• No results found

University of Groningen The Role of Structural Dynamics in Protein Function and Evolvability Muthahari, Yusran

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The Role of Structural Dynamics in Protein Function and Evolvability Muthahari, Yusran"

Copied!
26
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The Role of Structural Dynamics in Protein Function and Evolvability

Muthahari, Yusran

DOI:

10.33612/diss.155494424

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Muthahari, Y. (2021). The Role of Structural Dynamics in Protein Function and Evolvability. University of

Groningen. https://doi.org/10.33612/diss.155494424

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Appendices

Supplementary Information

Samenvatting

Summary

Acknowledgement

(3)
(4)
(5)
(6)
(7)

e. C-tail Only

SFL1. Supplementary S1 – Full Phylogenetic Trees

Structure- and sequence-based phylogenetic trees of the 53 identified cherry-core proteins with known structures. Summary of this tree is presented in Figure 2.1A and Figure S2.1B-D. Trees are constructed after the entire polypeptide chain (A, B), the CC only (C) and the C-tail only (D). Every protein is represented by its PDB ID code.

(8)
(9)
(10)
(11)
(12)
(13)

SFL2.F - Interaction Map of CynR Models derived from LTTRS’ Structure

SFL2. Supplementary S2 –Interaction of CynR connecting loop/dimerization helix with the CC. The cynR sequence was modelled after the known oligomeric high-resolution structures (see Figure 4.2). The contact interfaces between the dimerization helix and the CC derived from the structures (A,C,E) or from the corresponding models (B,D,F) were analyzed in the Protein Interaction calculator server, using standard server settings. The residues forming such interface belong to the connecting-loop or the dimerization helix (indicated as loop and helix respectively) and elements of the CC (indicated according to the Figure 2.1). The nature of the interactions, hydrophobic, aromatic, Cation-Pi, hydrogen-bonds, Ionic are represented with blue, cyan, green, orange and red

(14)
(15)

SFL3. Supplementary S3– Structure based phylogenetic trees of Class A Protein

Results as obtained from the Dali server. The structure based phylogenetic tree of class A proteins with known oligomeric structures (see Figure 4.2). Top part contains full length class A transcription factors (HTH motif/dimerization helix and CC) while bottom part, only the CC.

(16)

Samenvatting

Tijdens de evolutie worden 'peptiden' omgezet in 'eiwitten' door de specifieke functies op een geavanceerde manier aan dergelijke biopolymeren te delegeren. Van alle beschikbare conformeren moet de natuur een subset ervan selecteren om elk eiwit specifieke substraten te laten herkennen. Tijdens de korte evolutieperiode kan een dergelijke functionele specialisatie van een peptide met een vaste lengte getrouw worden verklaard door de theorie van de ontwikkelbaarheid van eiwitten. Om de evolutie van de niet-vaste lengte peptiden die op een lange termijn kunnen voorkomen te rationaliseren, hebben we ons gefocust op het uitbreiden van de huidige evolueerbaarheidstheorie door het introduceren van de proteïne modulariteit in dit proefschrift.

Om het concept van eiwitmodulariteit volledig te begrijpen, hebben we in Hoofdstuk 1 een overzicht gegeven met de samenvatting van twee fundamentele studies: (i) de multi-tier eiwitdynamiek en (ii) de evolueerbaarheid van eiwitten. Het hoofdstuk bevat ook een korte uitleg van het energetische trechtermodel, omdat het ons in staat stelt om de evolutie van de proteïne-energetica en -structuren op basis van functionele specialisatie te veronderstellen. Door deze algemeen aanvaarde concepten uit te werken, zijn we in staat een werkhypothese te vormen over de rol van de eiwitmodules, zoals we in het volgende Hoofdstuk 2 hebben gepresenteerd.

Hoofdstuk 2 geeft een generieke werkhypothese van dit proefschrift door de rol van de modules om de functie van eiwitten tijdens de evolutie te specialiseren ter discussie te stellen. Om deze hypothese te verifiëren, hebben we een grote groep eiwitten onderzocht die een gemeenschappelijke 'primordiale' structuur aannemen, namelijk de 'cherry-core' (CC). De CC geïdealiseerde consensus, die is samengesteld uit twee continue Rossmann-fold Domeinen (D1 en D2) verbonden via twee anti-parallelle β-sheet 'hinges' (βH1 en βH2), vertoont een opmerkelijke symmetrie die kan bijdragen aan de conformationele variabiliteit en plasticiteit. Vervolgens hebben we voorgesteld dat de geometrische plaatsing van de modules (d.w.z. C-terminaltoevoegingen) in de CC de meerlaagse dynamiek op de CCP's mogelijk maakt.

