• No results found

Advances in cryo-electron tomography for biology and medicine

N/A
N/A
Protected

Academic year: 2021

Share "Advances in cryo-electron tomography for biology and medicine"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Annals

of

Anatomy

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a a n a t

INVITED

REVIEW

Advances

in

cryo-electron

tomography

for

biology

and

medicine

Roman

I.

Koning

a,b,∗

,

Abraham

J.

Koster

a,b

,

Thomas

H.

Sharp

a,∗

aDepartmentofCellandChemicalBiology,LeidenUniversityMedicalCenter,2300RCLeiden,TheNetherlands bNeCEN,InstituteBiologyLeiden,LeidenUniversity,2300RALeiden,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4September2017

Receivedinrevisedform2February2018 Accepted5February2018 Keywords: Electronmicroscopy Cryo-electrontomography Energyfilter Phaseplate

Directelectrondetector

a

b

s

t

r

a

c

t

Cryo-electrontomography(CET)utilizesacombinationofspecimencryo-fixationandmulti-angle elec-tronmicroscopyimagingtoproducethree-dimensional(3D)volumereconstructionsofnative-state macromolecularandsubcellularbiologicalstructureswithnanometer-scaleresolution.Inrecentyears, cryo-electronmicroscopy(cryoEM)hasexperiencedadramaticincreaseintheattainableresolutionof 3Dreconstructions,resultingfromtechnicalimprovementsofelectronmicroscopes,improved detec-torsensitivity,theimplementationofphaseplates,automateddataacquisitionschemes,andimproved imagereconstructionsoftwareandhardware.Thesedevelopmentsalsogreatlyincreasedtheusability andapplicabilityofCETasadiagnosticandresearchtool,whichisnowenablingstructuralbiologiststo determinethestructureofproteinsintheirnativecellularenvironmenttosub-nanometerresolution. Theserecenttechnicaldevelopmentshavestimulatedustoupdateonourpreviousreview(Koning,R.I., Koster,A.J.,2009.Cryo-electrontomographyinbiologyandmedicine.AnnAnat191,427–445)inwhich wedescribedthefundamentalsofCET.Inthisfollow-up,weextendthisbasicdescriptioninorderto explaintheaforementionedrecentadvances,anddescriberelated3Dtechniquesthatcanbeappliedto theanatomyofbiologicalsystemsthatarerelevantformedicine.

©2018ElsevierGmbH.Allrightsreserved.

Contents

1. Introduction...83

2. Samplepreparation...83

2.1. Vitrificationofthinsamples...83

2.2. Highpressurefreezingforthicksamplesandwholecells ... 85

2.3. Cryo-sectioningthicksamples...85

2.4. Stabilityofvitreoussamplesintheelectronmicroscope ... 86

3. Datacollection...86

3.1. Tiltseriesacquisition...86

3.2. Phaseplatesimprovetomograminterpretability...86

3.3. Energy-filteringreducesnoise...88

3.4. Directelectrondetectors...89

3.5. Automateddatacollectionandstorage...89

4. Imageprocessing...90

4.1. Tomogramreconstructionautomation...90

4.2. Themissingwedgelimitsinterpretationoftomographicvolumes...91

Abbreviations:3D,three-dimensional;cryoEM,cryo-electronmicroscopy;CCD,charged-coupleddevice;CEMOVIS,cryo-electronmicroscopyofvitreoussections;CET, cryo-electrontomography;CLEM,correlativelightelectronmicroscopy;CMOS,complementarymetaloxidesemiconductor;CT,computedtomography;CTF,contrasttransfer function;DED,directelectrondetector;DQE,detectorquantumefficiency;FIB,focusedionbeam;fLM,fluorescencelightmicroscopy;GFP,greenfluorescentprotein;HPF, high-pressurefreezing;MRI,magneticresonanceimaging;NMR,nuclearmagneticresonance;PET,positronemissiontomography;PSF,point-spreadfunction;SBF,solidblock face;SEM,scanningelectronmicroscopy;SIRT,simultaneousiterativereconstructiontechnique;SPA,singleparticleanalysis;SXT,softX-raytomography;TEM,transmission electronmicroscope;VPP,voltaphaseplate;WBP,weightedback-projection.

∗ Correspondingauthorsat:DepartmentofCellandChemicalBiology,LeidenUniversityMedicalCenter,2300RCLeiden,TheNetherlands. E-mailaddresses:R.I.Koning@lumc.nl(R.I.Koning),T.Sharp@lumc.nl(T.H.Sharp).

(2)

Anatomyinvolvesimagingatdifferentlengthscales,ranging fromcompleteorganisms,metersinsize,downtosinglecellswith dimensionsontheorderofmicrometers,andevennanometer-scale sub-cellularstructures.Consequently,manydifferenttechniques arerequiredtovisualizeanatomicalprocessesoverthiswiderange (Fig.1).Tomographygeneratesthree-dimensionalreconstructions andisusedindiverseareasofscienceandmedicine,formingthe basisofcomputedtomography(CT),magneticresonanceimaging (MRI),andpositronemissiontomography(PET).WhilstCT,MRI, andPETcanimagewholeorganismsandachievesub-millimeter resolution,cryo-electrontomography(CET,alsoknownascryo-ET orelectroncryo-tomography;ECT)canimagethemicrometerto sub-nanometerlengthscales(Fig.1).Infact,CETistypicallyusedto visualizeindividualorganellesandbiomoleculeswithincells, yield-inginsightsintothemolecularandcellularpathologyofdiseases (Bauerleinetal.,2017)andpathogens(Wanetal.,2017).

ThemethodologyofCETisfundamentallysimilartoother tomo-graphictechniques; a volumeof material (molecule,virus, cell, organism,etc.)isimaged frommultipleangles(different orien-tations),andisthenreconstructedcomputationallytoforma3D volume(Fig.2).WhereasinMRI,CTandPETtheimagingsystem isrotatedfullyaroundthespecimen(i.e.thepatient),withCET thespecimenisrotateduptoalimitedangularrangewithinthe electronmicroscope(Fig.2A).Theresultingseriesoftilt-images (Fig. 2B) iscomputationally back-projected toreconstructa 3D volume(Fig.2C).

Inalltomographicimagingtechniques,themaximumallowable samplesizeandtheattainableresolutionareimportantpractical parameterstoconsider,asthesedeterminethelimitsofwhatcanbe observed.InCET,thefieldofviewistypicallyintheorderofmicrons. Thesamplethicknessshouldbelessthan500nminordertoallow electronstotransmitthroughthesamplewithlimited specimen-damaging effects due to the coulomb-force interactions of the imagingelectronbeamwiththeatomsofthesample.Therefore,in practice,wholecellsandtissuesmustbeslicedintosufficientlythin sectionsbeforeimaging, whilesmall biologicalspecimens, such aspurifiedproteins,virusesandbacteria,canbeimagedwithout sectioning.

TheresolutionofCETisdeterminedbyacombinationofthe electronradiationdosethatcanbeusedtoimagethesample with-outdetectabledamage,detectorsensitivity,samplethickness,and thequalityoftheelectromagneticlenses.Firstly,aselectron radi-ationstrongly interactswithatoms(Henderson,1995), andcan thereforebehighlydamagingforcryo-fixedspecimens,the imag-ingdosemustbekeptaslowaspossible.Moreover,inCETthis allowableelectrondosehastobedistributedovermanyangular viewsfrom which the3Dtomogram isreconstructed, resulting inindividualimageswithalowsignal-to-noiseratio.Therefore, detectorsthatefficientlydetectelectronswithlowintrinsicnoise levels, are paramountto obtain thehighest possible single-to-noiseratioandresolutioninthetomogram.Withincreasingsample thickness,electronsaremorelikelytoundergomultiplescattering

thatareusedforimaging areimperfect,which resultsinimage aberrationsandlossofresolution.Theselensimperfectionsare,to someextent,wellknownandcharacterizedfortransmission elec-tronmicroscopy,andcanthereforebecomputationallycorrected toachievethemaximumpossibleresolution(Haideretal.,2009).

Recentadvances incryo-electron microscopy (cryoEM)have givenrisetoa“resolutionrevolution”(Kuhlbrandt,2014),which hasincreasedthenumberofnear-atomicresolutionstructuresof proteinsandproteinassembliesthatemergedusingsingle parti-clecryoEM(Fernandez-LeiroandScheres,2016).Theadvancesthat enabledthisincludetechnicalimprovementsoftheelectron micro-scope,improveddetectorsensitivity,theimplementationofphase plates,automateddataacquisitionschemes,andimprovedimage reconstructionsoftwareandhardware,which,takenalltogether greatlyincreasetheusabilityandpracticalapplicabilityofCETasa diagnosticandresearchtool.

Thisreviewfollowsuponourearlierpublication(Koningand Koster,2009)andfocusesondescribingthetechnicaladvancesthat haveevolvedandemergedsince.Afterrecapitulatingthegeneral detailsofcryoEM,therecentimprovementsonCETaredescribed anddiscussedintheframeworkofthepracticalcryoETworkflow.

2. Samplepreparation

ForimagingsamplesusingCET,thefirststepistocryogenically fixthespecimenbyamethodreferredtoasvitrification. Depend-ingonsamplethicknesstherearetwovitrificationmethods(Fig.3). Samplesthatarethinnerthan10␮m,suchasisolatedprotein com-plexes,viruses,bacteriaorthincells,maybevitrifieddirectlyby plunge freezingintoacryogen(Dubochetetal.,1988).Samples uptoathicknessof200␮m,suchascellpelletsortissuebiopsies, requirefreezingathighpressure(so-calledhigh-pressurefreezing; HPF)for vitrification(Vanheckeetal.,2008).Afterthe vitrifica-tionstep,samplesthickerthan500nmrequirethinningpriorto imaging.Thinningcanbeperformedbycryo-ultramicrotomy( Al-Amoudietal.,2004b),usingadiamondknifetoslicethevitreous iceintosections,orafocusedionbeam(FIB)ofaheavymetal(e.g. gallium)toablatethematerialtoaspecifiedthickness.

