• No results found

INHIBITION OF MONOAMINE OXIDASE BY SELECTED C-5 AND C-6 SUBSTITUTED ISATIN ANALOGUES ANNEXURE A

N/A
N/A
Protected

Academic year: 2021

Share "INHIBITION OF MONOAMINE OXIDASE BY SELECTED C-5 AND C-6 SUBSTITUTED ISATIN ANALOGUES ANNEXURE A"

Copied!
64
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ANNEXURE A

Supplementary Information

INHIBITION OF MONOAMINE OXIDASE BY SELECTED C-5

AND C-6 SUBSTITUTED ISATIN ANALOGUES

(2)

Supplementary Information

Chromatograms of the HPLC analyses of the synthesized compounds

Chromatograms are indicated at 210, 254 and 300 nm respectively.

INHIBITION OF MONOAMINE OXIDASE BY SELECTED C5- AND

C6-SUBSTITUTED ISATIN ANALOGUES

Clarina I. Manley-King, Jacobus J. Bergh,a and Jacobus P. Petzera,*

a

Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

Supplementary Material

S1: HPLC traces of the following new/unknown compounds

5-Benzyloxyisatin (9a) 6-Benzyloxyisatin (9b) 5-(2-Phenylethyl)isatin (9c) 6-(2-Phenylethyl)isatin (9d) 5-Phenoxyisatin (9e) 6-Phenoxyisatin (9f) 5-Phenylisatin (9g) 6-Phenylisatin (9h) 5-(4-Phenylbutyl)isatin (9i) 5-(4-Chlorophenoxy)isatin (9j)

Method: To determine the purity of the previously unreported compounds (9a–j), HPLC analyses were carried out. HPLC analyses were performed with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. A Venusil XBP C18 column (4.60  150 mm, 5 µm) was used and the mobile phase consisted initially of 30% acetonitrile and 70% MilliQ water at a flow rate of 1 mL/min. At the start of each HPLC run a solvent gradient program was initiated by linearly increasing the composition of the acetonitrile in the mobile phase to 85% acetonitrile over a period of 5 min. Each HPLC run lasted 15 min

(3)

and a time period of 5 min was allowed for equilibration between runs. A volume of 20 µL of solutions of the test compounds in acetonitrile (1 mM) was injected into the HPLC system and the eluent was monitored at wavelengths of 210, 254 and 300 nm.

5-Benzyloxyisatin (9a) 6-Benzyloxyisatin (9b) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN010.D)

6 .0 5 9 8 .1 8 5 8 .7 0 5 7 .7 2 2 1 0 .5 9 4 1 1 .0 0 0 7 .1 0 4 6 .6 5 7 4 .9 3 8 1 2 .3 9 8 4 .5 5 5 4 .3 4 5 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN012.D)

5. 985 8. 429 7. 092 10. 562 12. 137 6. 576 4. 679 12. 400 5. 007

(4)

5-(2-Phenylethyl)isatin (9c) 6-(2-Phenylethyl)isatin (9d) 5-Phenoxyisatin (9e) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN013.D)

6 .6 0 8 7 .3 5 7 8 .0 8 0 7 .1 0 0 1 2 .1 6 2 5 .4 9 0 1 2 .4 0 0 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN004.D)

6. 592 10. 914 10. 696 7. 674 7. 423 12. 189 8. 084 7. 116 11. 932 12. 417 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN006.D)

6 .0 0 9 1 2 .2 5 0 8 .4 3 1 1 0 .7 3 4 7 .5 8 8 7 .1 2 1

(5)

6-Phenoxyisatin (9f) 5-Phenylisatin (9g) 6-Phenylisatin (9h) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN007.D)

6 .0 0 4 6 .5 3 0 7 .5 3 2 8 .0 8 1 5 .5 0 8 7 .1 1 1 1 0 .6 9 5 4 .6 1 7 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN008.D)

5 .9 6 0 8 .7 0 1 8 .1 6 4 9 .1 3 5 7 .7 8 1 1 0 .6 7 6 7 .1 1 7 1 2 .0 4 5 1 1 .6 5 2 4 .7 2 9 1 2 .4 4 7 0 2 4 6 8 10 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG001.D)

5 .9 7 9 9 .7 0 2

(6)

5-(4-Phenylbutyl)isatin (9i)

5-(4-Chlorophenoxy)isatin (9j)

S2: 1H NMR and 13C NMR spectra of the following new/unknown compounds

5-Benzyloxyisatin (9a) 6-Benzyloxyisatin (9b) 5-(2-Phenylethyl)isatin (9c) 6-(2-Phenylethyl)isatin (9d) 5-Phenoxyisatin (9e) 6-Phenoxyisatin (9f) 5-Phenylisatin (9g) 6-Phenylisatin (9h) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000 2500