Om de hypothese uit het vorige hoofdstuk te testen, hebben we grootschalige domeinbewegingen onderzocht via single-molecule Förster Resonance Energy Transfer (smFRET) en lokale structurele fluctuaties via Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS)

(17)

verschillende structurele dynamiek op meerdere niveaus aan de CC geven. Een dergelijke dynamiek maakt de diversificatie van functie en ligandspecificiteit van de CCP's mogelijk. In dit hoofdstuk hebben we ons gericht op het benadrukken van de rol van asymmetrische C-staart om tier-0 dynamiek te 'genereren' op SBD2 en MalE van respectievelijk Klasse B en G. Dergelijke eiwitten zijn ABC-transporter-gerelateerde eiwitten, die twee verschillende conformaties vereisen om hun verwante liganden te vangen (d.w.z. open in de apo- en gesloten in de holo-toestand). Door specifieke interacties op de C-staart te verstoren, destabiliseren we de open apo-toestand en vergroten we hun bindingsaffiniteit. Dergelijke resultaten bevestigen de rol van de modules van de ABC-transporter-gerelateerde CCP's om de 'open' conformatie als de oorspronkelijke apo-toestand te genereren.

De CC van de LysR Type Transcription Regulators (LTTR's) heeft geen extra C-staart-module en werkt als het effector-bindende domein (EBD). We hebben aangetoond dat Tier-0-dynamiek niet waarneembaar is op de EBD van CynR en mogelijk niet vereist is tijdens effectorbinding om de quaternaire veranderingen te verspreiden. In Hoofdstuk 4 hebben we de dynamiek van het lagere niveau die ten grondslag ligt aan de functie van CynR gevolgd door de combinatie van structurele modellering en dynamica-studies (d.w.z. HDX-MS) te gebruiken. Hoewel er geen significante structurele veranderingen zijn waargenomen op de CC die is gedetecteerd met onze experimentele procedures, stelden we voor dat de accumulatieve dynamiek van de lage niveaus mogelijk voldoende is om de quartaire veranderingen te initiëren die essentieel zijn voor het DNA-(ont)buigen.

In Hoofdstuk 5 hebben we het effect van de modules op de structurele dynamiek van een van de moderne CCP's bepaald, namelijk het Maltose Binding Protein (MalE). Zulke modules zijn voornamelijk ingebed in de C-terminy en geïntegreerd in de geconserveerde structuur, meer als vervangers van consensus helices / sheets, zoals beschreven in Hoofdstuk 2. We hebben de rol van dergelijke modules geverifieerd met behulp van een reeks biofysische tools (bijv. SmFRET, HDX-MS en Isothermal Titration Calorimetry) en MD-simulaties waarmee we het energetische landschap van MalE konden reconstrueren. Door dergelijke modules te veranderen met behulp van plaatsgerichte mutagenese, hebben we de synergetische rollen van de modules bevestigd, die cruciaal zijn om MalE te personifiëren om te functioneren als een transportgerelateerd bindend eiwit door (i) het ligand in te sluiten en (ii) een aparte apo-toestand te creëren.

(18)

We verwachtten dat de energetische argumenten tijdens de evolutie zouden kunnen worden gezien als de belangrijkste selectiedruk. Om aan de energetische behoefte te voldoen, zou de natuur modules kunnen introduceren in de hoog-evolueerbare eiwitkernen tijdens de lange evolutieperiode, zoals we in dit proefschrift hebben gepresenteerd over het modulariteitsconcept. Zodra de modules zijn 'gehecht', is evolutie op een peptide met vaste lengte voldoende om de eiwitfuncties te optimaliseren. Het latere evolutieproces zou in een relatief kortere evolutieperiode kunnen plaatsvinden, zoals vermeld in de ‘avant-garde’ evolueerbaarheidstheorie.

(19)

Summary

During evolution 'peptides' are turned into 'proteins' by delegating the specific functions to such biopolymers in a sophisticated manner. Out of all available conformers, nature has to select a subset of them to allow each protein to recognize specific substrates. During the short evolutionary period, such functional specialization of a fix-length peptide can be faithfully explained by the protein evolvability theory. To rationalize the evolution of the non-fixed length peptides that might occur upon a long-term period, we focused on expanding the current evolvability theory by introducing the protein modularity notion in this thesis.

