsurfaces:

Fvis,n,wall=

6 lR2Pvn ıl−y

(27)

Since this equation tends to infinity for the gap size approacheszero,acriticalminimumgapsizeıl−y=0.5␮m

wasdefinedaccordingtoanaverageroughnessofthe parti-cles.Afterreachingthiscriticalgapsizetheviscousforceis keptconstantuntilcontactofparticleandwall.

Inthismodelacombinationofbothmodelsforthenormal viscousforceisused,wherealwaysthelargerofbothisacting:

Fvis,n=

Fvis,n,∞ ifFvis,n,wall≤Fvis,n,∞ Fvis,n,wall ifFvis,n,wall>Fvis,n,∞

(28)

In tangential direction a viscous lubrication force and a viscous momentum are implemented, which were first introducedbyGoldmanetal.(1967).Thesemodelequations considertheforceandmomentuminthegapbetweena par-ticlemovingparalleltoawallinsidealiquid.

Fvis,t =6 RP ·

8 15ln

RP ıl−y

+0.9588

vt +

2 15ln

RP ıl−y

+0.2526

ωRP

(29) Mvis =8 R2P ·

101 ln

RP ıl−y

+0.1895

vt +

25ln

RP ıl−y

+0.3817

ωRP

(30)

Capillaryforcesaremodeledonlyinnormaldirectionand inaccordancetothetoroidapproximationbyKralchevskyand Nagayama(2001).Theyarecomposedoftwoparts,onepart resultingfromthesurfacetensionFcap, andtheotherfrom capillarypressureFcap,p:

Fcap,n=Fcap, +Fcap,p (31)

=−2 rcsin(ϕ+)+ r2

cpc (32)

withtheliquidcontactangle.Herercrepresentstheradius ofthatpartoftheparticle,whichisincontactwiththe liq-uidasindicatedinFig.2.Thecapillarypressurepcdepends onsurfacetensionaswellasthemeridionalradiusrm and theazimuthalradiusra,whichrepresentsthesmallestcross sectionalradiusoftheliquidbridge:

pc= ·

1 rm− 1 ra

(33) ra=

rc+rm· [sin(ϕ+)−1] ifϕ+<90◦ rc ifϕ+≥90◦ (34) rm= y−RP·cosϕ−ıl 1+cos(ϕ+) (35)

Theliquidbridgebreaksafterreachingacertainlengthlrupt endingphaseIVaswellasthecalculationoftheforcebalance. Themaximumrupturelengthiscalculatedviatheequation ofPitoisetal.(2001)dependingoncapillarynumberCa,liquid contactangleandthevolumeofthebridgeVb:

lrupt=

1+ 2

·

1+Ca1/2

·V1/3b (36) Ca=vn (37)

(7)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Table1–Propertiesoftheparticles.

Material Diameter[mm] Density[kgm−3] E-modulus[GPa] Poissonratio[–] DryCoR[–]

Glass(SWARCO-Vestglas,2018a,b) 0.91 2500 63.0 0.23 0.96

1.74

␥-Al2O3(Antonyuketal.,2009) 1.74 1040 14.5 0.25 0.76

Table2–Liquidpropertiesat20C.

Liquid Density[kgm−3] Viscosity[mPas] Surfacetension[mNm−1]

Water 998 1.0 72.80

60gL−1Tween20 998 1.0 37.30

35wt%glycerol(GlycerineProducers’Association,1963) 1086 3.0 69.61

51wt%glycerol(GlycerineProducers’Association,1963) 1130 6.7 68.20

Adetaileddescriptionofthecalculationofthebridge vol-umecanbefoundinAppendixA.

For gravitational force the mass ofthe particle and the addedmassbytheliquidbridgeisconsidered:

Fg,n=

4 3 R 3 Ps+Vbl

·g (38)

Thebuoyancyforcewasfoundtobeneglectableandwas thereforenotintegratedintothemodel.

2.2. Experimentalvalidation

For experimentalvalidation mainly resultsof ourprevious works(Crügeretal.,2016a;Crügeretal.,2016b;Bucketal., 2017)were used.Additionally, somenewexperimentswere conducted.

2.2.1. Experimentalsetup

The setupused forconducting experiments forvalidation mainlyconsistsofaparticleimpactingonawettargetplate. Theparticleeitherfallsdownontotheplatebygravity(Crüger etal.,2016a),shotobliquelyontotheplatebypressurizedair (Crügeretal.,2016b)orrollsdownarampcollidingwiththe platehavinginitialparticle rotation(Bucket al.,2017).The plateiseitherdryor coveredwithaliquidlayerofdefined thickness.Thelayerthicknessiscontrolledbeforeeach col-lision bya confocal sensor. Thecollision is captured from twodirectionsbysynchronizedhigh-speedcamerasallowing athree-dimensionalanalysisofthereboundbehavior(Fig.3). Impactvelocitiesaredefinedasthevelocityoftheparticle centerdirectlybeforetouchingtheliquidlayer,whilerebound velocity isdefined right after rupture of the liquid bridge. Tomeasurerotationalvelocities,theparticlesaremarkedby several dots before the experiments. Rotational velocity is calculated,bytrackingthesedotsalongwiththeparticle cen-ter.Foreachconfigurationofcollisionparametersatleast15 experimentswereconductedtogetreliableresults.Standard deviationsareshownforeachmeanvalue.

Duringobliquecollisionsthenormalimpactvelocitywas keptconstantat1ms−1toachievecomparability.Thus,with increasing collision angle from the vertical direction the tangentialimpactvelocityand accordinglythetotalimpact velocityincreaseaswell.

2.2.2. Materials

Glass beads (Swarco Type S) of two different sizes and ␥-aluminumoxidespheres(␥-Al2O3,companySasol)wereused asparticles.Table 1summarizesthe propertiesofthe par-ticles.Bothparticles featureahighsphericity ofabove0.91

Fig.3–Schematicrepresentationoftheexperimentalsetup formeasuringthecoefficientofrestitutionofaparticle impactingobliquelyonatargetplatecoveredwithaliquid layer.

and an average surface roughness in the range of a few micrometer.Thetargetplatewasalsomadeofglassandwas 80mm×80mm×10mm(W×L×H)insize.Thethicknessof theplatewasproventobelargeenoughtoneglecteffectsof elasticwavesinsidethematerialbyequation18ofAntonyuk etal.(2010).

VariousNewtonianliquidswereusedforthelayeronthe wall:Water,glycerol-watersolutionswithdifferentviscosities andasolutionofasurfactant,inthiscase60gL−1Tween20– watersolution,withhalfthesurfacetensionofwater(Table2). TheconcentrationoftheTween20 solutionwaschosenas criticalmicelleconcentrationasgiveninHeleniusetal.(1979). ViscosityofeachliquidusedwasmeasuredinaRHEOTESTRN 4.1(companyRHEOTESTMedingenGmbH).Surfacetensionof theTween20solutionwasdeterminedbyDu-Noüy-method inaK100ForceTensiometer(companyKrüssGmbH).

3.

Results

and

discussion

3.1. Assumptionsforcapillarybridgegeometry

Forcalculationoftheforcebalanceofwetcollisionsthe geom-etryofthecapillarybridgeisimportant.Asdiscussedabove, theshapeofthebridgeisassumedastoroid.InFig.4the for-mationofacapillarybridgeduringreboundofaparticlefroma wetwallisshownexemplaryforaglassparticle.The assump-tionofacircularcontourofthebridgeisreasonablefornearly thecompletelifetimeofthebridge.Tocalculatethe geome-trytwoinputparametersarerequired:thehalf-fillingangleϕ

(8)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.4–Evolutionofcapillarybrideshapeduringlifetime.