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN005.D)

7 .6 1 0 8 .0 8 2 8 .4 6 1 6 .8 1 4 1 2 .1 0 1 1 0 .7 0 2 1 2 .4 1 7 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JAQUES\12JAN009.D)

6 .6 8 3 1 0 .6 1 5 6 .0 0 6 8 .0 8 4 7 .7 0 7 7 .3 4 8 7 .1 0 1 1 1 .0 2 9 1 2 .1 2 3 1 2 .4 0 2

(7)

5-(4-Phenylbutyl)isatin (9i)

5-(4-Chlorophenoxy)isatin (9j)

Proton (1H) and carbon (13C) NMR spectra were recorded on a Varian Gemini 300 spectrometer at

frequencies of 300 MHz and 75 MHz, respectively, and on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. All NMR measurements were conducted in DMSO-d6.

(8)

1

H-NMR and 13C-NMR

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

S3: Stereoview of the best ranked docking solution for the binding of isatin analogue 9a (orange colored,

Top) aniline analogue 10 (cyan colored, Bottom) in the active site of MAO-B (2V5Z.pdb).22 The

illustrations were generated with PyMOL.38

S4: Stereoview of the best ranked docking solution for the binding of isatin analogue 9a (magenta

colored, Top) aniline analogue 10 (cyan colored, Bottom) in the active site of MAO-A (2Z5X.pdb).3 The

illustrations were generated with PyMOL.38

A

B

(19)

S5: Stereoview of the best ranked docking solution for the binding of isatin analogue 9b (orange colored)

in the active site of MAO-B (2V5Z.pdb).22 The illustrations were generated with PyMOL.38

(20)

ANNEXURE B

Supplementary Information

INHIBITION OF MONOAMINE OXIDASE BY C5-SUBSTITUTED

PHTHALIMIDE ANALOGUES

(21)

Supplementary Information

Chromatograms of the HPLC analyses of the synthesized compounds

Chromatograms are indicated at 210, 254 and 300 nm respectively.

INHIBITION OF MONOAMINE OXIDASE BY C5-SUBSTITUTED

PHTHALIMIDE ANALOGUES

Clarina I. Manley-King, Jacobus J. Bergh, and Jacobus P. Petzer*

Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.

SUPPLEMENTARY MATERIAL

S1: HPLC traces of the following new/unknown compounds

 5-Phenoxyphthalimide (5a)  5-Benzyloxyphthalimide (5b)  5-(2-Phenylethoxy)phthalimide (5c)  5-(3-Phenylpropoxy)phthalimide (5d)  5-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalimide (5e)  5-(Naphthalen-2-yloxy)phthalimide (5f)  5-(4-Bromobenzyloxy)phthalimide (5g)  5-[2-(4-Bromophenyl)ethoxy]phthalimide (5h)  5-(4-Bromophenoxy)phthalimide (5i)

Method: To determine the purity of the previously unreported compounds (5a–i), HPLC analyses were carried out. HPLC analyses were performed with an Agilent 1200 HPLC system equipped with a quaternary pump and an Agilent 1200 series diode array detector. A Venusil XBP C18 column (4.60  150 mm, 5 µm) was used and the mobile phase consisted initially of 30% acetonitrile and 70% MilliQ water at a flow rate of 1 mL/min. At the start of each HPLC run a solvent gradient program was initiated by linearly increasing the composition of the acetonitrile in the mobile phase to 85% acetonitrile over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. A volume of 20 µL of

(22)

solutions of the test compounds in acetonitrile (1 mM) was injected into the HPLC system and the eluent was monitored at wavelengths of 210, 254 and 300 nm.

5-Phenoxyphthalimide (5a) 5-Benzyloxyphthalimide (5b) 5-(2-Phenylethoxy)phthalimide (5c) min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG002.D)

6 .3 7 7 4 .9 4 3 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG003.D)

6 .4 0 6 9 .8 3 5 7 .6 5 0 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG004.D)

6 .8 2 4 5 .4 3 5 1 2 .1 1 2 6 .4 1 1 5 .8 0 7

(23)

5-(3-Phenylpropoxy)phthalimide (5d) 5-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalimide (5e) 5-(Naphthalen-2-yloxy)phthalimide (5f) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG005.D)

7 .3 5 5 5 .9 6 0 3 .1 2 0 9 .0 6 3 1 2 .2 6 0 4 .5 2 4 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG006.D)

7 .0 6 0 5 .7 2 2 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG007.D)

7 .4 4 9 6 .1 2 3

(24)

