• No results found

Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

N/A
N/A
Protected

Academic year: 2021

Share "Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan"

Copied!
26
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sambathkumar, R. (2017). Development of MAPC derived induced endodermal progenitors: Generation of pancreatic beta cells and hepatocytes. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the

number of authors shown on this cover page is limited to 10 maximum.

(2)

 

  90  

       

  Chapter  3      

 

  Human  induced  Endodermal  Progenitors   derivation  &  Characterization  from  Multipotent   Adult  Progenitor  Cells    

Rangarajan  Sambathkumar,  Renate  Akkerman,  Sumitava  Dastidar,  Philip  Roelandt,   Manoj  Kumar,  Ana  Rita  Mestre  Rosa,  Nicky  Helsen,  Veerle  Vanslembrouck,  Eric  Kalo,   Satish  Khurana,  Jos  Laureys,  Conny  Gysemans,  Marijke  M  Faas,  Paul  de  Vos,  and   Catherine  Verfaillie.  

     

     

Article  Under  Revision

     

 

 

(3)

         

Chapter  3    

Human  induced  Endodermal  Progenitors  derivation  &  Characterization  from   Multipotent  Adult  Progenitor  Cells  

 

3.1  Abstract      

New   and   renewable   sources   of   cells   are   needed   for   cell   based   therapies   of   liver   diseases  and  type  1  diabetes.  Human  pluripotent  stem  cells  (PSCs)  are  one  potential   source   to   generate   functional   hepatocytes   or   β-­‐cells.   As   an   alternative,   adult   stem   cells   such   as   Multipotent   Adult   Progenitor   Cells   (MAPC)   could   be   used.   However,   human  MAPCs  have  less  plasticity  than  PSCs,  and  their  ability  to  generate  endodermal   cells   is   not   robust.   We   hypothesized   that   hMAPCs   could   be   reprogrammed   to   endodermal  progenitor  cells  (induced  endodermal  progenitor  cells,  iENDO  cells)  that   can  be  expanded  long  term  and  differentiated  into  both  hepatocyte-­‐  and  endocrine   pancreatic-­‐like   cells.   We   demonstrated   that   hMAPC   were   reprogrammed   with   14   transcription   factors   (TFs)   to   an   intermediate   progenitor,   the   called   induced   endodermal   progenitors   (iENDO),   with   an   epithelial   morphology,   that   could   be   expanded  long  term  and  expressed  endodermal  genes.  This  iENDO  cells  could  be  used   as  source  of  cells  to  generate  the  hepatocytes  and  pancreatic  endocrine  β-­‐cells.  

 

3.2  Introduction  

  Generation   of   functional   mature   hepatocyte   and   insulin   producing   pancreatic   endocrine   β-­‐cells   for   cell   based   therapy   of   liver   failure   and   type   1   diabetes   is   a   promising  key  area  of  regenerative  medicine.  Currently,  the  pharmaceutical  industry   is   at   an   urgent   need   for   reliable   drug   hepatotoxicity   screening   models,   as   drug-­‐

induced   liver   injury   is   the   most   prevalent   reason   for   drug   withdrawal   from   the  

market  [1].  Hepatic  cells,  derived  from  stem  cells  could  be  a  new  source  of  cells  for  

hepatotoxicity   screening.   Liver   transplantation   for   acute   and   chronic   liver   diseases  

and  transplantation  of  cadaveric  pancreas  or  islets  cells  for  diabetes  treatments  have  

been   used   in   the   demand   for   an   effective   treatment   [2-­‐4].   However,   they   carry  

several   disadvantages   such   as   scarcity   of   available   donors,   and   immunorejection,  

(4)

Chapter  3                                                                                                                                                                                                                                        Introduction      

  92  

categorized  as  embryonic  stem  cells  (ESCs)  and  adult  stem  cells  (ASCs).  ESCs,  which   are  pluripotent,  are  derived  from  the  inner  cell  mass  (ICM)  of  the  blastocyst  [5,  6].  