Fig.5–Half-fillingangleandcontactangleoverbridge lifetimeforglassparticlesimpactingonaglasswall.

andthecontactangle,forwhichapproximatevalueswere determinedfromexemplaryimagesofcollisionexperiments.

Fig.5displaysmeasuredhalf-fillingandcontactanglesover bridgelifetime.Thecontactangleisnearlyconstantover a largepartofbridgelifetime,exceptforaboutthefirst millisec-ond,somescatteroftheresultsisquitehigh.Furthermore,it doesnotchangewithvariationoflayerthicknessorimpact velocity.Hence,thecontactanglewasassumedconstantin the force balance model. Measurements for glass particles aswell asfor␥-Al2O3particlesand variousliquidsresulted ina(dynamic)contactangle ofapproximately 15◦ forboth materialsandallliquids,whichwasthenassumedinthe sim-ulations.

Thehalf-fillinganglefeaturesamorecomplextrendwith bridgelifetime.Inthebeginning,whentheparticleisstill par-tiallysubmergedintheliquidlayeronthewall,thehalf-filling angledecreases.Assoonasaliquidbridgeisfullybuilt,the half-fillingangleisapproximatelyconstantoveralongperiod ofbridgelifetime.Only,whentheshapeoftheliquidbridge constricts(rightimageinFig.4)thehalf-fillingangleslightly increasesagain,whiletheupperpartofthecapillarybridge

Fig.6–Studyofconvergence.

gains adroplet-like form.Adecrease ofthelayerthickness resultsinandecreaseofthehalf-fillingangle,becausethe par-ticlecannotpenetrateasfarintothethinnerlayer.Sincethe exacttrendofhalf-fillinganglewithbridgelifetimevarieswith layerthicknessandliquidviscosityandnomodelsarepresent in literature to predict these dependencies, the half-filling angleisapproximated byaconstantaveragevaluefor sim-plification. Withincreasingviscositythe averagehalf-filling angleslightlydecreasedintheexperimentsbyafewdegrees. Thevaluesapproximated forthemodelaresummarizedin

AppendixA(Table5).

3.2. Convergencestudy

Beforeusingtheforcebalancemodelthecalculationhasto betestedregardingnumericalstability.Asmentionedabove, theforcebalanceissolvedinMatlabviafunctionode45,which setsthetimestepautomatically,whilekeepingarelativeand absolute tolerance for the results. Both relative and abso-lutetoleranceshavetobespecifiedforthesimulation.Fig.6

shows the numerical resultsfor aglass particle impacting with1ms−1onaglassplatecoveredbya400␮mthickwater layerforvaryingrelativetolerance.Theabsolutetolerancewas alwaysthreedecimalpowerssmallerthantherelative toler-ance.Sincetheresultingcoefficientofrestitutionisconstant forrelativetolerancessmallerthan10−13,forallsimulations thefollowingtolerancesareused:relativetolerance10−13and absolutetolerance10−16.

3.3. Normalcollisions

Usingtheparticleandliquidpropertiesaswellashalf-filling and contact anglesas inputparameters, rebound behavior can now be predicted via the force balance model. Fig. 7

showsacomparisonbetweenexperimentsofglassparticles impacting ona glassplate and theproposed force balance

(9)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.7–ValidationofthenormalCoRindependenceofcollisionvelocityfor1.74mmglassparticlesanddifferentlayer thicknessofwater(a),0.91mmglassparticlesanddifferentlayerthicknessofwater(b),1.74mmglassparticles,200␮m

layerthicknessandvaryingviscosity(c)and1.74mmglassparticle,100␮mlayerthicknessandvaryingsurfacetension(d). Solidline:forcebalance;circles:ownexperiments.

model.Theconstantbehaviorofthedrycoefficientof restitu-tion(Antonyuketal.,2010)regardingcollisionvelocity(black signsin(a))arenicelyrepresentedbythemodelascouldbe assumed,sincethecoefficientofrestitutionisaninput param-eterofthedrycontactmodelbyTsujietal.(1992).Applying aliquidlayerontheplateresultsexperimentallyinastrong dependenceofthenormalcoefficientofrestitutiononthe col-lisionvelocityaswellasthelayerthickness(Fig.7(a)):Belowa critical“sticking”velocitythenormalcoefficientofrestitution iszero,becausethereboundenergyoftheparticleistoosmall tomaketheliquidbridgerupture.Abovethissticking veloc-ity,thenormalcoefficientofrestitutionisfoundtoincrease steeplyfirst.Whenincreasingtheimpactvelocityfurther,the slopedecreasesuntilaconstantvalueisreached asymptot-ically,whichalwaysstayssmallerthanthedrycoefficientof restitution.Thistypicaltrendwasalsoobservedforexample byKantaketal.(2005), Gollwitzeretal.(2012),Mülleret al. (2013)andMüllerandHuang(2016).Inaccordancetoprevious experimentalworks(Antonyuketal.,2009;Gollwitzeretal., 2012;Crügeretal.,2016a;Maetal.,2016),anincreaseinlayer thickness,leadstoadecreaseofthenormalcoefficientof resti-tution,becausetheparticlepenetratesdeeperintothehigher liquidlayer,resultinginalongertime,thedissipativeforces havetimetoact.Theforcebalance modelproposed inthis workisabletorepresentthesedependencies.Indetail,the forcebalancenicelypredictstheoveralltrendswithincreasing collisionvelocityaswellaslayerthickness.Ithoweverslightly overpredictsthecoefficientofrestitutionforhighvelocities. Thesesmalldifferencesmightbefurtherreducedbyapplying otherviscousandcapillaryforcemodels.Theviscousforce modelsinliteratureweredevelopedforparticlesinaninfinite fluid,howevernomodelsexist,whichcoveraparticlepartly submergedinaliquidlayer.Thus,theexistingmodelshadto beadjustedtofindanapproximationfortherealphysics.

Sim-ilarly,existingcapillarymodelsarefor(quasi)staticbridges. Thebridgeformationandelongationintheinvestigatedcase ofanimpacting and reboundingparticle howeverishighly dynamic.Therefore,thesmalldifferencesbetweenmodeland experimentinthisworkmightstillbereducibleby develop-ingmoreappropriatemodelsforcapillaryandviscousforces, whichhoweverisoutofthescopeofthiswork.Furthermore, theoverallconformityisalreadyassumedsufficientlyhigh.

Fig.7(b)displaysthecoefficientofrestitutionforsmaller glassparticlesof0.91mmindiameterattwodifferentlayer thicknesses.Theexperimentswiththesesmallerparticlesare evenbetter predicted bythe forcebalance model than the largerparticles.Stickingvelocitiesaswellastheoveralltrends are well captured. Overallthe normalCoRshows asimilar trendforboth particle sizes(comparing(a) and(b)),where thesmallerparticlesizealsofeaturessmallernormalCoRat thesamelayerthickness,aswasalsopredictedbyGollwitzer et al.(2012).Thisresultsmainly,becauseatthesamelayer thicknessasmallerparticlesubmergesdeeperintotheliquid thanalargerone.Comparinginsteadexperimentswiththe same ratio oflayerthicknessto particle size(ıl/dP=const., e.g.400␮m/1.74mmto200␮m/0.91mm)the normalCoRis similar,butstillslightlylowerforthesmallerparticles,both experimentallyaswellasbyforcebalancemodel.

Theeffectofhigherviscosityonthecoefficientof restitu-tion (Fig.7(c))isalsowell representedbytheforce balance model. Increasing viscosity leadstoa decrease ofthe nor-malCoRexperimentally(comparee.g.Antonyuketal.(2009),

Ma et al. (2013)), which is qualitatively and quantitatively accountedforinthemodelbyincreasingviscousforces.