To fully comprehend the concept of protein modularity, we provided an overview in Chapter 1 that includes the summary of two fundamental concepts: (i) the multi-tier protein dynamics and (ii) the protein evolvability. The chapter also includes a short explanation of the energetic funnel model, as it allows us to hypothesize the evolution of the protein energetics and structures upon functional specialization. By elaborating on those widely-accepted concepts, we are able to form a working hypothesis on the role of the protein modules, as we presented in the subsequent Chapter 2.

Chapter 2 provides a generic working hypothesis of this thesis by questioning the modules' role to specialize the function of proteins during evolution. To verify this hypothesis, we investigated a large group of proteins adopting a common 'primordial' structure, i.e., the 'cherry-core' (CC). The cherry-core idealized consensus, which is composed of two continuous Rossmann-fold topology domains (D1 & D2) connected via two anti-parallel β-strand 'hinges' (βH1 & βH2), exhibits a remarkable symmetry which may contribute to its conformational variability and plasticity. We then proposed that the modules' geometrical placement (i.e., C-terminal additions) in the CC enables the multi-tier dynamics on the CCPs.

To test the hypothesis stated in the previous chapter, we probed large-scale domain motions via single-molecule Förster Resonance Energy Transfer (smFRET) and local structural fluctuation via Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) of the CCPs and their derivatives. In Chapter 3, we found that the modules of CCPs confer distinct multi-tier structural dynamics to the CC. Such dynamics allow the diversification of function and ligand specificity of the CCPs. In this chapter, we focused on highlighting the role of the asymmetric

(20)

C-tails to 'generate' tier-0 dynamics on SBD2 and MalE of Class B and G, respectively. Such proteins are ABC transporter-related proteins, which require two distinct conformations to capture their cognate ligands (i.e., open in the apo- and closed in the holo-state). By disrupting specific interactions on the C-tail, we destabilize the open apostate and increase their binding affinity. Such results confirm the role of the modules of the ABC transporter-related CCPs to generate the 'open' conformation as the native apo-state.

The cherry-core of the LysR Type Transcription Regulators (LTTRs) is having no additional C-tail module and acting as the effector binding domain (EBD). We showed that Tier-0 dynamics are not observable on the EBD of CynR and may not be required during effector binding to propagate the quaternary changes. In Chapter 4, we monitored the lower tier dynamics that underlie the function of CynR by using the combination of structural modeling and dynamics studies (i.e., HDX-MS). While there are no significant structural changes observed on the CC detected with our experimental procedures, we proposed that the accumulative low tiers dynamics are possibly sufficient to initiate the quaternary changes essential for the DNA-(un)bending.

In Chapter 5, we determined the modules' effect on the structural dynamics of one of the modern CCPs, i.e., the Maltose Binding Protein (MalE). Such modules are embedded predominantly at the C- terminy and integrated within the conserved structural more as the substitutes of consensus helices/sheets, as detailed in Chapter 2. We verified the role of such modules using an array of biophysical tools (i.e., smFRET, HDX-MS, and Isothermal Titration Calorimetry) and MD simulations that allowed us to reconstruct the energetic landscape of MalE. By altering such modules using site-directed mutagenesis, we confirmed the modules' synergistic roles, which are critical to personify MalE to function as a transport-related binding protein by (i) entrapping the ligand and (ii) creating a distinct apo-state.

We anticipated that the energetic arguments might be seen as the main selective pressure during evolution. To fulfill the energetic requirement, nature might introduce modules into the highly-evolvable protein cores during the long-period evolution, as we presented on the modularity concept in this thesis. Once the modules are 'attached,' evolution on a fix-length peptide is sufficient to optimize the protein functions. The later evolutionary process might take effect in a relatively shorter evolutionary-period, as stated in the ‘avant-garde’ evolvability theory.

(21)
(22)
(23)

Acknowledgement

I would like to gratefully acknowledge the funding support that has been received through

The Indonesia Endownment Fund for Education (Lembaga Pengelola Dana Pendidikan - LPDP)

scholarschip scheme during the 4-years period of my PhD. I would like to thank also the Graduate School of Science and Engineering of the University of Groningen, The Board of The Zernike Institute and the Doctoral School of Biomedical Sciences of the Katholieke Universiteit Leuven for establishing and financially support the Double Degree Program between the two universities.

I have been received the enormous support from people that wholeheartedly contributed for the completion of this thesis and my PhD. Without their support, it would be impossible for me to face the ups-and-downs of this challenging journey and finish my PhD.

Firstly, I would like to thank Dr. Giorgos Gouridis. I would like to say sorry to you as I couldn’t mentioned your contributions and supports here one-by-one, as any other readers will end up by reading a novel. During my PhD, we were evolving together not only as a scientist, but also as a friend. We are ended up being a best friend - inside and outside the lab, and I hope you also enjoyed our laughs and scientific fights. Thank you for investing your time and energy so much for being my mentor and not only as my supervisor. I have never enjoying science better as you always told me that science is similar as a game and It should be fun. I want to share the value that you showed me as other people might also need to feel the same excitement while doing science not only as a scientist but also as a human.