ASCs   can   be   derived   from   many   postnatal   tissues   [7-­‐10].   Human   embryonic   stem   cells  (ESC)  and  more  recently  induced  pluripotent  stem  cells  (iPSC)  are  cells,  with  the   ability  of  self-­‐renew  and  to  differentiate  into  cells  from  the  three  germ  layers  [6,  11].  

Mesendoderm   and   definitive   endoderm   cells   are   common   precursor   for   the   generation   of   mature   endodermal   cell   types   such   as   hepatocyte   and   insulin   producing   functional   pancreatic   β-­‐cells   [12].   Several   protocols   for   In   vitro   differentiation   to   hepatocyte   like   cells   (HLC)   [13-­‐17]   and   mature   endocrine   pancreatic  β  cells  [18-­‐20]  from  pluripotent  stem  cells  have  been  developed  including   protocols   by   our   group   by   mimicking   in   vivo   liver   and   pancreatic   β-­‐   cells   development.   Nevertheless,   to   date,   a   hepatocyte   differentiation   protocol   is   not   able  to  produce  fully  mature  hepatocytes  [21],  but  in  the  case  of  mature  pancreatic   β-­‐  cells  it  is  now  possible  with  improved  cell  culture  conditions  [22,  23].  While  ESCs   have  unlimited  proliferation  and  differentiation  potential,  ASCs  are  more  restricted.  

However,  the  low  risk  for  tumorigenesis  associated  with  ASC  make  them  a  favorable   choice.  To  extend  the  use  of  ASCs,  many  groups  are  evaluating  whether  it  is  possible   to  extend  their  tissue  restricted  differentiation  ability.    

Multipotent  adult  progenitors  cells  (MAPCs),  a  type  of  mesenchymal  stem  cell  (MSC),   possess   broader   differentiation   characteristics   than   other   adult   stem   cells.   MAPCs   have   been   isolated   from   rodent   and   human   bone   marrow   (BM)   [24,   25].   Rodent   MAPC   (renamed   BM   Hypoblast   stem   cells,   HypoSC),   derived   from   bone   marrow   following   long-­‐term   culture   [26],   can   differentiate   into   multiple   cell   types   of   the   mesodermal  and  endodermal  germ  layer,  including  hepatocyte-­‐like  cells  and  insulin   producing  β-­‐cell  like  cells  [27,  28].  Unfortunately,  human  MAPCs  (hMAPC)  have  less   potency   to   be   differentiated   toward   hepatocyte-­‐like   cells   and   insulin   producing   β-­‐

cell   like   cells   [26].   In   addition,   for   hMAPC,   we   do   not   see   a   spontaneous   reprogramming  towards  HypoSCs  by  extended  culture.      

To   overcome   this   restricted   potency   of   human   MAPCs   to   differentiate   into  

hepatocytes  and  β-­‐cells,  we  decided  to  use  a  new  approach  in  which  human  MAPCs  

were  transdifferentiated  to  expandable  endodermal  progenitor  cells  (termed  iENDO  

(5)

Chapter  3                                                                                                                                                                                                                                        Introduction      

cells),  which  could  than  be  differentiated  to  hepatocytes  or  β-­‐cells.  The  rationale  for   the   use   of   hMAPCs   as   starting   population   was   threefold:   (1)   hMAPCs   are   derived   from  human  bone  marrow  and  can  be  expanded  significantly  (for  ±70  PDs)  without   acquisition   of   genetic   abnormalities;   (2)   hMAPCs   (trade   name   MultiStem®)   are   currently   being   used   clinically   in   the   setting   of   ischemic   disorders   and   as   immunomodulators   without   known   toxicity   [29-­‐31]   (3)   although   hMAPCs   can   differentiate   in   vitro   and   in   vivo   in   mesodermal   cell   types,   including   endothelium,   they  differentiate,  unlike  their  rodent  counterparts,  less  robust  to  endodermal  cell   types  [16,  25,  28,  32].    