Fig.7(d)featuresthecoefficientofrestitutionfortwo dif-ferent surface tensions. Theexperimental resultsshow no considerabledifferenceduetosurfacetension.Theforce bal-ancemodelpredictsslightlyhighercoefficientsofrestitution

(10)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. forsmallersurfacetensionatcollisionvelocitiesclosetothe

stickingvelocity.Theinfluencehoweverissmallandisinside thestandarddeviationsoftheexperiments.Therefore,good agreementcanbeconcluded.

Fig.8summarizesresultsifinstead ofaglassparticle a ␥-Al2O3particleisused.Alsofor␥-Al2O3 particlesnormally impactingonaglassplatethemodelgivesagoodpredictionof thenormalcoefficientofrestitution.Mostpredictedsticking velocitiesaswellasdependenciesregardingcollision veloc-ityandlayerthicknessfitthe experimentalresults.Liquids withhigherviscositythanwater(Fig.8(b))canbepredicted similarlywell.

Fig.9displays thedistribution ofthemass-relatedtotal dissipatedenergyduringacollisionintofractionsdueto con-tactforces,gravitational,viscousandcapillaryforcesfortwo particle sizes (ıl/dP=const.) ofglass and different collision velocities.Totaldissipatedenergyincreaseswithincreasing collisionvelocityaccording toits relationtothecoefficient ofrestitution(Eq.(1)).Overall,energydissipationdueto vis-cousandcapillaryforcesisdominant,whilecontactforcesand gravityfeatureaminoreffectinenergydissipation. Dissipa-tionduetogravitationalandcontactforceshowevercannot beneglected,especiallyathighcollisionvelocities.Atacloser lookthefractionofdissipationviacontactforcesaswellas vis-cousforcesincreasewithincreasingcollisionvelocity,while energydissipationowingtogravitationalandcapillaryforces are nearlyconstant. Comparingdifferent particle sizes, for smallerparticles(Fig.9(b))thefractionofdissipatedenergy, whichresultsfromcapillaryforces,isconsiderablylargerthan forbiggerparticles(Fig.9(a)).Thus,capillaryforcesincrease withdecreasingparticlesize,whichinfactleadstotheslightly smallernormalCoRforsmallerparticlediametersmentioned above.

Overall,the proposedforcebalancemodelappearstobe suitableforpredictingthenormalcoefficientofrestitutionfor wetnormalcollisionsofdifferentmaterialsandparticlesizes independenceoflayerthickness,viscosityaswellassurface tension.

Fig.8–ValidationofthenormalCoRof␥-Al2O3particlesin

dependenceofcollisionvelocityfordifferentlayerthickness ofwater(a)andviscosityatalayerthicknessof200␮m(b). Solidline:forcebalancemodel;circles:experiments.

Fig.9–Dissipativeenergiesduetocontactforces,gravitational,viscousandcapillaryforcesnormalizedbyparticlemassat differentcollisionvelocitiesfor1.74mmglassparticlesanda400␮mwaterlayer(a)comparedtocollisionsof0.91mmglass particlesanda200␮mwaterlayer(b).

(11)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.10–ComparisonofexperimentalandmodelresultsofnormalCoR(a),tangentialCoR(b)androtationvelocityafter rebound(c)ofdry␥-Al2O3particlesobliquelyimpactingonaglassplate,whichiseitherdry(black)orcoveredbya100␮m

thicklayerofTween20(orange),independenceofcollisionangle.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthearticle.)

Table3–Slidingfrictioncoefficientslusedfortheforce

balanceofa␥-Al2O3particleobliquelyimpactingaglass

plate. Layer sl[–] Dry 0.195 Tween20 0.160 35%glycerol 0.140 3.4. Obliquecollision

Forobliquecollisions theslidingfrictioncoefficientsl acts

asanotherinputparameter.Itwasmeasuredfordry␥-Al2O3

particles ina Schulzering sheartester (ASTM, 2018)to be approximately 0.195. For example Joseph and Hunt (2004)

aswell as McFarlaneand Tabor (1950) showed experimen-tallythatfrictionisreducedifthecollidingsurfacesarewet, becausethe liquid actsaslubricant. Åhrströmet al.(2003)

foundthefrictioncoefficientstodecreasefurther,whenthe liquidviscosityisincreased.However,inliteraturenomodel exist,whichpredictstheinfluenceofliquidlayersonthe fric-tioncoefficientbetweenaparticleandawallquantitatively. Hence,thefrictioncoefficientsforwetcollisionsarefittedto theexperimentalresultsbyslightlyreducing themeasured dryfrictioncoefficient.Thevaluesusedinthisforcebalance aresummarizedinTable3.Asalreadymentioned,forall inves-tigatedconfigurationsofobliquecollisionsaconstantnormal velocityof1ms−1wasused.Thus,withincreasingcollision anglethetangentialvelocityaswellastotalimpactvelocity increase.

Fig.10compares resultsoftheforce balancemodeland experimentsofa␥-Al2O3particle collidingobliquelywitha dryorwettarget.Sinceinitialrotationoftheparticlevaried between180rads−1 and −252rads−1 simulation resultsare

shownforthreecasesofinitialrotation:200rads−1,0rads−1 and−300rads−1.Thenormalcoefficientofrestitutionshown indiagram(a) appearstobeindependentofcollisionangle andthusoftangentialimpactvelocitybothfromthe experi-mentsaswellasviatheforcebalancemodel.Theinfluence oftheliquidlayeronthenormalCoRisalsowellpredictedby theforce balancemodel.Furthermore,the modelindicates, thatthenormalCoRisindependentofinitialrotation,since allthreesimulationscoincideinthesameline.Amoredetailed lookattheinfluenceofinitialparticlerotationistakenlaterin

Fig.11.Theindependenceofthenormalcoefficientof restitu-tion regardingtangentialimpactvelocitywasalsofoundby

Antonyuk etal.(2010) fordry collisions ande.g.byKantak andDavis(2004),JosephandHunt(2004)aswellasYangand Hunt(2006)forwetcollisionswithliquidlayersorimmersed inliquid,respectively.

The tangential coefficient of restitution is displayed in diagram (b)of Fig. 10. The force balance model predicts a strong dependenceofthe tangentialCoRoncollisionangle aswellasoninitialrotation.Inthemodelcasewithoutany initialrotationoftheparticlethetangentialCoRis approxi-matelyconstantatabout0.82forsmallcollisionangles.With increasingcollisionangleitfirstdecreasesandafterreaching aminimumincreasesuntilitreachesthevalue1ata colli-sionangleof90◦.Acollisionatacollision angleof90◦ isa limiting case,wheretheparticle onlyslideson thesurface andnorealcontacthappens.Thepositionoftheminimum isstronglydependentontheslidingfrictioncoefficient(not directlyshowninthediagram).Comparableminimaarealso foundexperimentallybyGorhamandKharaz(2000),Kharaz etal.(1999),Foersteretal.(1994)andDongandMoys(2006)

duringdrycollisions,aswellasbyseveralauthorsforwet col-lisionsofroughsurfaces(e.g.JosephandHunt(2004)andYang andHunt(2006)).Thisminimumisaresultofchangingcontact

(12)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.11–InfluenceofinitialrotationonnormalCoR(a),tangentialCoR(b),rotationalvelocityafterrebound(c)androtational CoR(d)of␥-Al2O3particlesobliquelyimpactingonaglassplatecoveredbya100␮mthicklayerofTween20independence

ofcollisionangle.

motionbetweenrolling/stickingandslidingcontact(Foerster etal.,1994).