2.1. Vitrificationofthinsamples

(3)

Fig.1.Scalesandresolutionofmedicalimagingtechniques.

Specimensofdifferentlengthscalesrequirediverseimagingtechniqueswithparticularlimitsinimagingdepthsandresolutions.

Fig.2.Cryo-electrontomographymethodology.

(A)Inthetransmissionelectronmicroscope,aseriesofimagesisacquiredonadetectorfromasampleofinterest,asthesampleisrotatedtospecifiedangles.Thesampleis embeddedinvitreousiceandcanbeverydiverse,e.g.wholecells,cellularextracts,proteinsorotherbiomolecules.(B)Theresultingprojectionimagesofthespecimenfrom differentangularviewsyieldsaso-calledtilt-series.(C)Thistilt-seriesiscomputationallyback-projectedtoforma3Dvolume,thetomogram.

Themoststraightforwardwaytovitrifyistouse instrumen-tationdevelopedforplunge-freezing.Thesedevicesallowcontrol overcryogentemperature,aswellasparameterssuchasblottime, humidityandtemperatureinthevicinityofthegridbeforeand dur-ingplunging,whichimprovesreproducibilityandenablesfreezing oflivecellsculturedongrids.Thinsamplesarevitrifiedbydirectly plungingthemintoacryogenwithhighheatcapacityandthermal conductivity,suchasliquidethaneatitsmeltingtemperatureof ∼90K.Practically,forpurifiedproteinsamples,typically2–5␮lis appliedonthegridand,inordertomakethesamplesufficiently thinforvitrification,mostfluidis removedbyblottingwith fil-terpapertoleaveathinlayerofliquid(typically30–100nm)over

(4)

Fig.3. Cryoelectronmicroscopysamplepreparationflowchart.

SamplepreparationflowchartforcryoEMinwhichchoices(grey)forseveralpreparationandvisualizationtechniques(blue)dependon:(i)thesamplethickness,and(ii) thedesiredstructurestobevisualized.Samples(green)thinnerthan10␮m(e.g.proteins,viruses,bacteria)canbevitrifiedbyplunge-freezing,whilethickersamples(e.g. cellpelletsortissueblocks/biopsies)canbecryo-fixedbyHPF.Samplesthickerthan∼500nm(e.g.cellsandtissue)mustbethinnedpriortoimaginginordertoensure electrontransparency.Thinningcanbeperformedeitherbycryo-ultramicrotomyorcryo-FIB-milling.Finally,cryo-preservedsamplesthinnerthan500nmcanbeimagedby 2DcryoEM(projectionimagingorsingleparticleanalysis)or3DCET(tiltseriesacquisitionfortomographyorsub-tomogramaveraging).(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

liposomes.ForcryoEMofcellularsamplesthatarecultureddirectly onthegrid,goldgridsareusedasasubstratetoavoidthe cytotox-icityofcopper.

2.2. Highpressurefreezingforthicksamplesandwholecells High-pressurefreezing(HPF) canbe usedto vitrifysamples upto200␮minthickness(DahlandStaehelin,1989;McDonald and Auer, 2006; Moor and Riehle, 1968), and is essential for cryo-fixationofadherentcells, cellpellets,tissuesandbiopsies. WithHPF,highpressureisappliedtoa sampleduringfreezing, theexpansionofwaterduringcrystallizationiscounteracted(le Chatalier’s principle),inhibiting theformation of hexagonal ice crystals(thecommonformoficefoundinfreezers)andthereby promotingtheformationofvitrifiedice.

DedicatedHPFapparatuses(Studeretal.,2001)freezesamples within∼20ms at200MPausinga jetofliquid nitrogenat77K (−196◦C)inacontrolledandreproducibleway.Withtheaddition ofarapidtransfersystem(Verkade,2008),correlativelightelectron microscopyimaging(CLEM,seebelow)isfacilitatedbymakingit practicallypossibletovitrifythesamplewithin∼4safterimaging with(fluorescent)lightmicroscopy.

Arecentlyproposed,relativelystraightforwardmethodforHPF utilizesself-pressurization,inwhichthesampleiscontainedwithin aclosedcoppercapillarytube(LeunissenandYi,2009).Upon cool-ingthetubeinliquidnitrogen,theclosedtubefreezesfromthe outside,whichincreasesthepressureinthecenter.Thismethod excludestheneedforspecialistHPFequipment,althoughtheuse

ofcryo-protectantswithinthesamplesappearstobenecessary tomaximizethesuccess-rateofhigh-qualitysamplepreservation (Hanetal.,2012).

2.3. Cryo-sectioningthicksamples

Specimens thicker than 500nm, prepared by either plunge-freezingorHPF,requirethinningpriortoimagingwithCET.This thinningmustbeperformedbelow∼140K(∼−130◦C),the tem-peratureabovewhichvitreousicebeginstorecrystallize(known asdevitrification). Thinning canbeperformedusing adiamond knifetoslicethesampleintomanythinsections(e.g.50–150nm) usingultramicrotomyatcryogenictemperature,oftenreferredto as cryo-sectioningor cryo-electron microscopy of vitreous sec-tions(CEMOVIS) (Al-Amoudi et al.,2004a).CEMOVIScombines cryo-preservationwiththepossibilitytoimageslicesfromthick samples,andenableshighresolutionimagingofe.g.vitrifiedcells thatcouldnotbevisualizedotherwise(Al-Amoudietal.,2004b). Cryo-sectioningofvitreoussamplesistechnicallydemandingand canintroduce artifactswhich distort thesample, suchasblade marksandcompressionfractures(Richter,1994).Manyofthese cryo-sectionscanbetransferred ontoan EMgrid,and multiple sectionscanbeimagedbyCET.

(5)

1999). Recently, dedicated scanning electron microscopes have beendevelopedtofacilitateFIBmillingofvitrifiedbiological mate-rialpreparedbybothHPF(Haylesetal.,2010)andplunge-freezing (Markoet al.,2007)sampleswhich cannotbethinnedby cryo-sectioning(Fig.3).WhileFIBmillingresultsinasinglecellularslice, cryo-sectioningcanbeusedtoimagemultiple,sequentialsections. Galliumionsareexpectedtodepositonmilledsurfacesandinthe sections,andirregularitiesofthemilledsurfaceoftenoccur,which inextremecasescanleadtoproblemsduringimaging(Rigortetal., 2012a;RigortandPlitzko,2015).

2.4. Stabilityofvitreoussamplesintheelectronmicroscope

Aftercryo-fixation,duringstorage,transport,thinning,transfer intotheTEMandimageacquisition,thetemperatureofthesample mustbemaintainedbelow∼140K(∼−130◦C)toavoid devitrifica-tion.Inaddition,samplesmustbekeptfreefromcontamination, suchastheadhesionofsmallice-crystalsthatmayfloatinliquid nitrogen,atalltimes.Therefore,cryoEMgridsaretypicallykeptand transferredinclosedstorageboxesundernitrogenliquidorgasat ∼77K(−196◦C)beforebeinginsertedintotheTEM.

Mostelectronmicroscopesareusedforbothconventional(room temperature)EMandcryoEM.Theyusearemovablecryo-holder whenperformingcryoEM,which isinsertedintothesideofthe TEMcolumn(aso-calledside-entrysystem).Thecryo-holder com-prisesaDewarfilledwithliquidnitrogentomaintainthegridat 95K(−178◦C).TheDewarmustberefilledmanuallywithliquid nitrogeneveryfewhours,whichlimitstheabilitytoautomatedata collectionforaprolongedperiodoftime.Themechanicalstability ofthesampleisalsolimitedbythetemperatureinstabilityofthe cryo-holdercausedbydiminishingliquidnitrogenlevelsandheat flowbetweentheholderandthemicroscope.Thiscausesthe sam-pletodriftovertime,furtherlimitingtheabilitytoautomatedata collectionoverthecourseofhours.

Whenworkingwithaside-entrysystem,EMgridsareloaded individually,andthereforeeachnewsamplerequiresre-insertion ofthecryo-holderintotheTEM.Eachinsertiondeterioratesthe low-pressureenvironmentwithintheTEM-columnnearthe sam-ple,andsubsequentlyincreasesthechanceofcontaminationofthe EMgrid.Moreover,overtime thesamplethicknesscanincrease duetoicegrowthonthesamplewithintheTEMcolumn,limiting themeasuringtimethatcanbeusedtocollectatiltseries.

Duringthelastfiveyears,manyoftheselimitationshavebeen removedwiththedevelopmentandintroductionofnoveltypesof electronmicroscopesdedicatedtoperformcryoEMforaprolonged time-period.ThesetypesofTEMhaveanautomatedspecimen load-ingsystemthatholdsmultiplegridsandautomaticallytransfers themintoacontinuouslycryogenically-cooledandstablespecimen stagewithoutdisruptingthehighvacuumenvironment. Addition-ally,thequalityofthevacuumsystemofthesetypeof TEMsis significantlyenhanced,whichresultsinnegligibleicegrowthon thesampleoverthecourseofdays,allowingextendedautomated datacollection.