 

The  discovery  of  iPSCs  and  direct  reprogramming  of  mouse  and  human  fibroblasts  to   hepatocytes  [33-­‐37],  and  pancreatic  β-­‐cells  by  OSKM  combined  with  small  molecules   approach  or  small  molecule  alone  [38-­‐40],  has  provided  the  basis  for  the  hypothesis   that  the  differentiation  state,  even  of  mature  cells,  can  be  manipulated.  Therefore,   investigators  are  testing  whether  it  is  possible  to  de-­‐differentiate  cells  a  few  steps   back,   but   not   to   a   pluripotent   state   which   is   associated   with   teratoma   formation.  

This   partial   dedifferentiation   could   allow   broader   applications   of   MAPC.   To   overcome   the   restricted   differentiation   of   hMAPCs   towards   hepatocytes   and   pancreatic  β-­‐cells,  we  here  demonstrated  that  using  a  complement  of  transcription   factors  (TFs),  chosen  based  on  insights  from  early  endoderm  fate  specification  and   differentiation,   it   might   be   possible   to   trans/de-­‐differentiate   hMAPC   to   an   expandable  induced  endoderm  progenitor  (iENDO)  state.  In  the  following  chapters,   we   will   show   that   these   cells   could   be   differentiated   towards   hepatocyte   and   pancreatic   β-­‐cells   in   vitro   and   in   vivo.   In   contrast   to   PSCs,   such   endodermal   progenitors   might   represent   a   safer   cell   source,   as   differentiation   to   non-­‐

endodermal   cells   would   not   occur.   Compared   to   direct   lineage   conversion,   such   endodermal  progenitors  can  be  extensively  expanded.      

 

 

 

 

(6)

Chapter  3                                                                                                                                                                                                      Materials  and  Methods    

94    

3.3  Materials  and  Methods:  

3.3.1  Generation  of  lentiviral  vectors  carrying  transcription  factors  

We  selected  16  candidate  TFs:    ESC  pluripotency  factors  (OCT4,  SOX2,  KLF4,  CMYC),   TFs  expressed  in  early  definitive  endoderm  (MIXL1,  GATA4,  SOX17,  FOXA1,  FOXA2,   FOXD3,   FOXF1),   TFs   expressed   in   late   endoderm   (HNF4α,   HNF6,   HNF1α,   HEX,   CEBPα).  Primers  were  designed  with  including  specific  restriction  enzyme  sites  in  the   flanking  regions  to  amplify  the  cDNAs  (supplementary  table-­‐1).  The  coding  sequence   for  FOXA2,  HNF1α,  HNF4α,  CEBPα,  HNF6,  and  FOXA1,  FOXF1,  FOXD3  and  for  HEX,   MIXL1,  GATA4,  SOX17  were  PCR  amplified  from  hESC  differentiated  to  hepatocytes   for  12  days,  6  days  and  4  days,  respectively  and  cloned  into  the  PLVX-­‐IRES-­‐HYGRO   constitutive  CMV  promoter  based  lentiviral  vector  plasmid  purchased  from  (Cat  No.  

632185,  Clontech,  Cambridge,  USA).  Human  OCT4,  SOX2,  KLF4  and  CMYC  cDNA  were   excised  from  pMXs-­‐OCT3/4(Cat.No.  17217),  pMXs-­‐SOX2  (Cat  No.  17218),  pMXs-­‐KLF4   (Cat  No.  17219),  pMXs-­‐c-­‐MYC  (Cat  No.  17220)  respectively.  The  cDNAs  were  cloned   into   the   PLVX   lentiviral   vector   (Addgene,   Cambridge,   USA).   Each   TF   construct   was   verified   by   colony   PCR,   restriction   digestion   pattern   and   cDNA   sequence   analysis.  

Each  TF  containing  lentiviral  vector  was  co-­‐transfected  with  2nd  generation  lentiviral   packaging  (gag  pol  tat  rev)/envelope  (VSV-­‐G)  plasmids  into  Lenti-­‐X™  293T  Cell  line   purchased   (Cat   No.   632180,   Clontech,   CA,   USA)   using   Fugene   transfection   reagent   (Cat   No.   E2311,   Promega,   Madison,   WI,   USA).   Transfer   vector-­‐   6μg,   Packaging   plasmid   (psPAX2)   (Cat   No.   12260,   Addgene,   Cambridge,   USA)-­‐   3.5μg,   Envelope   plasmid  (pMD2.  G)  (Cat  No.  12259  Addgene,  Cambridge,  USA)–  1.5μg.  Supernatants   containing   the   lentiviral   particles   were   collected   after   48hr,   filtered   through   a   0.45μm  filter  and  stored  at  -­‐80

0

C  for  future  use.  