If a particle impacts with positive initialrotation (anti-clockwiseforaparticlemovingfromlefttoright)thepredicted tangentialCoRisbelowzeroforverysmallcollisionangles, whichimpliesachangeofdirectionforthetangential move-ment.ThetangentialCoRthenincreaseswithcollisionangle untilthelinecoincideswiththatofthecasewithoutinitial rotationataspecificcollision angle.Atthis collisionangle theparticle fullyslideson thewallsurface.Independence ofthevalueofpositiveinitialrotationthetangential coeffi-cientofrestitutionmightalsorunthroughamaximumand aminimumindependenceofcollisionangle.Inthiscasea specificchangebetweenrollingandslidingoftheparticleon thewalltakes placecomparabletothe minimumfor colli-sionswithoutinitialrotation.Similar resultswerereported fromexperimentsofDongandMoys(2006),wherethe tangen-tialcoefficientalsoincreasedfromnegativevaluestonearly oneforasteelballimpacting withnegativeinitialrotation onasteelwallatcollisionanglesrangingfrom0◦to60◦.For aparticleinitiallyrotatinginnegativedirectionthe tangen-tialCoRdecreasesfromvaluesaboveoneatsmallcollision anglesuntilitreachesaminimum.Alsoforpositiverotation

DongandMoys(2006)foundasimilartrendforthetangential coefficientofrestitutionwithcollisionangleaspredictedby theforcebalancemodel.AtangentialCoRlargerthan1means thataftercollisiontheparticlehasmorekineticenergyin tan-gentialdirectionthanbeforethecollision,becauserotation isconvertedtotangentialmovementduringthecollision.At thecollisionanglewiththeminimumintangentialCoRthe particleslidesontheplateandthetangentialcoefficientof restitutionisequaltothatofthecasewithoutinitialrotation. DuringthedecreaseofthetangentialCoRwithcollisionangle theslopechangesstronglyatcertaincollisionangles.These turningpointsresultwhentheparticlepartlyrolls(sticks)and

partlyslidesonthewallsurface.Dependingonthedurationof rollingcontactandslidingcontacttheslopechanges. Appli-cationofaliquidlayerleadstoaslightdecreaseofthesliding frictioncoefficient(inputparameterintomodel).Additionally, theliquidlayercausesaviscousdissipationofenergydirected againstmomentarytangentialmovement.Thus,insumthe valuesoftangentialcoefficientofrestitutionslightlyshiftto theleft.AthighcollisionanglesthetangentialCoRofawet collisiongetssmallerthanthedryone.Thisdecreaseresults from anincreaseofviscousdissipationintangential direc-tion.Withcollisionanglestendingtowards90◦thetangential impactvelocitytendstoinfinity(vn=const.)thusresulting instronglyincreasingviscousforcesintangentialdirection. Theexperimentalresultsfitquiteniceintothemodelresults. Atlowcollisionanglestheexperimentsshowlargestandard deviations, whichhowevercanbeexplainedbythe experi-mentallyvaryinginitialrotation:Atsmallcollisionanglesthe forcebalancemodelrevealsahighsensitivityofthetangential CoRregardinginitialrotation,becauserotationalenergyisin thesameorderofmagnitudeaskineticenergyintangential direction.Thissensitivityisrepresentedintheexperiments asstandarddeviation.Therotationalvelocityafterthe colli-sion(Fig.10(c))isalsostronglydependentoncollisionangles accordingtotheforcebalancemodel.Exceptforpositiveinitial collisionvelocitiesatsmallcollisionangles(<10◦)ωR is pre-dictednegative.Withincreasingcollisionangletheabsolute valueofthepost-collisionalrotationincreasesuntilcomplete slidingoccurs,whichthenresultsinaconstantωR.Theslope oftheincreasechangesindependenceoftherolling-sliding regimesaccordingtothetangentialcoefficientofrestitution. Thisisreasonable,sinceintheforcebalancemodel tangen-tial,translationalmovementandrotationarecoupledinthe velocity atthecontact point.Differentinitialparticle rota-tionshaveonlysmalleffectonpost-rotationatsmallcollision angles,e.g.onlyslightlyshiftingtheotherwisesimilartrends.

(13)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. Thisshiftultimately leadstosmallerabsolutepost-rotation

forpositiveinitialrotationandhigherpost-rotationfor nega-tiveinitialrotationcomparedtothecasewithoutanyinitial rotation. Aliquidlayerleadstosmaller absoluterotational velocityduetoasmallerslidingfrictioncoefficient. Further-more,theliquidlayerresultsinanincreaseoftheabsolute rotationafterreboundathighcollisionangles(>80◦).As men-tionedbefore,the tangentialvelocityapproachesinfinityat veryhigh collision anglesleading tohigh tangentialforces insidethe liquid layerand thus amomentum on the par-ticle. This momentum increases strongly atlarge collision angles resulting in the detected increase of rotation after rebound. The tangentialforce duringsolid-solid contact is inthese cases limited byCoulomb’s friction and therefore constant. Comparing the model with experiments reason-ableagreementisfound.Smalldeviations(e.g.drycollision at60◦)betweenmodelandexperimentmightalsoresultfrom inhomogeneitiesofthe␥-Al2O3particles(e.g.different rough-ness and therefore varying friction) and the experimental variationsof the initialrotation. In literaturesometimes a minimumormaximum,dependingondefinitionofrotation direction,isreportedforthepost-rotationfordrycollisions (Kharazetal.,2001;Antonyuketal.,2010),whichisnotfound hereinthesimulationorintheexperiments. However,the experiments from literature featuring an extrema in post-collisionalrotationarealwaysconductedwithconstanttotal impactvelocityinsteadofconstantnormalvelocityasinthis work.Therefore,inthoseexperimentsthenormalvelocityand thusnormalcontactforceandcontactdurationarereduced withincreasingcollisionangle.Sinceduringslidingtangential contactforcesaredefinedbythenormalcontactforce, post-rotationdecreasesatlargecontactangles,wherethecontact ispurelysliding.Inthisworkthenormalimpactvelocityis constantleadingtoaconstantpost-collisionalrotation veloc-ity.Arotationalcoefficientofrestitutionwasnotanalyzedfor theseresults,sinceforaninitialrotationvelocityof0rads−1 itisnotdefined.

Theinfluenceofinitialrotationoncollisiondynamicsis furtherinvestigatedin Fig. 11. The normal,tangential and rotationalcoefficientsofrestitutionaswellastherotational velocityafterthecollisionaredisplayedforfourdifferent ini-tialrotationvelocitiesrangingfromabout−600rads−1upto −1800rads−1.Allotherparameterswerekeptthesame.For eachinitialrotationvelocityonevalidationexperimentwas conducted.Withthedescribed setupit wasnotpossibleto changethecollisionanglewhilekeepingtherotational veloc-ity constant,so noadditional validationexperiments were carriedout.

AlsoforhighinitialrotationoftheparticlethenormalCoR staysconstantbothinthemodelandintheexperiments.This resultconfirmstheassumptionofpossiblesuperpositionof normalandtangentialmovementinthecontactpoint,which wasalsoreportedbysomeotherresearcher(DongandMoys, 2006;JosephandHunt,2004;KantakandDavis,2004).

ThetangentialCoRshowssimilartrendsforallfourinitial rotationvelocities.Withincreasing(negative)rotationvelocity priortotheimpactthetrendmostlyshiftstohighercollision angles.The collisionangle, wherecomplete sliding occurs, alsoshiftstohighervalues,althoughateachcriticalsliding pointthelinescoincideintoone.Hence,thecriticalcollision angle,whenslidingstarts,dependsoninitialrotation veloc-ity.Howeverinitialrotationhasnoeffectonthe tangential coefficientofrestitutionduringcompletesliding.The experi-mentsagreewellwiththesimulations.Simulationswiththe

Fig.12–Rollingandslidingphasesduringobliquecollision withinitialrotation.(a)TangentialCoR;(b)rotationvelocity afterrebound;(c)rotationalCoR.

exactinputvelocities,anglesandrotationalvelocitiesofthe experiments, shown as stars, are mostly close to the real experimentalvaluesandliealwaysatleastinsidethe stan-darddeviations.Especiallyforthetwolower(absolute)initial rotation velocities the experimentally measured tangential coefficient ofrestitutionisnearlyexact thesame asinthe simulation.