3. Datacollection

3.1. Tiltseriesacquisition

Electronsdamagebiologicalspecimens(Glaeser,1971)andas suchtheelectrondoseexposedtothesamplemustbeminimized. Thiscanbeachievedusingasearch,focusandimagescheme(a so-calledlow-dosescheme)duringdatacollection,wherebythe desiredimaginglocationsareidentifiedatlowmagnification(and hencelow electrondose)whilefocusingisperformedata loca-tionadjacenttotheareaofinterestpriortoimageacquisition.This

minimizestheamountofdose,andhencedamagethatthearea ofinterestisexposedtoandmaximizestheachievableresolution. Thetotaldoseusedforimagingmuststillbeverylow,typicallyless than100e−/Å2,toachievenanometerresolution(Fig.3,toprow). Becausetomographyisbasedonimagingthesameregionfrom multipleangles,thisdosehastobedistributed(fractionated)over thenumberofimagesthatisusedtorecordatiltimage.Tiltseries aretypicallycollectedfrom±60◦,withaseparationof2between images;eachtiltseriestherefore imagesthesamelocation∼61 times,resultinginadoseoflessthan2e−/Å2 foreachtiltimage. Duringtilting,theapparentthicknessofthesampleincreasesas 1/cos(␪),where␪isthetiltangle.Samplesappear2×thickerat 60◦tilt,hencethedistancethatelectronsmusttransmitthrough, andthelikelihoodof multiplescatteringeventswiththeatoms withinthesample,alsoincreases.Consequently,thefractionated electrondoseofthetiltseriesresultsinlowcontrastandhigh lev-elsofnoiseintheindividualimages(Fig.3,bottomrow,leftimage), whichmakesaccuratealignmentofatiltserieschallenging.To facil-itateandimprovetheaccuracyofalignment,goldfiducialmarkers between5–25nmindiameteraregenerallyaddedtothesample(or onthespecimensupport)immediatelypriortovitrification.These fiducialmarkershavehighcontrastinthelow-doseimages,and canbecomputationallytrackedaspoint-likeobjectstoalignthe imagespriorto3Dreconstruction(Lutheretal.,1988;Walzetal., 1997).

Overall,theresultinglowdosethathastobeusedforimaging tominimizeradiation-inducedspecimendamageresultsinnoisy imagesinthetiltseries(Fig.4),whichhampersaccuratealignment ofatiltseries.Asaconsequence,cryo-electrontomogramswill typ-icallyexhibithighnoiselevels,lowcontrastandlimitedresolution. Technicalimprovementsthatincreasethesignal-to-noiseratioin theindividualimagesofatiltserieshaveadirecteffecton improv-ingthequalityoftheresultingcryo-tomograms.Duringthelast threeyears,thequalityofdatacollectedforcryo-tomographyhas improvedsignificantly,primarilybythreemajor developments: phaseplates,energyfiltersanddirectelectrondetectors.

3.2. Phaseplatesimprovetomograminterpretability

As cryoEMsamples are very thin (less than a few hundred nanometers)andarecomposedofrelativelylightelements (typi-callycarbon,hydrogen,oxygenandnitrogen),thecontrastforming mechanism canbevery welldescribed by (weak−) phase con-trastimaging.Phasecontrastisgeneratedbyphasedifferencesthat occurbetweenanunscatteredelectronwave(themajorityofthe electronsthatdonotinteractwiththesample)andtheelectron wavesthatinteractwithatomswithinthesample.Totranspose thisphaseshiftintoameasurablecontrast,imagesaretypically takenoutoffocus,whichincreaseslow-resolutionimagecontrast butnegativelyaffectsthehighresolutionintheimages.Theway thatthephase(andamplitude)oftheelectronwavesareinfluenced bytheobjective lensofthemicroscope(e.g.defocusing)canbe mathematicallydescribedbythecontrasttransferfunction(CTF) (Marabinietal.,2015).TheCTFdescribesaninverserelationship betweencontrastandresolution, andadditionallypredicts con-trast reversalsat certainfrequencies,resulting infringes in EM images.Fortunately,imagescanbe(partly)correctedfortheCTF, whichreliesonaccuratedefocusdetermination.CTFcorrectionin CETisnotalwaysatrivialtasksinceimagesaretiltedandfocus varieswithinindividualimages.Nonetheless,CTFcorrectioncan alsoincreasetheresolutionoftomograms(Fernandezetal.,2006; Turonovaetal.,2017;Xiongetal.,2009).

(6)

Fig.4. Radiationdamageandelectrondose.

Electronradiationdamageofcryo-samplesof(gammaproteo)bacteriaoccursdirectlyuponimagingandincreaseswithdose.High-resolutionatomicfeaturesarelostwithin afewelectronsperÅ2(e/Å2)whilevisibledamageoccurslater(toprow,totalelectrondose).Becauseofradiationdamagetheelectrondoseforimagingislimited,which

greatlyaffectsthesignal-to-noiseratiointypicalcryoEMimages(bottomrow,electrondoseperimage).

Fig.5. TheVoltaphaseplateincreasesthecontrastofelectrontomograms.

(A)Incomingelectronwaves(blue)haveacertainphaseandamplitude.Transmitted,non-diffracted,electrons(blue)donotinteractwiththespecimenandtheirphaseis unaffected.Incontrast,someoftheelectronwaveisdiffractedbythespecimen(red),whichretardsthephaseofthediffractedwavebyquarterofawavelength.Thissmall phaseshiftcausesonlyminimalcontrastofthemagnifiedspecimen(B).InthepresenceoftheVPPthediffractedwaveisretardedfurther,ideallybyanotherquarterofa wavelength(green),placingit180◦outofphasewiththenon-diffractedtransmittedwave(blue),resultinginmaximalnegativephasecontrast(C).Micrographsacquiredat

focusofvitrifiedliposomesandlacey-carbonfilmintheabsence(B)andpresence(C)oftheVPP,demonstratingthecontrastimprovement.

correction,comparedtoimagesacquiredusingdefocuscontrast. Electronsarediffractedbyinteractionwiththinbiological speci-mens,whichbehaveasweakphaseobjectsandretardthephaseof thediffractedelectronwavewithrespecttothetransmitted (non-diffracted)electronwavebyaquarterofawavelength(Fig.5A),but nottheamplitude,sothatverylittlecontrastisvisibleatlow fre-quency(Fig.5B).Unfortunately,thephaseinformationislostand onlyamplitudedataiscollectedbythedetectorintheformof inten-sity.So-calledZernike-typephaseplatesfurthershiftthediffracted electronwaves,generatinganapproximatehalf-wavelengthphase shiftwithrespecttothenon-diffractedelectrons,turningthisphase informationintomeasurableamplitudecontrastwithouttheneed todefocus(Fig.5C)(DanevandNagayama,2001).Thisresultsin

destructiveinterferenceandmaximalcontrastatlowresolution (Fig.5C),whichmakesprojectionimagesandreconstructed tomo-gramsmuchmorereadilyinterpretable(Fukudaetal.,2015;Sharp etal.,2016).

(7)

Fig.6.Energyfiltering.

Electronswithacertainenergy(here200keV±1eV)areemittedfromanelectronsource(FEG).Elasticinteractionswiththespecimendonotresultinenergyloss(black wave)whileinelasticinteractionsleadtolowerenergyelectronsthathavealongerwavelength(redwave).Aprismlenstransfersthisdifferenceintoashiftoftheelectrons thathavelostenergy,whichareremovedbyaslit.Insetshowsthatanenergyfilteredimageislessbrightbuthasmorecontrastthananunfilteredimage.(Forinterpretation ofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

phaseplate.ThetransmittedelectronspassthroughthislocalVolta potentialwithouttheirphasebeingaffected,whilstthediffracted electronsinteractwiththerestofthephaseplateandareretarded byafurtherquarter-wavelengthbyinteractionwiththecarbonof specificthickness,therebygeneratingahalf-wavephaseshiftwith respecttothetransmittedelectrons(Fig.5).Becausethe transmit-tedelectronbeamcreatesthelocalphaseshift,theVPPrequires minimalphysicalalignment,andtheVoltapotentialcanbe gen-eratedonthecarbonfilm whenand where desired, facilitating automateddatacollection.However,sincethephaseshiftis gen-eratedbyirradiationwithelectrons(knownasconditioning)the amountisdependentontheelectrondose,whichresultsin unsta-blephaseshifts(Danevetal.,2014;Sharpetal.,2017).Nevertheless, thevariablephaseshiftsstillincrease thecontrastofthe tomo-gram,andtheVPPhasalreadyshownpotentialforinsitustructure determinationofcomplementactivation(Sharpetal.,2017)and membraneattackcomplexporeformation(Sharpetal.,2016)on liposomes,aswellasthecellulardistributionofproteasomes, ribo-somesandnuclearporecomplexes(Asanoetal.,2015;Mahamid etal.,2016).

3.3. Energy-filteringreducesnoise

Whenelectronsareincidentonasampletheycaninteractwith thesampleineitheranelasticevent,wherenoenergyistransferred betweenelectronandspecimen,aninelasticevent,whereenergy islosttothespecimen,ortheelectronsdonotinteractwiththe sampleandaretransmittedunaffected(Egerton,2011). Inelasti-callyscatteredelectronscontributetothenoisewithintheimage anddamagethespecimenbybreakingmolecularbonds,localized heating,andevolutionofhydrogengas,amongothereffects(Baker

andRubinstein,2010).Theratioofscatteredversusunscattered electronscanbepredictedbasedonthemeanfreepathofthese electrons,theaveragedistancetravelledbetweentwosuccessive scatteringevents.Thismeanfreepathfor200–300keVelectrons isontheorderof200–300nm(FejaandAebi,1999;Grimmetal., 1996)andisdifferentforelasticandinelasticevents.Thelikelihood oftheseeventsthereforeshiftsdependingonsamplethickness.In cryoEMsamplesthatarelessthan100nmthick,mostelectrons passthroughthesampleunscattered,whiletherestmainlyscatter onlyonce,eitherelasticallyorinelastically.However,thelikelihood thatelectronsscattermorethanonceincreasesquicklywith speci-menthickness(Hanetal.,1995).Sincemultiplescatteredelectrons resultinnoiseintheimage,samplesarepreferablynotthickerthan themeanfreepath.Withsamplesthat havea thicknessofone totwotimesthemeanfreepath,suchasbacterialcellsandthin adherentcells,removaloftheinelasticallyscatteredelectronscan significantlyincreaseimagecontrast.Thiscanbeachievedbyusing anenergyfiltertoblockelectronsthathavelostorgainedenergy.