3.3.2  Culture  conditions  for  BM-­‐human  MAPCs    

Human   Multipotent   Adult   Progenitors   (hMAPCs)   were   derived   from   human   bone  

marrow  as  described  in  Roobrouck  et  al.,  [25].    MAPCs  were  cultured  as  previously  

described[25].      

(7)

Chapter  3                                                                                                                                                                                                      Materials  and  Methods      

  3.3.3  Generation  of  induced  endodermal  progenitors  (iENDO)  from  human  MAPCs   On  day  0,  45,000  hMAPCs  cells  were  plated  in  10  cm

2

 petri  dishes  (Cat  No.  150350,   Thermo   Scientific™   Nunclon™   Delta   treated,   VWR   International,   Belgium)   in   triplicates.   On   day   1,   cells   were   transduced   with   a   cocktail   of   14   or   16   un-­‐

concentrated  viral  vector  supernatants  (MOI  of  3).  On  day  4,  transduced  cells  were   harvested   and   replated   on   1.8%   differentiation   Matrigel   (Cat   No.   356231,   BD   biosciences,  Bedford,  MA,  USA)  coated  six  well  plates  (Cat  No.  3516,  Corning-­‐Costar

®

,   MA,  USA).  A  part  of  the  cells  was  used  to  evaluate  transgene  expression.  From  day  5   onwards,   cells   were   maintained   in   endoderm   induction   medium   containing   60%  

DMEM  low  glucose  (Cat  No.  31885023,  Gibco,  Grand  Island,  NY,  USA);  40%  MCDB-­‐

201   (Cat.No.   M6770,   Sigma-­‐Aldrich,   Saint   Louis,   MO,   USA);   1x-­‐Penicillin-­‐

Streptomycin(10,000  U/mL)  (Cat  No.  15140122,  Gibco,  Carlsbad,  CA,  USA);  0.25x  LA-­‐

BSA  (100x)  (Cat  No.  L9530,  Sigma-­‐Aldrich,  Saint  Louis,  MO,  USA);  0.25x  ITS-­‐A  (100x)   (Cat  No.  51300044,  Gibco,  Grand  Island,  NY,  USA);  100nM,L-­‐ascorbic  Acid  (Cat  No.  

A4403,  Sigma-­‐Aldrich,  Saint  Louis,  MO,  USA);  1μM  dexamethasone  (Cat.No.  D2915,   Sigma-­‐Aldrich,  Saint  Louis,  MO,  USA),  50  μM,  β-­‐mercaptoethanol  (50mM)  (Cat  No.  

31350010,   Gibco,   Grand   Island,   NY,   USA)   supplemented   with   100ng/ml   Activin-­‐A   (Cat  No.  120-­‐14E),  50ng/ml  Wnt3a  (Cat  No.  315-­‐20)  and  5ng/ml  BMP4  (Cat  No.  120-­‐

05ET).   All   growth   factors   were   purchased   from   Peprotech,   USA.   From   day   9   to   15   morphological  changes  from  mesenchymal  to  epithelial  cells  were  assessed  by  bright   field   microscopy.   Untransduced   and   PLVX-­‐eGFP   empty   vector   tranduced   hMAPCs   cultured   under   similar   conditions   were   used   as   negative   control.   The   iENDO   cells   were   maintained   in   a   37

0

C,   21   %   O

2

,   5   %   CO

2  

incubator.   Between   days   20-­‐25   transcripts  for  endogenous  mesendoderm/definitive  endoderm  and  late  endoderm   marker   genes   were   measured   by   qRT-­‐PCR.   Cells   were   fixed   with   4%  

paraformaldehyde   (PFA)   (Cat   No.   P6148,   Sigma-­‐Aldrich,   Saint   Louis,   MO,   USA)     overnight  at  4

0

C  to  perform  immunostaining.    