Fig.11(c)and(d)respectivelyshowtherotationalvelocity aftercollisionandtherotationalcoefficientofrestitution(eω=

ωR

ω).Fivedifferentregimescanbedetectedfortherotational velocity: Atlow collision anglesthe rotation afterrebound andtherotationalCoRareconstant.Withincreasingcollision angletheabsoluterotationvelocityincreasessteeply,asdoes therotationalCoR(initialrotationisconstant).Ataspecific collisionangle,theslopegetssmaller.Exactlyinthemiddle ofthisthirdregion(smallslopeofωR)therotational coeffi-cient ofrestitutionreaches thevalue 1andthen increases above 1. Thus, rotationalenergy isgained. Ateven higher collision anglesthe slopeincreasesagain untilatacritical

(14)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.13–InfluenceofliquidpropertiesonnormalCoR(a),tangentialCoR(b),rotationalvelocityafterrebound(c)and rotationalCoR(d)predictedbytheforcebalancemodelfora␥-Al2O3particleobliquelyimpactingonaglassplatewithan

initialparticlerotationof−500rads−1.(Forinterpretationofthereferencestocolorinthecitationofthisfigure,thereaderis referredtothewebversionofthearticle.)

collisionangletherotationvelocityaftercollisionaswellas rotationalCoRgetconstantagain.Withfurtherincreaseof col-lisionanglecloseto90◦post-rotationisstronglyenhanceddue toincreasedviscouseffectsasmentionedbefore.

Thesefiveregimes,whicharepresentforrotational veloc-ity, tangential and rotational CoR (exemplary marked for aninitialrotationvelocityof−960rads−1 inFig. 12)canbe explainedbyswitchingbetweenrollingandslidingcontacts. Inthefirstregime(constantωR)initialrotationstrongly dom-inatesthe velocityinthe contact point(vc=vt+ω·RP). As aresult the tangentialcontactforce is largerthan sl·Fc,n andtheparticleslides.Sincethenormalcontactforceis con-stant(vn=const.)thetangentialcontactforceisconstantas wellisthiscase,leadingtoconstantdissipationofrotational energy.Partofthisenergyisalsoconvertedtotranslational movementintangentialdirection(et>1).Withincreasing col-lisionanglethetranslationaltangentialvelocityvtincreases. Intheinvestigatedcasesrotationisnegativewhile transla-tionalmovementintangentialdirectionispositive.Therefore, thevelocityinthecontactdecreaseswithincreasingcollision angle.Thus,thetangentialcontactforcedecreasesandata specificcollisionangletheparticlestartstorollonthewall surface.Herethesecondregionstarts,whichisdescribedbya transition,fromthecase,wheretheparticleonalargepartof thecontacttimeslidesandonlyashorttimerolls,tothecase, whentheparticlemostlyrolls.Thethirdregimestarts,when rolling duringthe complete contact time isreached. Pass-ingthroughthisregime,thetranslationaltangentialvelocity onacriticalcollisionanglegetsequaltoω·RPresultingina tangentialcontactforceofzero.Therefore,noenergyis con-vertedbetweentranslationaland rotationalmovementand bothtangentialCoRandrotationalCoRareequaltothevalue1. Furtherincreasingthecollisionanglevtgetslargerthanω·RP andtranslationalmovementisconvertedtorotationduring

the contact,leadingtoarotationCoRlargerthan one(and et<1).Whenthecollisionangleislargeenoughtheparticle againstartstopartiallyslideonthewallresultingina sec-ondtransitionregimeuntilagaincompleteslidingisreached with constant rotationalvelocityafter reboundinthe fifth regime.Allvalidationexperimentsagreewellwiththemodel, althoughtheyonlyrepresentthefirsttransitionregime. Fur-thervalidationmightbebeneficialforcompletevalidationof themodel.

To further discuss the influence ofliquid properties on reboundbehaviorFig.13showsresultsofthe forcebalance modelfora␥-Al2O3particleinitiallyrotatingwith−500rads−1 impactingonaglassplate.Innormaldirectiontheliquid prop-erties have astrong influencein the force balance model. Application ofa liquid layeron the wall leadsto a strong decrease ofthenormalCoR.Anincreaseofthelayer thick-ness (green) as well as an increase of the liquid viscosity (orange)reducesthenormalCoRevenfurther.Theseresults werealreadydiscussedindetailfornormalcollisions.The tan-gentialCoRaswellasrotationalvelocityafterreboundand rotational CoRhowever are onlyslightly influenced by the liquid.Itwasassumed,thataliquidlayerwouldreducethe slidingfrictioncoefficient.Thus,thetransitionbetweenthe differentregimesofrollingandsliding isslightlyshiftedto smallercollisionangles.Anincreaseofviscositywasassumed to further reducethe sliding friction coefficient leading to anothersmallshiftofthecollisionangles,wheretransition between rollingand sliding happens.Ultimately, the influ-enceofliquids,especiallyofthelayerthickness,ontangential movementandrotationhoweverispredictedtobeverysmall.

Fig. 14 shows experimentalresults ofthe same system atcomparableparameterconfigurations.Theinitialrotation usedintheseexperimentsissummarizedinTable4.Aswas predictedbytheforcebalancemodelthenormalcoefficientof

(15)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng.

Fig.14–InfluenceofliquidpropertiesonnormalCoR(a),tangentialCoR(b),rotationalvelocityafterrebound(c)and rotationalCoR(d)experimentallyfoundfora␥-Al2O3particleobliquelyimpactingonaglassplatewithcomparableinitial

particlerotation(summarizedinTable4).

Table4–InitialrotationduringexperimentsinFigs.11 and14.

Dry Tween20 50%glycerol

– l=1mPas l=3mPas – ıl=100␮m ıl=150␮m ıl=100␮m 20◦ −698±172 −623±188 −741±102 −704±96 30◦ −1056±179 −961±199 −1125±178 −1330±109 40◦ −1777±411 −1366±196 −1803±172 −1564±135 50◦ −2171±569 −1777±344 −2035±152 −2181±151

restitutionisstronglyinfluencedbythepropertiesofthe liq-uidlayer,whilethevaluesoftangentialCoR,rotationvelocity afterreboundandrotationalcoefficientofrestitutionshowno considerableinfluence.Variationsbetweentheexperimental resultsallliewithineachstandarddeviation.Similarresults were alsoreportedbyKantak andDavis (2004), who found thenormalcoefficientofrestitutiontobestronglydependent onliquid properties,whiletangential coefficientof restitu-tionandrotationareonlymarginallyinfluencedbythinliquid layers.Consequently, the force balance model can be con-cludedtopredictthe(mostlysmall)influenceofliquidlayers onobliquecollisiondynamicsreasonablywell.

4.

Conclusion

Inthisworkweproposeaforcebalancemodel,which pre-dicts therebound characteristics ofparticles normally and obliquelycollidingwithadryorwetwall.Normal,tangential and rotational velocities are taken into account and ana-lyzedviacoefficientsofrestitution.Themodeliscompared toextensiveexperimentalresearchandthemodelwasfound topredicttheexperimentalresultswell.Themajorfindings andlimitationsaresummarizedinthefollowing:

1. Thepropertiesoftheliquidlayerfeatureastronginfluence onthenormalcoefficientofrestitutionbutarenearly neg-ligible regardingtangential coefficientofrestitution and rotationforthinliquidlayersintheinvestigatedrangeof parameters.