(8)

pri-Fig.7. Electrondetectors.

(A)TypicallayoutsofCCD(chargecoupleddevice)cameraandCMOS(complementarymetaloxidesemiconductor)directelectrondetector(DED).CCDcamerasdetect electrons(e−)viaaluminescentscintillatorlayerthatconvertselectronsintolight(␥).ThislightistransferredviaafiberopticcouplingintoaCCDchip,whichconvertsthe lightintoavoltageonasquarearrayofpixelsthatisreadoutinafewseconds,resultinginadigitalimage.(B)Incontrast,adirectelectrondetectorCMOSchipdirectly detectsincomingelectronsandconvertsthemintoavoltageoveranarrayofpixelsthatcanbereadoutathighspeed.

maryelectronbeamoperateinaso-calledzero-lossimagingmode, removingthebackgroundnoiseduetoinelasticallyscattered elec-trons.Consequently,thecontrastoftheresultantimageisincreased by∼16%comparedtounfilteredimages(Fukudaetal.,2015).Apart frombeingusefulforthickerspecimens,itisalsousefulin tomogra-phy,where,upontilting,theslab-shapedspecimeneffectivelygets thickerathightiltangles.Zero-lossenergyfilteringcanbeused togetherwithphaseplateimaging,andprovidean∼68%increase incontrastwhenusedincombination(Fukudaetal.,2015).

3.4. Directelectrondetectors

Electronmicrographswereoriginallyacquiredonphotographic film,whichneedstobedevelopedandscannedbeforedata anal-ysisortomogramreconstruction.Digitalcamerasaremuchmore convenientduetotheirnear-instantaneousreadout.Thefirst dig-italdetectorsforEMwerecharged-coupledevice(CCD)cameras (Dierksenetal.,1995;Kosteretal.,1992;KrivanekandMooney, 1993;SpenceandZuo,1988)(Fig.7A).CCDcamerasincorporate aluminescentscintillatorlayerthatconvertsincidentelectronsto photons,andthescintillatorlayerisconnectedtoaCCDchipby fiber-coupledoptics(Fig.7A),which spreadstheelectronsignal overa largeareadependingonthethicknessofthescintillator, resultingin lower resolutionimages. Thisspreading of the sig-nalcanbedescribedbya so-calledpoint-spreadfunction(PSF). Anotherimportanteffectofthisdesignisthatnotallincoming elec-tronsareregisteredasphotonsonthechip.Thelikelihoodthatan incidentelectronisactuallyregisteredisdescribedbythedetector quantumefficiency(DQE).Ideally,allelectronsaredetectedandno signalcomingfromthesampleislost.Furthermore,itisimportant thatdigitalcamerashaveahighdynamicrange,candetectbothlow andhighlevelsofelectrons,andtheirresponseoverthisbrightness rangeislinear.So,overall,gooddetectorscanbedefinedbyhaving asmallPSF,ahighDQEandideallyalinearsensitivityoverahigh dynamicrange.

TheprimaryreasonfortheresolutionrevolutionimpactingEM istheadventofdirectelectrondetectors(DEDs)(Xuongetal.,2007). DEDsdirectlyconvertelectronsintoanelectricalsignalforoutput detection(Fig.6B).Theyveryefficiently detectelectrons,which resultsin a highDQE,much betterthan film(McMullanet al., 2014).Therefore,alsothePSFnowdependsonscatteringof elec-tronsinsidethedetectoritself,whichcanbeminimizedbymaking thedetectorasthinaspossible.AnotheradvantageofDEDsistheir fastreadout,whichcanreachafewhundredframespersecond. Insteadofsingleimages,moviesofthesamplecanberecorded. Thisisusefulsinceirradiationbytheelectronbeamandthe

result-ingbeamdamageofthesamplecanresultinimagemovementand unpredictablelocaldistortionswithinthesampleitself.By record-ingmovies,thesemovementsanddistortionscanbecorrectedbya posteriorialignmentanddistortion-correctionoftheframes,which compensatesforsamplemovementandincreasestheresolutionof theimage.Anotheradvantageofthefastreadoutisseenwhenalow electrondoseisusedandthusindividualelectronscanbedetected. Infact,singleelectronscanbelocalizedwithsub-pixelaccuracy, so-calledsuper-resolutionmode,whichalsopositivelyaffectsthe DQEofthecamera(McMullanetal.,2014).InSPA,nownearatomic resolutionmapsareregularlyproducedofproteinandprotein com-plexes(Merketal.,2016).Intomography,theresolutionincrease resultingfromDEDshasenabledvisualizationofproteinsinside cellsandalsonear-atomicresolutionmapsusingsub-tomogram averaging(Schuretal.,2016).

3.5. Automateddatacollectionandstorage

Tomographicdatacanbeacquiredautomaticallybyseveral pro-grams,ofwhichserialEM(Mastronarde,2005),UCSFtomography (Zhengetal.,2004),TOM(Nickelletal.,2005),andXplore3D/Tomo4 (Thermo-Fischer,formerlyFEIcompany)aremostcommonlyused. Althoughthesearedevelopedfromdifferentperspectives(e.g.type ofsample,typeofmicroscope,typeofusers),theseprogramsin essenceperformthesameroutines(Kosteretal.,1992;Zieseetal., 2002).Withthecurrentimprovementsinhardware,tomographic acquisitionsoftwareistargetedtowardsautomatedrecordingof multipletilt-seriesoverseveraldays,withthesupportof movie-moderecordingbydirectelectrondetectorcamerasandtheVolta phaseplate.

Automateddatacollectionand movie-modesuper-resolution imaginghasfar-reachingconsequencesforimageprocessingand datastorage.Thenumberofdatasetsthatcanberecordedperday increasesonefactor,whilethesizeofasingletomogramtiltseries dataset,typically∼1Gbcaneffectivelyincreasebetweenoneortwo factors,witha4×increasegoingfromnormaltosuper-resolution mode and typically 7–30× increase due tothe frames used in movierecording.TheselargedatasetsneedCTFcorrection,movie alignmentandtomographicimageprocessing.Standarddesktop computershardlysuffice,andworkstationsareoftenemployedfor computation.

(9)

Fig.8.LayoutofsingleanddualaxistiltseriesinFourierspace.

Effectofangularsamplingandmissingwedgeontheresolutionintomograms.TheeffectoftheangularsamplingandthemissingwedgeintomographyshowninFourier spaceslices(a),surfacerenderingsofareconstructedthin-shelledsphere(b),andYZslicesthroughthecorrespondingtomogram(c).Theleftcolumnshowsthesituation whenthereisfullangularsamplingalongonetiltaxis(theX-axis).

ThetopimageshowsthatFourierspaceissampledequallyintheYZplane.Thesurfacerenderingandacentralsliceofthetomogramindicatenoanisotropicresolution inthereconstructedsphereinthosedirections.Themiddlecolumnshowsthesituationwhenthereislimitedtiltangle(from−60◦to+60)alongasingleaxis.Theresult

willbeamissingwedgeinFourierspacethatcanbeobservedinthesurfacerenderingandasdiminishingdensityatthetopandbottomofareconstructedsphere(b)and anelongationintheYZslice.Therightcolumnshowsthesituationwhentwotomogramsarecombinedfromtwoorthogonaltiltaxes(dual-axistomography)withlimited rotationbetween−60◦and+60.InFourierspace,themissingwedgeisreducedtoamissingpyramid,andtheanisotropyintheresolutionalongtheY-axisisreduced(from

G.vanTendeloo,D.vanDyckandS.J.Pennycook“HandbookofNanoscopy”,chapter36,page1313.2012.CopyrightWiley-VCHVerlagGmbH&Co.KGaA.Reproducedwith permission).

structuredatabases,suchastheproteindatabase(PDB)(Bernstein etal.,1977)andotherimagingmodalities(Patwardhanetal.,2014; Patwardhanetal.,2017).

4. Imageprocessing

4.1. Tomogramreconstructionautomation

Typically, reconstruction of cryo-electron tomograms con-sists of four steps; pre-processing, tilt-series alignment, post-processing,andreconstruction.Preprocessinginvolvestruncation ofextremedatavaluescausedbyX-raysorocclusionbytheEMgrid. Tilt-seriesalignmentisnecessaryasthesampleisnotrotated per-fectlyduringacquisition.Obviouswhole-imagemovementscaused byimperfectstagebearingscanbealignedusingcross-correlation oftheimages.Smallerandlocaldistortionsarecaused bybeam inducedmovement,specimendriftanddefocuseffects.For low-contrastCET tilt series,fine alignment is usuallyperformed by trackinghigh-contrastfiducialmarkers,5–25nmgoldbeadsthat areaddedtothesample priortovitrification specificallytoaid alignment(Lutheretal.,1988;Walzetal.,1997).However, alter-nativemethods,suchascross-correlationandpatchtracking,are availablethatdonotrequiretheadditionoffiducialstothesample (Amatetal.,2010;Guckenberger,1982).Accuratefinealignment

iscritical,aspooralignmentresultsinprojectionmismatchand limitstheresolutionoftheresultingtomogram.Micrograph post-processing includes CTF correction and noise filtering. Finally, 3DreconstructionscanbeachievedbyeitherFourier-space algo-rithms,suchas weightedback-projection (WBP)(Radermacher, 1988),orreal-spacemethods,suchassimultaneousiterative recon-structiontechnique(SIRT)(Gilbert,1972).WBPismorecommon, and involves taking a Fourier transform of each image before placingtheseslicesintoa3DFouriervolumeattheangles spec-ifiedduringtiltseriesacquisition.TheFouriercomponentsofeach slicearethenweighteddependingontheirfrequencytoprevent oversamplingoflow-resolutiondetails.Next,aninverseFourier transform back-projects the volume into real-space, yielding a tomographicvolume.ReconstructionusingWBPisgenerallyfaster thanSIRT,althoughWBPtomogramscanbedominatedby high-frequencynoise,whereasreal-spacereconstructionmethods,such asSIRT,generallytakelongerdue totheiterativenatureofthe method,althoughnoiseissuppressed.