3.3.4  Expansion  potential  of  iENDO  cells  

14TF   iENDO   cells   were   seeded   at   one   million-­‐cells/100   cm

2

  petri   dish   (Cat   No.  

150350,   Thermo   Scientific™   Nunclon™   Delta   treated,   VWR   International,   Belgium)  

(8)

Chapter  3                                                                                                                                                                                                      Materials  and  Methods      

 

  96  

coated   with   0.1%   gelatin.   Afterwards   every   4-­‐5   days,   cells   were   harvested   with   0.25%   Trypsin   EDTA   (Cat   No.   25200056,   Gibco,   Grand   island,   NY,   USA)   and   enumerated  using  a  NUCLEOCOUNTER®  NC-­‐100™.  Population  doublings  (PDs)  were   enumerated   as   the   number   of   cells   initially   seeded   (C

0

)   to   the   number   of   cells   harvested   (C

1

)   at   each   passage   using   the   following   equation:   PDnew   =   PD   initial   +   [log  (C

1

/C

0

]/log2.  

3.3.5  Maintenance  and  Expansion  of  hESCs    

H9   hESCs   (purchased   from   WiCell,   Madison,   WI,   USA)   were   expanded   on   a   6   well   plate   (Cat.No.   3516,   Corning-­‐Costar

®

,   VWR   International,   Belgium),   in   feeder-­‐free   conditions   on   hESC-­‐qualified   BD   Matrigel

TM

,   (Cat   No.   354277,   BD   Biosciences,   Bedford,   MA,   USA)   using   E8   medium   Essential   8

TM

  Basal   Medium   Essential   8

TM

  Supplement  (Cat.  No.  A1517001,  Gibco,  Grand  Island,  NY,  USA).    

3.3.6  RNA  extraction,  cDNA  synthesis  and  gene  expression  

Total  RNA  was  purified  using  the  GenElute

 Mammalian  Total  RNA  Miniprep  Kit  (Cat   No.  RTN350,  Sigma-­‐Aldrich,  Saint  Louis,  MO,  USA)  and  ZR  RNA  MicroPrep  (Cat  No.  

R1061,  Zymo  Research,  CA,  USA).  CDNA  was  generated  using  0.5  -­‐  1μg  of  RNA  with   SuperScript®  III  First-­‐Strand  Synthesis  SuperMix  for  qRT-­‐PCR  kit  (Cat  No.  11752050,   Invitrogen,   CA,   USA)   and   qRT-­‐PCR   was   performed   on   a   ViiA™   7   Real-­‐Time   PCR   System   with   384-­‐well   plate   (Cat   No.   4453536,   Applied   Biosystems,   Carlsbad,   CA,   USA)  with  a  Platinum®  SYBR®  Green  qPCR  SuperMix-­‐UDG  w/ROX  (Cat  No.    11744500,   Invitrogen,   CA,   USA)   and   primers   mix   at   final   concentration   of   250nM.   Gene   expression   (Cycle   threshold)   values   were   normalized   based   on   the   PPIG   (peptidylprolyl  isomerase  G)  house  keeping  gene  and  the  Delta  CT  calculated.  Gene   specific  primers,  purchased  from  IDT  technologies,  Leuven,  Belgium  were  designed   to  distinguish  between  transgene  (CDS-­‐IRES)  and  endogenous  (CDS-­‐3’UTR  or  Exon-­‐

Exon   spanning)   gene   expression.   Gene   expression   graphs   or   heat   maps   were  

represented   relative   to   the   housekeeping   gene   PPIG   in   log   scale.   Heat   maps   were  

generated  using  Gene  E  software  (Broad  Institute  of  MIT  and  Harvard,  Cambridge,  

MA,   USA).   The   efficiency   of   primers   was   tested   by   serial   dilution   of   cDNA   and   by  

(9)

Chapter  3                                                                                                                                                                                                      Materials  and  Methods      

  calculating  coefficient  of  regression  (R2).  An  efficiency  of  95-­‐105%  with  an  R2≥  97%  

was  considered  as  good  (see  supplementary  table-­‐2-­‐4  for  list  of  all  qRT-­‐PCR  primers   used  in  this  study).    