2. For oblique collisions normal and tangential forces and velocitiescanbesuperimposed.Thenormalcoefficientof restitutionisindependentofcollisionangleandinitial rota-tion ofthe particle.Tangential coefficient ofrestitution aswellasrotationalcoefficientofrestitutionarestrongly dependentonbothcollisionangleandinitialrotation. 3. Acleartransitionbetweenrollingandslidingregimescan

bedistinguishedinthetangentialandrotationalCoR.To validate the complete dependence somefurther experi-mentsmight bebeneficial.Neverthelessallexperiments sofararewellpredictedbythemodel.

4. Theproposedforcebalancemodelisabletofullypredict thereboundbehaviorofwetparticle–wallcollisions.It how-everstronglydependsonpreciseknowledgeofthematerial parametersandgeometryoftheliquidbridge,especially half-fillingangleandslidingfrictioncoefficient.

Next,themodelshouldtobeextendedandvalidatedfor particle–particle collision, where slight modification to the modelmightbenecessary(e.g.assumptionsforthecapillary force).Furthermore,thethirddimensionshouldbeincluded. Ultimately, this model, especially the influence of liquids, couldbeincludedintoaDEMcodetobeabletosimulatenot onlytwo-bodycontacts,butalsolargerprocesses.

Acknowledgements

We gratefully acknowledge for the financial support: Ger-manResearchFoundation(DFG),Germany,andNWOdomain

(16)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. Applied and Engineering Sciences TTW, The Netherlands.

ProjectnumberHE4526/9-2.

Appendix

A.

Liquid

volume

Forcalculatingtheliquidbridgevolumethegeometricsofa toroidapproximationareusedandcanbeexpressedinfour fractionsshowninFig.15:acylindricalapproximationofthe bridgeVb,1,minustherotationalvolumeofthefractionofthe toroidsectionVb,2,rotationalvolumeofthetriangleVb,3and thevolumesectionoftheparticleimmersedinliquidVb,4: Vb=Vb,1−Vb,2−Vb,3−Vb,4 (39)

Approximatingthecontactanglebetweenliquidlayerand liquidbridgetobezeroVb,1iscalculatedbythemaximalradius ofthebridge(ra+rm)andthetotalheightofthebridge: Vb,1= (ra+rm)2· (y−RP·cosϕ−ıl) (40)

Thevolumeofabodyofrotationiscalculatedbyaproduct ofthecross-sectionalarea,whichisrotated,andtheperimeter oftherotation,whichresultsinthefollowingexpressionsfor Vb,2andVb,3: Vb,2= 1 2r 2 m( − (+ ))·2



ra+rm−4rmsin −(+ϕ) 2 3 ( −(+ϕ)) ·sin

− (+ϕ) 2



(41) Vb,3= 1 2r 2 msin (+ϕ)·cos (+ϕ)·2



rc+ 2 3rmsin (+ϕ)



(42)

Thevolumeofthesphericalcapoftheparticleiscalculated via Vb,4= 1 3 (RP(1−cosϕ)) 2 · (3RP−RP(1−cosϕ)) (43)

Appendix

B.

Half-filling

angle

Table5–Half-fillingangleusedintheforcebalance modelfordifferentexperimentalconfigurations.

Particle Liquid ıl[␮m] ϕ[◦] 1.8mmglass Water 100 35 200 45 400 55 35%glycerol 400 53 50%glycerol 400 51 Tween20 100 35 0.91mmglass Water 100 45 200 55 Al2O3 Water 100 28 200 45 400 53 35%glycerol 100 34 200 44 50%glycerol 200 43 Tween20 100 35 150 42

References

Åhrström,B.-O.,Penchinat,C.,Norrby,T.,2003.Anexperimental studyoftheinfluenceofheatstorageandtransportabilityof differentlubricantsonfrictionundertransient

elastohydrodynamicconditions.Proc.Institut.Mech.Eng.J:J. Eng.Tribol.217(1),27–37,

http://dx.doi.org/10.1243/135065003321164785.

Antonyuk,S.,Heinrich,S.,Deen,N.,Kuipers,H.,2009.Influence ofliquidlayersonenergyabsorptionduringparticleimpact. Particuology7(4),245–259,

http://dx.doi.org/10.1016/j.partic.2009.04.006.

Antonyuk,S.,Heinrich,S.,Tomas,J.,Deen,N.G.,vanBuijtenen, M.S.,Kuipers,J.A.M.,2010.Energyabsorptionduring compressionandimpactofdryelastic–plasticspherical granules.GranularMatter12(1),15–47,

http://dx.doi.org/10.1007/s10035-009-0161-3.

AmericanSocietyforTestingandMaterials,2018.ASTMD6773– 16:StandardTestMethodforBulkSolidsUsingSchulzeRing

(17)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. ShearTester.ASTMInternational,WestConshohocken,PA,

http://dx.doi.org/10.1520/D6773-16.

Barnocky,G.,Davis,R.H.,1988.Elastohydrodynamiccollisionand reboundofspheres:experimentalverification.Phys.Fluids31 (6),1324–1329,http://dx.doi.org/10.1063/1.866725.

Brilliantov,N.V.,Spahn,F.,Hertzsch,J.-M.,Pöschel,T.,1996.Model forcollisionsingranulargases.Phys.Rev.E53,5382–5392,

http://dx.doi.org/10.1103/PhysRevE.53.5382.

Buck,B.,Tang,Y.,Heinrich,S.,Deen,N.G.,Kuipers,J.,2017. Collisiondynamicsofwetsolids:Reboundandrotation. PowderTechnol.316,218–224,

http://dx.doi.org/10.1016/j.powtec.2016.12.088,fluidizationfor EmergingGreenTechnologies.

Chan,D.Y.C.,Horn,R.G.,1985.Thedrainageofthinliquidfilms betweensolidsurfaces.J.Chem.Phys.83(10),5311–5324,

http://dx.doi.org/10.1063/1.449693.

Crüger,B.,Salikov,V.,Heinrich,S.,Antonyuk,S.,Sutkar,V.,Deen, N.,Kuipers,J.A.M.,2016a.Coefficientofrestitutionfor particlesimpactingonwetsurfaces:animproved experimentalapproach.Particuology25,1–9,

http://dx.doi.org/10.1016/j.partic.2015.04.002.

Crüger,B.,Heinrich,S.,Antonyuk,S.,Deen,N.G.,Kuipers,J.A.M., 2016b.Experimentalstudyofobliqueimpactofparticleson wetsurfaces.Chem.Eng.Res.Des.110,209–219,

http://dx.doi.org/10.1016/j.cherd.2016.01.024.

Darabi,P.,Pougatch,K.,Salcudean,M.,Grecov,D.,2009.Anovel coalescencemodelforbinarycollisionofidenticalwet particles.Chem.Eng.Sci.64(8),1868–1876,

http://dx.doi.org/10.1016/j.ces.2009.01.017. Davis,R.H.,Serayssol,J.-M.,Hinch,E.J.,1986.The

elastohydrodynamiccollisionoftwospheres.J.FluidMech. 163,479–497,http://dx.doi.org/10.1017/S0022112086002392. Davis,R.H.,Rager,D.A.,Good,B.T.,2002.Elastohydrodynamic

reboundofspheresfromcoatedsurfaces.J.FluidMech.468, 107–119,http://dx.doi.org/10.1017/S0022112002001489. DiRenzo,A.,DiMaio,F.P.,2004.Comparisonofcontact-force

modelsforthesimulationofcollisionsinDEM-basedgranular flowcodes.Chem.Eng.Sci.59(3),525–541,

http://dx.doi.org/10.1016/j.ces.2003.09.037.