(10)

Fig.9. Sub-tomogramaveraging.

(A)Fromatomographicvolume,sub-volumescontainingsingleparticlesofthesamebiologicalstructureareextractedfromtomographicvolumes.Inthiscase,theparticle isamembraneattackcomplex(MAC)poreperforatingaliposome.Theparticlesarealigned(B)andaveraged(C)togenerateaninitialmap.(D)Particlesaretheniteratively re-alignedtothepreviousmapandaveragedtogenerateimprovedmaps(i–iv).(E)Thefinalmapwiththehighestresolutionisachievedwhenaniterationdoesnotgenerate anyimprovement,andcanbeinterpretedwiththeuseofcrystalstructures(EMD-3289(Sharpetal.,2016)).

manual processing to achieve the best quality. Reconstructing tomogramsfromatiltserieswasoriginallyaninteractive, labor-intensiveprocessinwhichmanystepsweremanuallyperformed andchecked,especiallygoldfiducial finealignment,inorderto generateahigh-qualitytomogram.Sincemanualtomogram recon-structionisratherinefficientandslowerthandataacquisitiontime, automatedtiltseriesimagealignmentandtomogram reconstruc-tionproceduresarehighlydesirable.Recently,severalautomated fiducial markedbased andmarker-free finealignment schemes havebeendeveloped(Castano-Diezetal.,2010;Hanetal.,2015; Sorzanoetal.,2009)andimplementedinseveralpackagessuchas IMOD(MastronardeandHeld,2017),Protomo(NobleandStagg, 2015)andUCSFtomo(Zhengetal.,2011)(foranextensivelistof tomographypackagesseehttps://en.wikibooks.org/wiki/Software ToolsForMolecularMicroscopy),aswellasindualaxistiltseries (Winkler andTaylor,2013).Furthermore,severalpackageswith additionaldatabasestorageareavailable(Dingetal.,2015;Zheng etal.,2007).

4.2. Themissingwedgelimitsinterpretationoftomographic volumes

Duetothegeometryofboththespecimen/EMgridand objec-tivelensofthemicroscope,tiltseriesaretypicallycollectedover anangularrangebetween±60◦(Fig.1).Thisresultsina“missing wedge”ofdata(inFourierspace),causinganisotropicresolutionin thetomogram,whichisseenaslossofresolutionintheaxial direc-tion(Fig.8)(Diebolderetal.,2015;Sharpetal.,2017).Anisotropic resolutionisalsoinfluencedbythemissinginformationbetween sequentialtiltimages, whichhaveangularstepsof2–3◦ (Koster etal.,1997).Anisotropycanbereducedusingdual-axis tomogra-phy,wherebytwotiltseriesareacquiredwitharelative90◦inplane rotation(Penczeketal.,1995).Thetworesultingtomogramsare thenalignedandcombinedintoasingletomographicvolume.This procedurereducesthemissingwedgeintoa“missingpyramid”, whicheliminatesanisotropyespeciallyintheplaneorthogonalto

thetiltaxis(Mastronarde,1997),butdoesnotremoveblurringof thereconstructionalongthedirectionoftheelectronbeam. Dual-tilttomographyrequiresthatthesameregionisimagedtwiceand thereforeitisnecessarytofractionatetheelectrondoseoverboth tiltseriesinordertopreventincreasedradiationdamage. There-fore,eachofbothdualaxistiltseriesreceiveshalfofthetotaldose comparedtoasingleseriesandthustheseeitherhavevery poor-contrastimagesorhalfthenumberofimages.

Onemethodtoeliminatethemissingdataentirelyisimaging arod-shapedsampleinaholderthatcanberotatedbyafull180◦ (PalmerandLowe,2014).Alternatively,incasethetomogram con-tainsmanyidenticalcopiesofaproteincomplexorparticle,the missingdataoftheseparticlescanbefilledinbyvolumeaveraging, knownassub-tomogramaveraging.

4.3. Sub-tomogramaveragingandtemplatematching

(11)

meth-Fig.10.Surfacerenderingofcellularcryoelectrontomograms.

(A)Aslicethroughacryo-electrontomogramofacellshowsallkindsofstructuresin2D.(B)Somestructuraldensitiescanbesurfacerenderedbytemplatematching,e.g. actin(blue),whileothersaredrawninbyhand:lipidmembranes(yellow),microtubules(green),mitochondria(purple),andintermediatefilaments(red).(Forinterpretation ofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

ods,evennearatomicresolutionstructurescanbeachieved(Schur etal.,2016).

Apartfromaveragingsub-volumesfromatomograminorder toincreaseresolution,onecanlookforknownstructuresinside a tomogram. The structure of many molecular machines from cellsaredetermined(e.g.fromX-raydiffraction,cryoEMandNMR techniques)andavailable(e.g.fromtheProteinDataBank(PDB); www.rcsb.org(Bermanet al.,2000)or theElectronMicroscopy Database(EMDB)(Lawsonetal.,2016)).Byutilizinga template-matchingapproach, an extensivesix-dimensional(three spatial dimensionsandthree rotationaldimensions)cross-correlational searchbetweenthemolecularvolumeandthecellulartomogram canbeperformedtofindthepositionandorientationofcertain proteinmoleculesinsidepartsofacell(Nickelletal.,2006). Molec-ularcrowdingandlowtomogramresolutionlimittheapplicability ofthistechnique(Becketal.,2009),buthugeimprovementshave beenmadeusingthestate-of-the-artimagingtechniquesdescribed herein(Mahamidetal.,2016).

4.4. Tomogramsegmentation

Asinmedicaltomographicreconstructions,theinterpretation of3Dvolumedataisdependentonaspecialistwitha familiar-itywiththe specimenand knowledgeof thepotentialartifacts presentintomograms.Interpretationisdifficultfortheuntrained eyebecauseoneisaccustomedtolookingatsurfacesandnotat noisyslicesfromvolumes.Therefore,surfacerepresentationofthe volumesintobiologically-relevantsegmentsgreatlyaidsthe inter-pretationand 3D viewof the volumefor both the trained and untrained eye(Fig.10).A particularproblem with(automated) segmentationofcryo-electrontomogramsisthatthevolumesare noisy(duetothelimitedelectrondose),anisotropicallydistorted (duetothetiltgeometry/missingwedge), andthat density val-uesarenotlinearwiththeoriginalsignal(duetotheCTF,phase contrastandreconstructionalgorithms).Inpractice,structuresof interestareoftendrawnbyhandintothevolume,whichisboth highlytime-consumingandsubjective.Automatedsegmentation isdesirablebecauseitislessuserintensiveand,moreimportantly, itprovidesanobjective,reproducible waythatallows interpre-tationandquantificationofresults.Theseobjective,reproducible segmentedtomogramscanalsobedepositedin databasessuch asEMDB(Lawson etal.,2016).Identifyingparticularstructures withincellularvolumesislimitedbytheresolutionofthe tomo-gram.However,certainlargerstructures,suchasactinfilaments andmicrotubules,weresuccessfullytracedandsegmented auto-maticallybytemplatematchingofrod-likeshapes(Rigortetal.,

2012b;Rusuetal.,2012).Also,someinitialattemptson segmen-tationofsurfacesofliposomesweremade(Koningetal.,2013). Eventemplatematchingofspecificproteinsinsidecellsis possi-ble(Asanoetal.,2015).TheincreasingqualityofCETimagingand theresultingtomograms,combinedwithdevelopmentand imple-mentationofbetterandfastertemplatematching,neuralnetwork algorithmsandincreasingcomputationalresourcesmakesit possi-bletoautomaticallysegmentand/ortemplate-matchmanyofthe largerstructuresinsidecellulartomograms(Chenetal.,2017),and developmentsinrelatedfields,suchasmulti-dimensionaltransfer functionvolumerendering(Knissetal.,2002),arealsoexpectedto yieldimprovementsintomogramvisualization.

5. Relatedtechniques

AsidefromtheCETtechniquedescribedabove,whichisbased on 2D imaging at different angles, there are several related newly-developingcryotechniquesthatareworthmentioningin the context of three-dimensional imaging of cells and tissues inan anatomicsetting:cryoserial block-facescanningelectron microscopy(cryoSBF-SEM),whichcombinesserialsectioningand imaging of surfaces with scanning electron microscopy (SEM), cryosoftX-raytomography(cryoSXT),inwhichX-raysareused for imaging,and cryocorrelativelight and electronmicroscopy (cryoCLEM),which combinesfluorescentlightmicroscopy(fLM) imagingfortargetingspecificsiteswithCET.

5.1. CryoSBF-SEM

(12)

Fig.11.Cryo-CLEM.Cryocorrelativelightandelectronmicroscopy.

(A)Cryo-fluorescentlightmicroscopy(cryo-fLM)imagingoffluorescentlytaggedStreptomycesbacterialcellscanaidthetargetingofcertainstructures.(B)ImagingcryoEM ofthesameareaallowstargetingoflabeledstructuresintheelectronmicroscope.(C)HighermagnificationcryoEMimagingandaccurateoverlaydeterminesthespecific siteforCETimaging.(D)Overlayofthecryoelectrontomogramsliceandthecryo-fLMlightsupthelabeledstructuresinsidethecell.

5.2. CryoSXT

Incryosoft X-raytomography (cryoSXT),likeCET,a3D vol-umeofbiologicalmaterialisalsoreconstructed fromaseriesof projectionviews,thoughwithseveraldifferences.X-raysareused forimaging,andsincetheyhavelargerpenetrationdepthfor vit-rified biological samples than electrons, complete cells can be imaged.ThesoftX-rayshaveatunedenergythatfallswithinthe so-called‘waterwindow’(between284–543eV)whichoptimizes theabsorptiondifferenceof X-raysbetweenoxygenandcarbon elements,which isthecontrastingmechanism.TheX-raybeam isfocused ontothesample andthedetector byzone-plates, X-raydiffractingelements.Thecurrentresolutionisintheorderof 25–35nm.CorrelativecryofLM/cryoSXTtechniquesarealso devel-oped and typicalexamples of cryo-SXTimaging are wholecell reconstructionsoftheyeastSaccharomycescerevisiae.Foramore in-depthreview,seeCarzanigaetal.(2014).