Secondly, I would like to thank Prof. Thorben Cordes for the having me as a PhD student in your lab. I am grateful to have such a freedom to think and to collaborate. Thank you for trusting me on getting my PhD and letting me grow with the best people in the field. I would like to thank Prof. Anastassios ‘Tassos’ Economou and Dr. Spirydoula ‘Lily’ Karamanou for letting me having a second home in Leuven. I enjoyed every time I spent in your lab with every member of the group. The broad field and expertise that your lab provide helping me grow a lot. I would also give my thank to Prof. Wouter Roos for your help and welcoming me in your group during my PhD phase in Groningen.

(24)

For my Assessment Committee, especially Prof. Joost Schymkowitz and Prof. Frederic Rousseau for your sharp and constructive comments of my thesis. I couldn’t thank you enough for all your inputs as those comments significantly expand our perspectives regarding our results included in this thesis. We never knew if our study would be applicable in a broader fields.

Special thanks to my mentor: Dr. Rukman Hertadi (Asssc.Prof.). I am so lucky to be your student. Thanks for not limiting me but even challenging me to have a better scientific impact than your study. Thanks for letting me grow and evolved – as a scientist and as a person. It must be some kind of fluke (not anymore a matter of luck) for me to meet you and Dr. Gouridis that have similar mentality, optimism, positiveness while doing science in my early phase of academic carreer.

I would like to acknowledge my colleagues as without their support, I wouldn’t be able to get my PhD. All the Single Molecule Biophysics (SMB) members. Kak Florence ‘Reren’ Husada, thank you for welcoming and having me as a family in the SMB group. Without your help, I wouldn’t be able to survive my PhD phase in Groningen. I can’t thank you enough for all you’ve done. All the best for you, Kak. Semangat! Kostas Tassis, your molecular biology skills are incredible. Thanks for teaching me your scientific protocol, experimental ‘tricks’, and social methods on ‘how to bother people so they are willing to help and recognize us’. Marijn de Boer for being an incredible scientist in the Lab and openly discuss tons of fruitful ideas with me and Giorgos. Your views are always one-step ahead of everybody’s mind. Yichen Li, for being so calm and warm office mate. All the best for you, Yichen. Jochem Smit, thanks for your help especially in correcting my samenvatting of this thesis. Thanks also for Atieh, Monique, Jasper, and Jelle and ITB-ZIAM student visited the group: M. Arizki and Yovin Sugijo. Thanks for the members of MBP: Melissa, Sourav, Pedro, Yukun, Guus, and Yuzhen.

All the members of Lab Molecular Bacteriology- Rega Institute. Dr. ‘ Eleftheriadis-Nikolaos-Elef-Niko-…-‘ Nikolaos Eleftheriadis, thank you for being an excellent ‘collaborator.’ I will miss your voice forever. Thanks for being such an excellent colleagues and a best friend (read: family). Your energy and optimism is at another level, which everyone in the world should have. Thank you for teaching me all the stuff that you are expert at and also the stuff that I told you just 5 minutes before. I am always wondering how you can learn everything that fast. I really hope

(25)

we can even do and think almost anything in the lab. You’re incredible colleagues and person. Thanks for trusting me and also showing me the persistence. You’re evolving to become a biologist in a very short time. Our friendship will not end here, it will last even more! Live happily my friend, you deserved it. Bindu Srivinasu, for being such an open-minded person. The observer of the lab who always brings warmness and happiness to all the members. The lab is ‘chaotic’ without your presence. Mohamed Belal, for being a too nice person in the lab. Your sincerety will help you one day, my friend. God bless you and your family. Athina Portaliou, for being an excellent teacher and a warm friend. And other Lab members: Luit Barkalita, Srinath Krisnamurthy, Dries, Rengky, Jos, Sonya, Guillaume, and Maria.