Dong,H.,Moys,M.H.,2006.Experimentalstudyofoblique impactswithinitialspin.PowderTechnol.161(1),22–31,

http://dx.doi.org/10.1016/j.powtec.2005.05.046. Ennis,B.J.,Tardos,G.,Pfeffer,R.,1991.Amicrolevel-based

characterizationofgranulationphenomena.PowderTechnol. 65(1),257–272,http://dx.doi.org/10.1016/0032-5910(91)80189-P. Feng,X.-Q.,Li,H.,Zhao,H.-P.,Yu,S.-W.,2009.Numerical

simulationsofthenormalimpactofadhesivemicroparticles witharigidsubstrate.PowderTechnol.189(1),34–41,

http://dx.doi.org/10.1016/j.powtec.2008.05.014. Foerster,S.F.,Louge,M.Y.,Chang,H.,Allia,K.,1994.

Measurementsofthecollisionpropertiesofsmallspheres. Phys.Fluids6(3),1108–1115,

http://dx.doi.org/10.1063/1.868282.

Fu,J.,Adams,M.J.,Reynolds,G.K.,Salman,A.D.,Hounslow,M.J., 2004.Impactdeformationandreboundofwetgranules. PowderTechnol.140(3),248–257,

http://dx.doi.org/10.1016/j.powtec.2004.01.012.

GlycerineProducers’Association,1963.PhysicalPropertiesof GlycerineanditsSolutions.GlycerineProducers’Association.

Goldman,A.,Cox,R.,Brenner,H.,1967.Slowviscousmotionofa sphereparalleltoaplanewall-Imotionthroughaquiescent fluid.Chem.Eng.Sci.22(4),637–651,

http://dx.doi.org/10.1016/0009-2509(67)80047-2. Gollwitzer,F.,Rehberg,I.,Kruelle,C.A.,Huang,K.,2012.

Coefficientofrestitutionforwetparticles.Phys.Rev.E86, 011303,http://dx.doi.org/10.1103/PhysRevE.86.011303. Gorham,D.A.,Kharaz,A.H.,2000.Themeasurementofparticle

reboundcharacteristics.PowderTechnol.112(3),193–202,

http://dx.doi.org/10.1016/S0032-5910(00)00293-X.

Helenius,A.,McCaslin,D.R.,Fries,E.,Tanford,C.,1979.Properties ofdetergents.In:BiomembranesPartG:Bioenergetics: BiogenesisofMitochondria,Organization,andTransport,vol.

56ofMethodsinEnzymology.AcademicPress,pp.734–749,

http://dx.doi.org/10.1016/0076-6879(79)56066-2.

Hertz,H.,1882.ÜberdieBerührungfesterelastischerKörper. JournalfürdiereineundangewandteMathematik92,156–171.

Hogekamp,S.,Stang,M.,Schubert,H.,1994.Jetagglomeration anddynamicadhesionforces.Chem.Eng.Process.:Process Intensification33(5),313–318,

http://dx.doi.org/10.1016/0255-2701(94)02001-9.

Jain,D.,Deen,N.G.,Kuipers,J.A.M.,Antonyuk,S.,Heinrich,S., 2012.Directnumericalsimulationofparticleimpactonthin liquidfilmsusingacombinedvolumeoffluidandimmersed boundarymethod.Chem.Eng.Sci.69(1),530–540,

http://dx.doi.org/10.1016/j.ces.2011.11.018.

Joseph,G.G.,Hunt,M.L.,2004.Obliqueparticle–wallcollisionsina liquid.J.FluidMech.510,71–93,

http://dx.doi.org/10.1017/S002211200400919X.

Joseph,G.G.,Zenit,R.,Hunt,M.L.,Rosenwinkel,A.M.,2001. Particle–wallcollisionsinaviscousfluid.J.FluidMech.433, 329–346,http://dx.doi.org/10.1017/S0022112001003470. Kan,H.,Nakamura,H.,Watano,S.,2015.Numericalsimulationof

particle–particleadhesionbydynamicliquidbridge.Chem. Eng.Sci.138,607–615,

http://dx.doi.org/10.1016/j.ces.2015.08.043.

Kan,H.,Nakamura,H.,Watano,S.,2016.Effectofparticle wettabilityonparticle–particleadhesionofcollidingparticles throughdroplet.PowderTechnol.302,406–413,

http://dx.doi.org/10.1016/j.powtec.2016.08.066.

Kantak,A.A.,Davis,R.H.,2004.Obliquecollisionsandreboundof spheresfromawettedsurface.J.FluidMech.509,63–81,

http://dx.doi.org/10.1017/S0022112004008900.

Kantak,A.A.,Galvin,J.E.,Wildemuth,D.J.,Davis,R.H.,2005. Low-velocitycollisionsofparticleswithadryorwetwall. Micrograv.–Sci.Technol.17(1),18–25,

http://dx.doi.org/10.1007/BF02870971.

Kharaz,A.H.,Gorham,D.A.,Salman,A.D.,1999.Accurate measurementofparticleimpactparameters.Meas.Sci. Technol.10(1),31.

Kharaz,A.H.,Gorham,D.A.,Salman,A.D.,2001.Anexperimental studyoftheelasticreboundofspheres.PowderTechnol.120 (3),281–291,http://dx.doi.org/10.1016/S0032-5910(01)00283-2. Kralchevsky,P.A.,Nagayama,K.,2001.Capillarybridgesand

capillary-bridgeforces.In:Kralchevsky,P.A.,Nagayama,K. (Eds.),ParticlesatFluidsInterfacesandMembranes– AttachmentofColloidParticlesandProteinstoInterfacesand FormationofTwo-DimensionalArrays,vol.10ofStudiesin InterfaceScience.Elsevier,pp.469–502,

http://dx.doi.org/10.1016/S1383-7303(01)80052-1,Chapter11. Kruggel-Emden,H.,Simsek,E.,Rickelt,S.,Wirtz,S.,Scherer,V.,

2007.Reviewandextensionofnormalforcemodelsforthe discreteelementmethod.PowderTechnol.171(3),157–173,

http://dx.doi.org/10.1016/j.powtec.2006.10.004.

Lian,G.,Xu,Y.,Huang,W.,Adams,M.J.,2001.Onthesqueezeflow ofapower-lawfluidbetweenrigidspheres.J.Non-Newtonian FluidMech.100(1–3),151–164,

http://dx.doi.org/10.1016/S0377-0257(01)00140-9.

Lin,S.-Y.,Lin,J.-F.,2013.Numericalinvestigationoflubrication forceonasphericalparticlemovingtoaplanewallatfinite Reynoldsnumbers.Int.J.MultiphaseFlow53,40–53,

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.01.006. Liu,G.,Li,S.,Yao,Q.,2011.AJKR-baseddynamicmodelforthe

impactofmicro-particlewithaflatsurface.PowderTechnol. 207(1–3),215–223,

http://dx.doi.org/10.1016/j.powtec.2010.11.002.

Luding,S.,1998.Collisionsandcontactsbetweentwoparticles. In:Herrmann,H.J.,Hovi,J.-P.,Luding,S.(Eds.),PhysicsofDry GranularMedia.SpringerNetherlands,Dordrecht,pp. 285–304,http://dx.doi.org/10.1007/978-94-017-2653-520. Müller,T.,Gollwitzer,F.,Krülle,C.A.,Rehberg,I.,Huang,K.,2013.