5.3. Cryo-correlativelightandelectronmicroscopy

TherecentdevelopmentsinCETenableimagingof macromolec-ularandproteinstructuresinsidecryogenicallypreservedcellular landscapes(Mahamidetal.,2016).Suchhigh-resolutiondatasets relyonhigh-magnificationtomograms,whichlimitstheareathat canbeimaged.Specificpositionsorareasofinterestcantherefore bedifficulttoidentifywithinthecell.Onesolutionistoemploy cryo-correlativelightandelectronmicroscopy(cryoCLEM),which combinesCET withcryo-fLMof thesame sample(Fig.11).This ispossibleby usinglabelling techniquesforfLM,eithergenetic tagging(suchasGFP)orbychemicallabelingusingspecificdyes totargetandidentifystructuresofinterest,eitherinatwo-step

LM/EMapproach(Celleretal.,2016;Hamptonetal.,2017)oran integratedsetup(Faasetal.,2013;Wangetal.,2017).Currently withcryo-CLEM,theresolutiongapbetweenfLM(∼400nm)and CET(∼4nm)istwoordersofmagnitude,althoughlocalizationcan beperformedwitha precisionof∼40nmwithfLM(Schorband Briggs,2014).Nevertheless,targetingspecificmoleculesinsidea crowdedlandscaperequiredhighercryo-fLMimagingtechniques, suchassuper-resolutionfLM(Wolffetal.,2016)foraccurate local-ization,andfuturedevelopmentsaretargetedtowardsintegrating theseintocryo-CLEM. Thiswillneed adaptationofLMsystems and thedevelopmentof probesspecificallyfor super-resolution cryoCLEM,butwillallowmultidimensionalfunctionalimagingof cellularlandscapesatnanoscaleresolution.

6. Conclusionsandperspectives

(13)

Despite these recent advances, CET is still relatively labor-intensiveandslowcomparedtoSPAcryo-EM.Datacollectionof cryo-EMislargelyautomated,aftersettingimagingparametersand semi-automatedtargetingofimagingpositionsontheholey sup-port.CETshouldbemadefasterby(i)automatedtargetingusing CLEMbytheintegrationwithfluorescentlightorramanmicroscopy techniques,and(ii)fastertiltseriesacquisition,whichnow typ-icallytakesapproximatelyanhour, byimplementationof more stablestagetiltbehavior,adaptedacquisitionsoftwareandfaster cameras,inordertoallowaspeedincreaseofcircaafactorof100 (Migunovet al.,2015).Furthermore,tomographicimage recon-structionshouldbefullyautomatedandintegratedwithacquisition andalsorobustinordertopreventlargedatastoragerequirements ofintermediaterawfiles.Automaticsegmentation,quantification andvisualizationby3Dsurfacerenderingshouldbedevelopedto aidinterpretationofdata.InordertomakeCETmorewidely appli-cable,designatedCETmicroscopesystems,comparabletomedical imagingdevices(CAT,MRI,CT)mightbethewayforward.

Dueto the advanceswe have described, the ability to per-formmolecularimagingofsubcellularstructuresatnanoscalelevel invivoandinsitumeansthattheapplicabilityofCETtobiologyand medicinehasneverbeenhigher.Futuredevelopmentswillonly increasetherelevancyofthistechniquetodiagnostics.Wewilluse thesetechniquestoimagebiologicalprocessesintheirnative envi-ronment,suchascellular,viralandbacterialinfectionsandimmune complexesbindingtocells,toelucidatethemolecularmechanisms ofdisease.

Acknowledgements

This work has been supported by iNEXT, project number 653706,fundedbytheEuropeanUnion’sHorizon2020research andinnovationprogramme undergrantagreement759517,the DutchfoundationSTWProjects13711,NanosurfAGandSmartTip B.V.,and12713,MicroscopyValley,theCouncilforChemical Sci-ences(CW)oftheNetherlandsOrganizationforScientificResearch (NWOgrant700.57.010).Theauthorsacknowledgethesupportand theuseofresourcesofInstruct,aLandmarkESFRIproject.Wethank RobHoeben,TonRabelink,TonRaapandPeterNibbering(LUMC) forcriticalreadingofthemanuscript.

References

Al-Amoudi,A.,Chang,J.J.,Leforestier,A.,McDowall,A.,Salamin,L.M.,Norlen,L.P., Richter,K.,Blanc,N.S.,Studer,D.,Dubochet,J.,2004a.Cryo-electronmicroscopy ofvitreoussections.EMBOJ.23,3583–3588.

Al-Amoudi,A.,Norlen,L.P.,Dubochet,J.,2004b.Cryo-electronmicroscopyofvitreous sectionsofnativebiologicalcellsandtissues.J.Struct.Biol.148,131–135. Amat,F.,Castano-Diez,D.,Lawrence,A.,Moussavi,F.,Winkler,H.,Horowitz,M.,

2010.Alignmentofcryo-electrontomographydatasets.MethodsEnzymol.482, 343–367.

Asano,S.,Fukuda,Y.,Beck,F.,Aufderheide,A.,Forster,F.,Danev,R.,Baumeister,W., 2015.Proteasomes.Amolecularcensusof26Sproteasomesinintactneurons. Science347,439–442.

Baker,L.A.,Rubinstein,J.L.,2010.Radiationdamageinelectroncryomicroscopy. MethodsEnzymol.481,371–388.

Bauerlein,F.J.B.,Saha,I.,Mishra,A.,Kalemanov,M.,Martinez-Sanchez,A.,Klein,R., Dudanova,I.,Hipp,M.S.,Hartl,F.U.,Baumeister,W.,Fernandez-Busnadiego,R., 2017.InsituarchitectureandcellularinteractionsofPolyQinclusions.Cell171, 179–187,e110.

Beck,M.,Malmstrom,J.A.,Lange,V.,Schmidt,A.,Deutsch,E.W.,Aebersold,R.,2009. VisualproteomicsofthehumanpathogenLeptospirainterrogans.Nat.Methods 6,817–823.

Berman,H.M.,Westbrook,J.,Feng,Z.,Gilliland,G.,Bhat,T.N.,Weissig,H.,Shindyalov, I.N.,Bourne,P.E.,2000.Theproteindatabank.NucleicAcidsRes.28,235–242. Bernstein,F.C.,Koetzle,T.F.,Williams,G.J.,MeyerJr.,E.F.,Brice,M.D.,Rodgers,

J.R.,Kennard,O.,Shimanouchi,T.,Tasumi,M.,1977.Theproteindatabank:a computer-basedarchivalfileformacromolecularstructures.J.Mol.Biol.112, 535–542.

Carzaniga,R.,Domart,M.C.,Collinson,L.M.,Duke,E.,2014.Cryo-softX-ray tomogra-phy:ajourneyintotheworldofthenative-statecell.Protoplasma251,449–458.

Castano-Diez,D.,Scheffer,M.,Al-Amoudi,A.,Frangakis,A.S.,2010.Alignator:aGPU poweredsoftwarepackageforrobustfiducial-lessalignmentofcryotilt-series. J.Struct.Biol.170,117–126.

Celler, K., Koning, R.I., Willemse, J., Koster, A.J., van Wezel, G.P., 2016. Cross-membranesorchestratecompartmentalization andmorphogenesisin Streptomyces.Nat.Commun.7,ncomms11836.

Chen,M.,Dai,W.,Sun,S.Y.,Jonasch,D.,He,C.Y.,Schmid,M.F.,Chiu,W.,Ludtke, S.J.,2017.Convolutionalneuralnetworksforautomatedannotationofcellular cryo-electrontomograms.Nat.Methods14,983–985.

Dahl,R.,Staehelin,L.A.,1989.High-pressurefreezingforthepreservationof biolog-icalstructure:theoryandpractice.J.ElectronMicrosc.Tech.13,165–174. Dai,W.,Fu,C.,Raytcheva,D.,Flanagan,J.,Khant,H.A.,Liu,X.,Rochat,R.H.,

Haase-Pettingell,C.,Piret,J.,Ludtke,S.J.,Nagayama,K.,Schmid,M.F.,King,J.A.,Chiu, W.,2013.Visualizingvirusassemblyintermediatesinsidemarinecyanobacteria. Nature502,707–710.

Danev,R.,Buijsse,B.,Khoshouei,M.,Plitzko,J.M.,Baumeister,W.,2014.Volta poten-tialphaseplateforin-focusphasecontrasttransmissionelectronmicroscopy. Proc.Natl.Acad.Sci.U.S.A.111,15635–15640.

Danev,R.,Glaeser,R.M.,Nagayama,K.,2009.Practicalfactorsaffectingthe per-formanceofa thin-filmphaseplatefortransmissionelectronmicroscopy. Ultramicroscopy109,312–325.

Danev,R.,Nagayama,K.,2001.TransmissionelectronmicroscopywithZernike phaseplate.Ultramicroscopy88,243–252.

Denk,W.,Horstmann,H.,2004.Serialblock-facescanningelectronmicroscopyto reconstructthree-dimensionaltissuenanostructure.PLoSBiol.2,e329. Diebolder,C.A.,Beurskens,F.J.,deJong,R.N.,Koning,R.I.,Strumane,K.,Lindorfer,

M.A.,Voorhorst,M.,Ugurlar,D.,Rosati,S.,Heck,A.J.,vandeWinkel,J.G.,Wilson, I.A.,Koster,A.J.,Taylor,R.P.,Saphire,E.O.,Burton,D.R.,Schuurman,J.,Gros,P., Parren,P.W.,2014.ComplementisactivatedbyIgGhexamersassembledatthe cellsurface.Science343,1260–1263.