3.3.7  Immunostaining  

Undifferentiated  14TF  iENDO  cells  cultured  on  coverslips  in  12  well  plate  were  fixed   with   4%   (PFA)   and   permeabilised   with   0.2%   PBST,   blocked   with   0.2%   PBST   +   5%  

normal   donkey   serum,   and   stained   overnight   at   4

°

C   with   primary   antibodies   and   respective  isotype  controls  in  Dako  diluent.  Slides  were  washed  with  1xPBST  three   times.   Immune   complexes   were   detected   by   incubation   with   a   Alexa-­‐Fluro   AF488   (Green)  and  AF555  (Red)  (1:500)  coupled  to  secondary  antibodies  for  30  min  at  room   temperature.   The   nuclei   were   visualized   using   Hoechst   or   DAPI   (1:2000).   After   3   washes,  slides  were  mounted  with  prolong  Gold  mounting  medium.  The  signals  were   detected   with   a   Nikon   Eclipse   Ti-­‐S   and   Axioimager.Z1   microscope   (Carl   Zeiss).    

Identical   exposure   times   were   used   for   isotype   and   specific   antibodies.   (See   supplementary   table   5-­‐6,   for   list   of   primary,   secondary,   and   isotype   antibodies).    

(Note:   For   cell   surface   protein   CXCR4,   stained   with   anti-­‐human   CXCR4   conjugated   with  PE  antibody  (1:100),  cell  permeabilisation  and  secondary  antibody  step  was  not   followed).  

3.3.8  Statistical  analysis  

Comparisons   between   two   groups   were   analysed   using   an   unpaired   2-­‐tailed  

Student’s   t-­‐test.   P-­‐values   <   0.05(*),   <   0.01(**),   <0.001(***)   were   considered  

significant.  Data  are  shown  as  mean  and  error  bars  represent  standard  error  of  mean  

(SEM)  of  minimum  three  independent  experiments.  All  results  were  analyzed  using  

Graph  Pad  prism  6  software.    

(10)

Chapter  3                                                                                                                                                                                                                                                            Results      

  98  

3.4  Results:  

3.4.1   14TFs   can   reprogram   human   MAPCs   into   induced   endodermal   progenitor   (iENDO)  cells  

Initially,   we   transduced   human   MAPCs   with   16   selected   TFs,   including   the   pluripotency   TFs,   OKSM   and   TFs   known   to   be   important   in   (mes)   endoderm   specification  (Fig.  1A).    Cells  were  maintained  in  endoderm  differentiation  medium   with  Activin-­‐A/Wnt3a/BMP4  on  Matrigel  coated  dishes  from  day  4  onwards  (Fig.  1B).  

On  day  4,  all  TFs  were  highly  expressed  except  for  CEBPα  (Fig.  1C).  Between  day  9   and   20,   we   observed   morphological   changes   from   a   mesenchymal   morphology   to   clusters   of   epithelial   cells   with   a   cuboidal   cells   in   the   transduced   cells,   but   not   in   untransduced  or  PLVX-­‐eGFP  transduced  cells  (Fig.  1D).    

   

   

A) Selected'16'Transcrip1on'factors'for'iENDO'induc1on' B)

Morphological observation of Mesenchymal to epithelial (MET) clusters derived from 16 TFs transduced BM-hMAPC

BM#hMAPC#Day+0+ BM#hMAPC+UTC#Day+20+

PLVX#empty#Day+20+ 16TFs+MAPC#Day+20+

100μm+

100μm+

100μm+

100μm+

tOCT3AtSOX2tKLF4tCMYCtMIXL1tGATA4tSOX17tFOXA1tFOXA2tFOXD3tFOXF1tHNF4AtHNF6tHNF1AtHEX tCEBPA 10-7