Scalingofthenormalcoefficientofrestitutionforwet impacts.AIPConf.Proc.1542(1),787–790,

(18)

Pleasecitethisarticleinpressas:Buck,B.,etal., Numericalinvestigationofcollisiondynamicsofwetparticlesviaforcebalance.Chem.Eng. Müller,T.,Huang,K.,2016.Influenceoftheliquidfilmthickness

onthecoefficientofrestitutionforwetparticles.Phys.Rev.E 93,042904,http://dx.doi.org/10.1103/PhysRevE.93.042904. Ma,J.,Liu,D.,Chen,X.,2013.Experimentalstudyofoblique

impactbetweendryspheresandliquidlayers.Phys.Rev.E88, 033018,http://dx.doi.org/10.1103/PhysRevE.88.033018. Ma,J.,Liu,D.,Chen,X.,2015.Rotationalbehaviorofdryspheres

obliquelyimpactingonliquidlayers.PowderTechnol.270(Part B),418–423,http://dx.doi.org/10.1016/j.powtec.2014.08.042. Ma,J.,Liu,D.,Chen,X.,2016.Normalandobliqueimpacts

betweensmoothspheresandliquidlayers:liquidbridgeand restitutioncoefficient.PowderTechnol.301,747–759,

http://dx.doi.org/10.1016/j.powtec.2016.07.001.

Matthewson,M.J.,1988.Adhesionofspheresbythinliquidfilms. Philos.Mag.A57(2),207–216,

http://dx.doi.org/10.1080/01418618808204510.

McFarlane,J.S.,Tabor,D.,1950.Relationbetweenfrictionand adhesion.Proc.R.Soc.Lond.A:Math.Phys.Eng.Sci.202 (1069),244–253.

Mikami,T.,Kamiya,H.,Horio,M.,1998.Numericalsimulationof cohesivepowderbehaviorinafluidizedbed.Chem.Eng.Sci. 53(10),1927–1940,

http://dx.doi.org/10.1016/S0009-2509(97)00325-4.

Mindlin,R.D.,Deresiewicz,H.,1953.Elasticspheresincontact undervaryingobliqueforces.J.Appl.Mech.20,327–344.

Nase,S.T.,Vargas,W.L.,Abatan,A.A.,McCarthy,J.,2001.Discrete characterizationtoolsforcohesivegranularmaterial.Powder Technol.116(2–3),214–223,

http://dx.doi.org/10.1016/S0032-5910(00)00398-3. Pitois,O.,Moucheront,P.,Chateau,X.,2000.Liquidbridge

betweentwomovingspheres:anexperimentalstudyof viscosityeffects.J.ColloidInterfaceSci.231(1),26–31,

http://dx.doi.org/10.1006/jcis.2000.7096.

Pitois,O.,Moucheront,P.,Chateau,X.,2001.Ruptureenergyofa pendularliquidbridge.Eur.Phys.J.B:Condens.Matter ComplexSyst.23(1),79–86,

http://dx.doi.org/10.1007/s100510170084.

Shi,D.,McCarthy,J.,2008.Numericalsimulationofliquidtransfer betweenparticles.PowderTechnol.184(1),64–75,

http://dx.doi.org/10.1016/j.powtec.2007.08.011.

Sutkar,V.S.,Deen,N.G.,Padding,J.T.,Kuipers,J.A.M.,Salikov,V., Crüger,B.,Antonyuk,S.,Heinrich,S.,2015.Anovelapproach todeterminewetrestitutioncoefficientsthroughaunified correlationandenergyanalysis.AIChEJ.61(3),769–779,

http://dx.doi.org/10.1002/aic.14693.

SWARCO-VestglasVetischeStrahl-undReflexglasGmbH, TechnischeProduktinformationMahlperlenTypeS,2018a. SWARCO-VestglasVetischeStrahl-undReflexglasGmbH–

ceroglass,TypeSGlassBeads,2018b,https://www.swarco.com/ ceroglass/Products/Wet-Grinding-Milling-Beads/Type-S-Glass-Beads. Tang,Y.,Kuipers,J.A.M.,Buck,B.,Heinrich,S.,Deen,N.G.,2017.

Interface-resolvedsimulationsofnormalcollisionsofspheres onawetsurface.AIChEJ.63(11),4774–4787.

Thornton,C.,Cummins,S.J.,Cleary,P.W.,2013.Aninvestigation ofthecomparativebehaviourofalternativecontactforce modelsduringinelasticcollisions.PowderTechnol.233, 30–46,http://dx.doi.org/10.1016/j.powtec.2012.08.012. Thornton,C.,2009.Anoteontheeffectofinitialparticlespinon

thereboundbehaviourofobliqueparticleimpacts.Powder Technol.192(2),152–156,

http://dx.doi.org/10.1016/j.powtec.2008.12.015. Tsuji,Y.,Tanaka,T.,Ishida,T.,1992.Lagrangiannumerical

simulationofplugflowofcohesionlessparticlesina horizontalpipe.PowderTechnol.71(3),239–250,

http://dx.doi.org/10.1016/0032-5910(92)88030-L.

White,F.M.,2006.ViscousFluidFlow,3rdedition.McGraw-Hill.

Wu,C.-y.,Li,L.-y.,Thornton,C.,2003a.Reboundbehaviourof spheresforplasticimpacts.Int.J.ImpactEng.28(9),929–946,

http://dx.doi.org/10.1016/S0734-743X(03)00014-9.

Wu,C.-Y.,Thornton,C.,Li,L.-Y.,2003b.Coefficientsofrestitution forelastoplasticobliqueimpacts.Adv.PowderTechnol.14(4), 435–448,http://dx.doi.org/10.1163/156855203769710663. Wu,C.-Y.,Thornton,C.,Li,L.-Y.,2009.Asemi-analyticalmodel

forobliqueimpactsofelastoplasticspheres.Proc.R.Soc. Lond.A:Math.Phys.Eng.Sci.465(2103),937–960,

http://dx.doi.org/10.1098/rspa.2008.0221.

Wu,M.,Radl,S.,Khinast,J.G.,2016.Amodeltopredictliquid bridgeformationbetweenwetparticlesbasedondirect numericalsimulations.AIChEJ.62(6),1877–1897,

http://dx.doi.org/10.1002/aic.15184.

Wu,M.,Khinast,J.G.,Radl,S.,2017.Liquidtransportratesduring binarycollisionsofunequally-sizedparticles.PowderTechnol. 309,95–109,http://dx.doi.org/10.1016/j.powtec.2016.12.080. Yang,F.-L.,Hunt,M.L.,2006.Dynamicsofparticle–particle

collisionsinaviscousliquid.Phys.Fluids18(12),121506,

http://dx.doi.org/10.1063/1.2396925.

Zheng,Q.,Zhu,H.,Yu,A.,2012.Finiteelementanalysisofthe contactforcesbetweenaviscoelasticsphereandrigidplane. PowderTechnol.226,130–142,

Referenties

GERELATEERDE DOCUMENTEN

3.5 Non-radiative recombination mechanisms Different non-radiative recombination mechanisms mayalso limit the lifetimes of car- riers in semiconductors, depending very

Benut de veldwerkplaatsen ook voor een (brede) inventarisatie van praktijkproblemen en -vragen van beheerders. Het verdient aanbeveling vanuit het Kennisnetwerk OBN meer ruimte

dependentie, be!nvloeding.. Indien voor elke deelverzamelin~ van W, die Diet de lege verzameling is, geldt dat er een relatie is tussen die deelverzameling en

Tijdens de veldprospectie uitgevoerd eind 2008- begin 2009 in het kader van de aanleg van de A11 werden twee vondstenconcentraties aangetroffen. Deze vondstenconcentraties

Preliminary studies showed that two different carton designs currently used for handling pomegranate fruit had significantly different produce cooling rates, cooling

Emissions by combustion of solid fuels in domestic stoves Citation for published version (APA):.. Zeedijk, H. Emissions by combustion of solid fuels in domestic stoves.

24  mogelijkheden zitten Liefde en Succes

Het conditioneren van het product om het beter bestand te maken tegen de hoge temperatuur kan de schade door de behandeling verminderen, het maakt de insecten echter ook