All the Indonesian community in Groningen. Kak Ali Syariati, Teh Liany Septiany, and Cici Naureen: Nuhun untuk semuanya. Udah ngajarin semua hal baik tentang hidup dan berkeluarga. Sehat dan sukses terus nya. Mas Salva Yurista udah ngasih semua petuah-petuah hidup. Sukses terus mas, bahagia terus ya. Inget-inget kalau sudah jadi Menteri. Keluarga besar Kolak (extended): Marina Ika & Mang Shiddiq – semangat PhD dan dota-nya! Caecil, Kak Dina,

Kak May – makasih pisan buat semuanya ya. Mas Ali Abdurahman, Teh Yosay, Fatih, Dedenya

Fatih – sukses dan bahagia terus ya. Bagus ‘Sugab’ Angga, Kang Fikri, Mas Bin-Kak Sofi, Pak Hengky, Ika. Keluarga PL: Mas Kus-Mbak Fitri, Mas Zaenal-Mbak Ayu, Mas Kris-Mbak Ica, Makasih udah semua kebaikan kalian dan selalu ngebantuin aku. Kang Azis-Teh Nna, Mas Bino-Teh Susan, Pak-Bu Asmoro, Kang Irfan-Bino-Teh Liza, Kang Fajar-Bino-Teh Monik, Mas Adyhat-Mbak Nuri, Mas Didik-Mbak Rosel, Mbak Nur, Mbak Ira, Mbak Tiur, Bu Ima, Mas Didin-Anis. And for all the pople who welcome me during the first phase of my PhD: Rasyida, Keissha, Natasya Witto, Mas Fean, Mbak Adel, Erlang, Enrico, Mas Guntur, Mas Shiddiq. And also KMP: Krystle and Selva! Indonesian Day 2017-2018+PPIG Team: Mas Amak-Mbak Putri, Cancan, Mbak Era, Mas Alfian, Yovita, Mas Bimo, Rachel, and many others – thanks for your kindness. And to the warmest people: Bude Arie and (alm) Om Herman – makasih untuk semua kehanganatannya. The sandwich student: Ila, Abed, Nelson, Fras, Romel! Kami sayang bude dan om. Tante Indah – Om Yon, makasih tante Indah dan om Yon, bahagia selalu ya!

I would like to thank Ibu and Ayah for the endless support and duas: Alhamdulillah aa sudah lulus, makasih doa dan keihklasannya selama ini. Semoga aa bisa lebih membahagiakan ibu dan ayah. Hanifah Az Zahra for designing such a beautiful cover for this thesis and being a wonderful old sister to Isfa Amalia. Thanks for Isfa Amalia for taking care Ayah and Ibu while your

(26)

old siblings are away from home all this time – Semangat kalian ya! Jalanin apa yang kalian suka atau sukai apa yang kalian jalani. Keluarga Blitar: Bapak, Mamah, Edo: terima kasih untuk semua kasih sayangnya. Sehat dan bahagia selalu ya. Thanks to Mbah Putri, the whole family of KBBR-Jogja and keluarga Garut.

Thanks to the apples of my eyes, the jewels of my heart: Ibu Meissha Ayu Ardini and Cantik Rinjani Faza Ayudya Yusran. I will work harder and smarter to give you love that both of you deserved. I love you both to the moon! Terima kasih udah nemenin ayah ya, Ibu. Tetep jadi wanita terbaik buat ayah dan Jani. Semoga ayah juga bisa nemenin kalian untuk raih cita-cita dan mimpi-mimpi kita ya! Jani jangan lupa sayangin ibu terus ya. Be kind and courageous, Jani! Semangat ya cantik!

And lastly: Allah SWT, Prophet Mohammad and his family and followers. Thank you for giving me such wonderful life with incredible people around me. Alhamdulillah.

For the reader: I want to sincerely thank you for taking your time reading this thesis. Investing those amount of time to read my thesis is not trivial and is such an honor for me. I would be glad to hear any input, critic, comment, which will help us improve our study. Those contributions of yours will probably not be included in this printed version of thesis, but those will be carved in our minds and credited in our future work/manuscript. Please bear with us to expand this study even more.

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden.. Downloaded

Understanding of the cardiovascular pathophysiology in fetal hemolytic anemia and immune hydrops can therefore be helpful in the understanding of many other fetal diseases and might

Figure 4 Ratio between amniotic fluid and fetal blood concentrations of total bilirubin in 68 non-hydropic rhesus D-alloimmunized fetuses at first blood sampling, plotted against

To study the additional influence of gestational age and severity of anemia, a multivariable linear regression analysis was performed with the bilirubin/albumin ratio in fetal blood

Another possible explanation for the relatively high concentration of albumin in amniotic fluid compared to fetal urine and lung fluid, which are the main sources of amniotic fluid,

Our finding that most fetuses with immune hydrops have an albumin concentration within the normal range (71%) suggests that hypoalbuminemia is unlikely to cause the initial

Since we found that the decrease in red cell volume, on average, is compensated by an increase in plasma volume, the hemoglobin concentration or hematocrit is a