Diebolder,C.A.,Faas,F.G.,Koster,A.J.,Koning,R.I.,2015.ConicalFouriershell corre-lationappliedtoelectrontomograms.J.Struct.Biol.190,215–223.

Dierksen,K.,Typke,D.,Hegerl,R.,Walz,J.,Sackmann,E.,Baumeister,W.,1995. Three-dimensionalstructureoflipidvesiclesembeddedinvitreousiceandinvestigated byautomatedelectrontomography.Biophys.J.68,1416–1422.

Ding,H.J.,Oikonomou,C.M.,Jensen,G.J.,2015.Thecaltechtomographydatabaseand automaticprocessingpipeline.J.Struct.Biol.192,279–286.

Dubochet,J.,Adrian,M.,Chang,J.J.,Homo,J.C.,Lepault,J.,McDowall,A.W.,Schultz, P.,1988.Cryo-electronmicroscopyofvitrifiedspecimens.Q.Rev.Biophys.21, 129–228.

Egerton,R.F.,2011.ElectronEnergy-LossSpectrosopyintheElectronMicroscope. Springer.

Faas,F.G.,Barcena,M.,Agronskaia,A.V.,Gerritsen,H.C.,Moscicka,K.B.,Diebolder, C.A.,vanDriel,L.F.,Limpens,R.W.,Bos,E.,Ravelli,R.B.,Koning,R.I.,Koster,A.J., 2013.Localizationoffluorescentlylabeledstructuresinfrozen-hydrated sam-plesusingintegratedlightelectronmicroscopy.J.Struct.Biol.181,283–290. Feja,B.,Aebi,U.,1999.Determinationoftheinelasticmeanfreepathofelectronsin

vitrifiedicelayersforon-linethicknessmeasurementsbyzero-lossimaging.J. Microsc.193,15–19.

Fernandez,J.J.,Li,S.,Crowther,R.A.,2006.CTFdeterminationandcorrectionin elec-troncryotomography.Ultramicroscopy106,587–596.

Fernandez-Leiro,R.,Scheres,S.H.,2016.Unravellingbiologicalmacromoleculeswith cryo-electronmicroscopy.Nature537,339–346.

Fukuda,Y.,Laugks,U.,Lucic,V.,Baumeister,W.,Danev,R.,2015.Electron cryoto-mographyofvitrifiedcellswithaVoltaphaseplate.J.Struct.Biol.190,143–154. Ghosal,D.,Chang,Y.W.,Jeong,K.C.,Vogel,J.P.,Jensen,G.J.,2017.Insitustructureof theLegionellaDot/IcmtypeIVsecretionsystembyelectroncryotomography. EMBORep.18,726–732.

Gilbert,P.,1972.Iterativemethodsforthethree-dimensionalreconstructionofan objectfromprojections.J.Theor.Biol.36,105–117.

Glaeser,R.M.,1971.Limitationstosignificantinformationinbiologicalelectron microscopyasaresultofradiationdamage.J.Ultrastruct.Res.36,466–482. Grange,M.,Vasishtan,D.,Grunewald,K.,2017.Cellularelectroncryotomography

andinsitusub-volumeaveragingrevealthecontextofmicrotubule-based pro-cesses.J.Struct.Biol.197,181–190.

Grimm,R.,Typke,D.,Barmann,M.,Baumeister,W.,1996.Determinationofthe inelasticmeanfreepathinicebyexaminationoftiltedvesiclesandautomated mostprobablelossimaging.Ultramicroscopy63,169–179.

Guckenberger,R.,1982.Determinationofacommonorigininthemicrographsoftilt seriesinthree-dimensionalelectronmicroscopy.Ultramicroscopy9,167–173. Haider,M.,Hartel,P.,Muller,H.,Uhlemann,S.,Zach,J.,2009.Currentandfuture aberrationcorrectorsfortheimprovementofresolutioninelectronmicroscopy. Philos.Trans.AMath.Phys.Eng.Sci.367,3665–3682.

Hampton,C.M.,Strauss,J.D.,Ke,Z.,Dillard,R.S.,Hammonds,J.E.,Alonas,E.,Desai, T.M.,Marin,M.,Storms,R.E.,Leon,F.,Melikyan,G.B.,Santangelo,P.J.,Spearman, P.W.,Wright,E.R.,2017.Correlatedfluorescencemicroscopyandcryo-electron tomographyofvirus-infectedortransfectedmammaliancells.Nat.Protoc.12, 150–167.

Han,H.M.,Huebinger,J.,Grabenbauer,M.,2012.Self-pressurizedrapidfreezing (SPRF)asasimplefixationmethodforcryo-electronmicroscopyofvitreous sections.J.Struct.Biol.178,84–87.

(14)

2013.Cryo-electrontomographyanalysisofmembranevesiclesfrom Acineto-bacterbaumanniiATCC19606T.Res.Microbiol.164,397–405.

Koning,R.I.,Koster,A.J.,2009.Cryo-electrontomographyinbiologyandmedicine. Ann.Anat.191,427–445.

Koster,A.J.,Chen,H.,Sedat,J.W.,Agard,D.A.,1992.Automatedmicroscopyfor elec-trontomography.Ultramicroscopy46,207–227.

Koster,A.J.,Grimm,R.,Typke,D.,Hegerl,R.,Stoschek,A.,Walz,J.,Baumeister,W., 1997.Perspectivesofmolecularandcellularelectrontomography.J.Struct.Biol. 120,276–308.

Krivanek,O.L.,Friedman,S.L.,Gubbens,A.J.,Kraus,B.,1995.Animagingfilterfor biologicalapplications.Ultramicroscopy59,267–282.

Krivanek,O.L.,Mooney,P.E.,1993.Applicationsofslow-scanCCDcamerasin trans-missionelectronmicroscopy.Ultramicroscopy49.

Krueger,R.,1999.Dual-column(FIB–SEM)waferapplications.Micron30,221–226. Kuhlbrandt, W., 2014. Biochemistry. The resolution revolution. Science 343,

1443–1444.

Lanio,S.,Rose,H.,Krahl,D.,1986.Testandimproveddesignofacorrectedimaging magneticenergyfilter.Optik73,56–63.

Lawson,C.L.,Patwardhan,A.,Baker,M.L.,Hryc,C.,Garcia,E.S.,Hudson,B.P., Lagerst-edt,I.,Ludtke,S.J.,Pintilie,G.,Sala,R.,Westbrook,J.D.,Berman,H.M.,Kleywegt, G.J.,Chiu,W.,2016.EMDataBankunifieddataresourcefor3DEM.NucleicAcids Res.44,D396–D403.

Leunissen,J.L.,Yi,H.,2009.Self-pressurizedrapidfreezing(SPRF):anovel cryofix-ationmethodforspecimenpreparationinelectronmicroscopy.J.Microsc.235, 25–35.

Luther,P.K.,Lawrence,M.C.,Crowther,R.A.,1988.Amethodformonitoringthe collapseofplasticsectionsasafunctionofelectrondose.Ultramicroscopy24, 7–18.

Mahamid,J.,Pfeffer,S.,Schaffer,M.,Villa,E.,Danev,R.,Cuellar,L.K.,Forster,F., Hyman,A.A.,Plitzko,J.M.,Baumeister,W.,2016.Visualizingthemolecular soci-ologyattheHeLacellnuclearperiphery.Science351,969–972.

Malac,M.,Beleggia,M.,Kawasaki,M.,Li,P.,Egerton,R.F.,2012.Convenientcontrast enhancementbyahole-freephaseplate.Ultramicroscopy118,77–89. Marabini,R.,Carragher,B.,Chen,S.,Chen,J.,Cheng,A.,Downing,K.H.,Frank,J.,

Gras-succi,R.A.,BernardHeymann,J.,Jiang,W.,Jonic,S.,Liao,H.Y.,Ludtke,S.J.,Patwari, S.,Piotrowski,A.L.,Quintana,A.,Sorzano,C.O.,Stahlberg,H.,Vargas,J.,Voss,N.R., Chiu,W.,Carazo,J.M.,2015.CTFchallenge:resultsummary.J.Struct.Biol.190, 348–359.

Marko,M.,Hsieh,C.,Schalek,R.,Frank,J.,Mannella,C.,2007.Focused-ion-beam thinningoffrozen-hydratedbiologicalspecimensforcryo-electronmicroscopy. Nat.Methods4,215–217.

Mastronarde,D.N.,1997.Dual-axistomography:anapproachwithalignment meth-odsthatpreserveresolution.J.Struct.Biol.120,343–352.

Mastronarde,D.N.,2005.Automatedelectronmicroscopetomographyusingrobust predictionofspecimenmovements.J.Struct.Biol.152,36–51.

Mastronarde,D.N.,Held,S.R.,2017.Automatedtiltseriesalignmentand tomo-graphicreconstructioninIMOD.J.Struct.Biol.197,102–113.

McDonald,K.L.,Auer,M.,2006.High-pressurefreezing,cellulartomography,and structuralcellbiology.Biotechniques41,137,139,141passim.

McMullan,G.,Faruqi,A.R.,Clare,D.,Henderson,R.,2014.Comparisonofoptimal performanceat300keVofthreedirectelectrondetectorsforuseinlowdose electronmicroscopy.Ultramicroscopy147,156–163.

Merk,A.,Bartesaghi,A.,Banerjee,S.,Falconieri,V.,Rao,P.,Davis,M.I.,Pragani,R., Boxer,M.B.,Earl,L.A.,Milne,J.L.,Subramaniam,S.,2016.Breakingcryo-EM res-olutionbarrierstofacilitatedrugdiscovery.Cell165,1698–1707.