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Relative expression to PPIG

Transgene expression

Untransduced hMAPC-Day 4 16TFs transduced BM-hMAPC-Day 4

* * * * *

*

* * * * * * * NS

NS

*

C)

E) F)

D)

G)

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S1.16TF transduction in hMAPC create more hepatocyte like cells than iENDO

Pluripotency-Genes- ---Early-Endoderm- Late-endoderm- genes- OCT4,&SOX2,&KLF4&

CMYC,&FOXD3! MIXL1,&GATA4,&

SOX17,&FOXA1,&

FOXA2,&FOXF1!

HNF4A,&HNF6,&HEX,&

HNF1A,&CEBPA,&&!

16TFs2iENDO2Characteriza6on2at2day2202

relative row min row max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4

Rela6ve2log2 Row2min2 Row2max2

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ hE SC $E nd od er m $D ay $4 $

SOX7$

GATA6$

eGATA4$

GSC$

eMIXL1$

EOMES$

FGF8$

eSOX17$

relative r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n SOX7

GATA6 eGATA4 GSC

eMIXL1 EOMES FGF8 eSOX17

Genes2

Mesendoderm2markers2

relative

r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n eFOXA2

eFOXA1 CER1 CXCR4 CKIT eHEX

ECADHERIN EPCAM

OCLN eFOXA2$

eFOXA1$

CER1$

CXCR4$

CKIT$

eHEX$

ECADHERIN$

EPCAM$

OCLN$

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $$D ay $2 0$ $ hE SC $E nd od er m $D ay $$4 $

Genes2

Defini6ve2endoderm2/Epithelial2markers2

ALB$ $ AFP$ $ eHNF4A$

$ eHNF6$

$ PDX1$

relative row min row max

Untransduced hMAPC-Day 20 16TFs derived iENDO-Day 20 hESC diff mature endoderm cells -day 20

Annotation

ALB AFP

eHNF4A eHNF6 PDX1

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ $ hE SC $L ate $E nd od er m $D ay $2 0$

Genes2

Late2endoderm2markers2 A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$ G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

*$

*$

***$

**$

*$

***$

*$

***$

*$

***$

***$

***$

***$

**$

***$

*$

***$

***$

***$

**$

*$

***$

**$

**$

**$

***$

**$

**$

***$

***$

***$

**$

***$

**$

***$

**$

*$

***$

**$

*$

***$

16TFs2iENDO2Characteriza6on2at2day2202

relative row min row max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4

Rela6ve2log2 Row2min2 Row2max2

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ hE SC $E nd od er m $D ay $4 $

SOX7$

GATA6$

eGATA4$

GSC$

eMIXL1$

EOMES$

FGF8$

eSOX17$

relative r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n SOX7

GATA6 eGATA4 GSC

eMIXL1 EOMES FGF8 eSOX17

Genes2

Mesendoderm2markers2

relative

r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n eFOXA2

eFOXA1 CER1 CXCR4 CKIT eHEX

ECADHERIN EPCAM

OCLN eFOXA2$

eFOXA1$

CER1$

CXCR4$

CKIT$

eHEX$

ECADHERIN$

EPCAM$

OCLN$

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $$D ay $2 0$ $ hE SC $E nd od er m $D ay $$4 $

Genes2

Defini6ve2endoderm2/Epithelial2markers2

ALB$ $ AFP$

$

eHNF4A$

$ eHNF6$

$ PDX1$

relative row min row max

Untransduced hMAPC-Day 20 16TFs derived iENDO-Day 20 hESC diff mature endoderm cells -day 20

Annotation

ALB AFP

eHNF4A eHNF6 PDX1

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ $ hE SC $L ate $E nd od er m $D ay $2 0$

Genes2

Late2endoderm2markers2 A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$ G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative

row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

*$

*$

***$

**$

*$

***$

*$

***$

*$

***$

***$

***$

***$

**$

***$

*$

***$

***$

***$

**$

*$

***$

**$

**$

**$

***$

**$

**$

***$

***$

***$

**$

***$

**$

***$

**$

*$

***$

**$

*$

***$

16TFs2iENDO2Characteriza6on2at2day2202

relative row min row max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4

Rela6ve2log2 Row2min2 Row2max2

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ hE SC $E nd od er m $D ay $4 $