Migunov,V.,Ryll,H.,Zhuge,X.,Simson,M.,Struder,L.,Batenburg,K.J.,Houben,L., Dunin-Borkowski,R.E.,2015.Rapidlowdoseelectrontomographyusingadirect electrondetectioncamera.Sci.Rep.5,14516.

Moor,H.,Riehle,U.,1968.Snap-freezingunderhighpressure:anewfixation tech-niqueforfreeze-etching.Proc.FourthEurop.Reg.Conf.Elect.Microsc.2. Nickell,S.,Forster,F.,Linaroudis,A.,Net,W.D.,Beck,F.,Hegerl,R.,Baumeister,W.,

Plitzko,J.M.,2005.TOMsoftwaretoolbox:acquisitionandanalysisforelectron tomography.J.Struct.Biol.149,227–234.

Nickell,S.,Kofler,C.,Leis,A.P.,Baumeister,W.,2006.Avisualapproachtoproteomics. Nat.Rev.Mol.CellBiol.7,225–230.

Noble,A.J.,Stagg,S.M.,2015.Automatedbatchfiducial-lesstilt-seriesalignmentin AppionusingProtomo.J.Struct.Biol.192,270–278.

Palmer,C.M.,Lowe,J.,2014. Acylindricalspecimenholderforelectron cryo-tomography.Ultramicroscopy137,20–29.

ribosomes.Structure20,1508–1518.

Radermacher,M.,1988.Three-dimensionalreconstructionofsingleparticlesfrom randomandnonrandomtiltseries.J.ElectronMicrosc.Tech.9,359–394. Richter,K.,1994.Cuttingartefactsonultrathincryosectionsofbiologicalbulk

spec-imens.Micron25,297–308.

Rigort,A.,Bauerlein,F.J.,Villa,E.,Eibauer,M.,Laugks,T.,Baumeister,W.,Plitzko,J.M., 2012a.Focusedionbeammicromachiningofeukaryoticcellsforcryoelectron tomography.Proc.Natl.Acad.Sci.U.S.A.109,4449–4454.

Rigort,A.,Gunther,D.,Hegerl,R.,Baum,D.,Weber,B.,Prohaska,S.,Medalia,O., Baumeister,W.,Hege,H.C.,2012b.Automatedsegmentationofelectron tomo-gramsforaquantitativedescriptionofactinfilamentnetworks.J.Struct.Biol. 177,135–144.

Rigort,A.,Plitzko,J.M.,2015.Cryo-focused-ion-beamapplicationsinstructural biol-ogy.Arch.Biochem.Biophys.581,122–130.

Rusu,M.,Starosolski,Z.,Wahle,M.,Rigort,A.,Wriggers,W.,2012.Automatedtracing offilamentsin3DelectrontomographyreconstructionsusingSculptorandSitus. J.Struct.Biol.178,121–128.

Schorb, M., Briggs, J.A.,2014. Correlated cryo-fluorescence and cryo-electron microscopywith highspatial precisionand improvedsensitivity. Ultrami-croscopy143,24–32.

Schur,F.K.,Obr,M.,Hagen,W.J.,Wan,W.,Jakobi,A.J.,Kirkpatrick,J.M.,Sachse,C., Krausslich,H.G.,Briggs,J.A.,2016.AnatomicmodelofHIV-1capsid-SP1reveals structuresregulatingassemblyandmaturation.Science353,506–508. Sharp,T.H.,Faas,F.G.,Koster,A.J.,Gros,P.,2017.Imagingcomplementbyphase-plate

cryo-electrontomographyfrominitiationtoporeformation.J.Struct.Biol.197 (2),155–162.

Sharp,T.H.,Koster,A.J.,Gros,P.,2016.HeterogeneousMACinitiatorandpore struc-turesinalipidbilayerbyphase-platecryo-electrontomography.CellRep.15, 1–8.

Sorzano,C.O.,Messaoudi,C.,Eibauer,M.,Bilbao-Castro,J.R.,Hegerl,R.,Nickell,S., Marco,S.,Carazo,J.M.,2009.Marker-freeimageregistrationofelectron tomog-raphytilt-series.BMCBioinform.10,124.

Spence,J.C.H.,Zuo,J.M.,1988.AlargedynamicrangeparalleldetectionCCDsystem forelectrondiffractionandimaging.J.Sci.Instrum.59.

Studer,D.,Graber,W.,Al-Amoudi,A.,Eggli,P.,2001.Anewapproachforcryofixation byhigh-pressurefreezing.J.Microsc.203,285–294.

Studer,D.,Humbel,B.M.,Chiquet,M.,2008.Electronmicroscopyofhighpressure frozensamples:bridgingthegapbetweencellularultrastructureandatomic resolution.Histochem.CellBiol.130,877–889.

Tanaka,M.,Tsuda,K.,Terauchi,M.,Tsuno,K.,Kaneyama,T.,Honda,T.,Ishida,M., 1999.Anew200kVomega-filterelectronmicroscope.J.Microsc.194,219–227. Turonova,B.,Schur,F.K.M.,Wan,W.,Briggs,J.A.G.,2017.Efficient3D-CTFcorrection forcryo-electrontomographyusingNovaCTFimprovessubtomogramaveraging resolutionto3.4A.J.Struct.Biol.199(3),187–195.

Unverdorben,P.,Beck,F.,Sledz,P.,Schweitzer,A.,Pfeifer,G.,Plitzko,J.M.,Baumeister, W.,Forster,F.,2014.Deepclassificationofalargecryo-EMdatasetdefinesthe conformationallandscapeofthe26Sproteasome.Proc.Natl.Acad.Sci.U.S.A. 111,5544–5549.

Vanhecke,D.,Graber,W.,Studer,D.,2008.Close-to-nativeultrastructural preserva-tionbyhighpressurefreezing.MethodsCellBiol.88,151–164.

Verkade,P.,2008.MovingEM:therapidtransfersystemasanewtoolforcorrelative lightandelectronmicroscopyandhighthroughputforhigh-pressurefreezing. J.Microsc.230,317–328.

Vidavsky,N.,Akiva,A.,Kaplan-Ashiri,I.,Rechav,K.,Addadi,L.,Weiner,S., Scher-tel,A.,2016.Cryo-FIB-SEMserialmillingandblockfaceimaging:largevolume structuralanalysisofbiologicaltissuespreservedclosetotheirnativestate.J. Struct.Biol.196,487–495.

Walz,J.,Typke,D.,Nitsch,M.,Koster,A.J.,Hegerl,R.,Baumeister,W.,1997. Elec-trontomographyofsingleice-embeddedmacromolecules:three-dimensional alignmentandclassification.J.Struct.Biol.120,387–395.

Wan,W.,Kolesnikova,L.,Clarke,M.,Koehler,A.,Noda,T.,Becker,S.,Briggs,J.A.G., 2017.StructureandassemblyoftheEbolavirusnucleocapsid.Nature551, 394–397.

Wang,S.,Li,S.,Ji,G.,Huang,X.,Sun,F.,2017.Usingintegratedcorrelativecryo-light andelectronmicroscopytodirectlyobservesyntaphilin-immobilizedneuronal mitochondriainsitu.Biophys.Rep.3,8–16.

Winkler,H.,Taylor,K.A.,2013.Marker-freedual-axistiltseriesalignment.J.Struct. Biol.182,117–124.

(15)

Xiong,Q.,Morphew,M.K.,Schwartz,C.L.,Hoenger,A.H.,Mastronarde,D.N.,2009. CTFdeterminationandcorrectionforlowdosetomographictiltseries.J.Struct. Biol.168,378–387.

Xuong,N.H.,Jin,L.,Kleinfelder,S.,Li,S.,Leblanc,P.,Duttweiler,F.,Bouwer,J.C.,Peltier, S.T.,Milazzo,A.C.,Ellisman,M.,2007.Futuredirectionsforcamerasystemsin electronmicroscopy.MethodsCellBiol.79,721–739.

Zheng,Q.S.,Braunfeld,M.B.,Sedat,J.W.,Agard,D.A.,2004.Animprovedstrategyfor automatedelectronmicroscopictomography.J.Struct.Biol.147,91–101. Zheng,S.Q.,Branlund,E.,Kesthelyi,B.,Braunfeld,M.B.,Cheng,Y.,Sedat,J.W.,Agard,

D.A.,2011.Adistributedmulti-GPUsystemforhighspeedelectronmicroscopic tomographicreconstruction.Ultramicroscopy111,1137–1143.

Zheng,S.Q.,Keszthelyi,B.,Branlund,E.,Lyle,J.M.,Braunfeld,M.B.,Sedat,J.W.,Agard, D.A.,2007.UCSFtomography:anintegratedsoftwaresuiteforreal-time elec-tronmicroscopictomographicdatacollection,alignment,andreconstruction.J. Struct.Biol.157,138–147.

Referenties

GERELATEERDE DOCUMENTEN

Title: Cryo electron tomography studies of bacterial chemosensory arrays Issue Date: 2020-11-04... Cryo Electron Tomography Studies of Bacterial

In this dissertation novel 3D image processing methods for each of these process- ing steps are presented and assessed: (i) An iterative reconstruction algorithm based on

Tools for Correlative Cryo- Fluorescence Microscopy and Cryo-Electron Tomography Applied to Whole Mitochondria in Human Endothelial Cells. Integrated Fluorescence and

To investigate the electron beam sensitivity of mica, boxes of different doses were created on the lamella with the dual beam system in STEM mode.. Diffraction patterns and real

As years pass by, the single molecule Cryo-EM technique has produced several high impact researches related to membrane protein complexes, which earlier eluded

1) The retrieval rod is positioned inside a canister of a storage dewar, holding a stack of pucks. 2) The button of the rod is pushed, to activate the ball-lock pin. The pin of

Next, we examined the applicability of various fluorescent proteins (Fps) for single-molecule localisation cryosR microscopy and found that all investigated Fps display

that many steps do not require constant user interaction. For a detailed overview, see Figure S1 in the Supporting Information. b) CryoEM image of vitrified U2OS cells on an EM