SOX7$

GATA6$

eGATA4$

GSC$

eMIXL1$

EOMES$

FGF8$

eSOX17$

relative

r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n SOX7

GATA6 eGATA4 GSC

eMIXL1 EOMES FGF8 eSOX17

Genes2

Mesendoderm2markers2

relative r o w m i n r o w m a x

Untransduced hMAPC-Day 20 14TFs derived iENDO-Day 20 hESC- Endodermal progenitors-day 4

A n n o t a t i o n eFOXA2

eFOXA1 CER1 CXCR4 CKIT eHEX

ECADHERIN EPCAM

OCLN eFOXA2$

eFOXA1$

CER1$

CXCR4$

CKIT$

eHEX$

ECADHERIN$

EPCAM$

OCLN$

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $$D ay $2 0$ $ hE SC $E nd od er m $D ay $$4 $

Genes2

Defini6ve2endoderm2/Epithelial2markers2

ALB$ $ AFP$ $ eHNF4A$

$ eHNF6$

$ PDX1$

relative row min row max

Untransduced hMAPC-Day 20 16TFs derived iENDO-Day 20 hESC diff mature endoderm cells -day 20

Annotation

ALB AFP

eHNF4A eHNF6 PDX1

U TC $MA PC $D ay $2 0$ $ 16 TF s$ iE N D O $D ay $2 0$ $ $ hE SC $L ate $E nd od er m $D ay $2 0$

Genes2

Late2endoderm2markers2 A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$

MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$ G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

A)

100μm%

100μm%

100μm%

B)

iENDO&HLC&2D&Protocol&B2

Genes%

relative row min row max

iENDO-Day 0 iENDO-HLC.2D hESC-HLC.2D PHH

Annotation ALB

AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 iEND O +D ay% 0% 2D %iEND O +HLC % 2D %hESC +HLC % PHH%

ALB$ AFP$

AAT$ MRP2$

CYP3A4$

TTR$

G6PC$

eHNF4A$

eHNF6$

PROX1$

tOCT4$

Hepatocyte%markers%

relative row minrow max

14TFs iENDO-Day 0 Day 28 iENDO-HLC.2D Day 28 hESC-HLC.2D PHH

Annotation ALB AFP AAT MRP2 CYP3A4 TTR G6PC eHNF4A eHNF6 PROX1 tOCT4 Rela%ve'log' Row'min' Row'max'

Figure S8

*$

*$

***$

**$

*$

***$

*$

***$

*$

***$

***$

***$

***$

**$

***$

*$

***$

***$

***$

**$

*$

***$

**$

**$

**$

***$

**$

**$

***$

***$

***$

**$

***$

**$

***$

**$

*$

***$

**$

*$

***$

Len$viral*vectors*transduc$on* Endoderm*induc$on*

*****d0**************d1************d3*********d4*********d5*******************************d15********************d20*********

Time%line%for%induced%endodermal%progenitor%(iENDO)%genera8on%from%hMAPC%

MET*clusters*

*forma$on*

hMAPC*medium* Endoderm*induc$on*medium*

Pla$ng**

hMAPC* Viral*vectors**

transduc$on* Repla$ng*

on*matrigel* qRTEPCR/Staining*

Expansion*

Hygromycin*selec$on*

Referenties

GERELATEERDE DOCUMENTEN

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the

Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)..

Duration of antibiotic treatment and symptom recovery in community-acquired pneumonia.. El

The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an

Nadat hij dit voorbeeld behandeld had, wierp Fourier de vraag op of men ook een willekeurige periodieke functie f (t) – stel voor de eenvoud maar weer dat de periode van die functie

Mijn dank gaat in eerste instantie uit naar alle studenten theaterweten- schap van de Universiteit van Amsterdam die in de loop van vier jaar door hun deelname aan het onderwijs