5-(4-Bromobenzyloxy)phthalimide (5g) 5-[2-(4-Bromophenyl)ethoxy]phthalimide (5h) 5-(4-Bromophenoxy)phthalimide (5i) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG008.D)

5 .9 7 2 7 .2 3 9 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 C, Sig=300,16 Ref=off (JACQUES\19AUG009.D)

7 .5 6 6 6 .2 5 8 4 .4 8 8 7 .2 2 9 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG010.D)

7

.2

0

(25)

S2: 1H NMR spectra of the following new/unknown compounds  5-Phenoxyphthalimide (5a)  5-Benzyloxyphthalimide (5b)  5-(2-Phenylethoxy)phthalimide (5c)  5-(3-Phenylpropoxy)phthalimide (5d)  5-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalimide (5e)  5-(Naphthalen-2-yloxy)phthalimide (5f)  5-(4-Bromobenzyloxy)phthalimide (5g)  5-[2-(4-Bromophenyl)ethoxy]phthalimide (5h)  5-(4-Bromophenoxy)phthalimide (5i)

Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker Avance III 600 spectrometer at

frequencies of 600 MHz and 150 MHz, respectively. All NMR measurements were conducted in DMSO-d6.

(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)

ANNEXURE C

Supplementary Information

MONOAMINE OXIDASE INHIBITION BY C-4 SUBSTITUTED

PHTHALONITRILES

(36)

Supplementary

Information

Chromatograms of the HPLC analyses of the synthesized

compounds

Chromatograms are indicated at 210, 254 and 300 nm respectively.

Monoamine oxidase inhibition by C4-substituted phthalonitriles

Clarina I. Manley-King, Jacobus J. Bergh, and Jacobus P. Petzer*

Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

S1: HPLC traces of the following new/unknown compounds

4-Phenoxyphthalonitrile (4a) 4-Benzyloxyphthalonitrile (4b) 4-(2-Phenylethoxy)phthalonitrile (4c) 4-(3-Phenylpropoxy)phthalonitrile (4d) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalonitrile (4e) 4-(Naphthalen-2-yloxy)phthalonitrile (4f) 4-(4-Bromophenoxy)phthalonitrile (4g) 4-(4-Bromobenzyloxy)phthalonitrile (4h) 4-[2-(4-Bromophenyl)ethoxy]phthalonitrile (4i) 4-(Benzyloxy)benzonitrile (5a) 3-(Benzyloxy)benzonitrile (5b) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5c) 3-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5d) 4-(4-Bromobenzyloxy)benzonitrile (5e) 3-(4-Bromobenzyloxy)benzonitrile (5f) 4-[2-(4-bromophenyl)ethoxy]benzonitrile (5g) 4-[2-(Benzyloxy)ethoxy]benzonitrile (5h) {[(2E)-3-phenylprop-2-en-1-yl]oxy}benzene (6b) 1-Bromo-4-(phenoxymethyl)benzene (6c) 1-Bromo-4-(2-phenoxyethyl)benzene (6d)

(37)

Method: To determine the purity of the previously unreported compounds, HPLC analyses were carried out. HPLC analyses were performed with an Agilent 1100 HPLC system equipped with a quaternary pump and an Agilent 1100 series diode array detector. A Venusil XBP C18 column (4.60  150 mm, 5 µm) was used and the mobile phase consisted initially of 30% acetonitrile and 70% MilliQ water at a flow rate of 1 mL/min. At the start of each HPLC run a solvent gradient program was initiated by linearly increasing the composition of the acetonitrile in the mobile phase to 85% acetonitrile over a period of 5 min. Each HPLC run lasted 15 min and a time period of 5 min was allowed for equilibration between runs. A volume of 20 µL of solutions of the test compounds in acetonitrile (1 mM) was injected into the HPLC system and the eluent was monitored at wavelengths of 210, 254 and 300 nm.

4-Phenoxyphthalonitrile (4a) 4-Benzyloxyphthalonitrile (4b) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG011.D)

7 .3 2 7 7 .5 9 3 9 .8 2 5 8 .5 8 5 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG012.D)

7 .4 0 5 9 .8 2 2

(38)

4-(2-Phenylethoxy)phthalonitrile (4c) 4-(3-Phenylpropoxy)phthalonitrile (4d) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalonitrile (4e) 4-(Naphthalen-2-yloxy)phthalonitrile (4f) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG013.D)

7 .7 7 8 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG014.D)

8 .3 9 4 6 .4 6 4 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG015.D)

7 .9 9 0 1 0 .2 0 0 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG016.D)

8 .3 5 9 1 2 .1 7 9 1 2 .4 2 1

(39)

4-(4-Bromophenoxy)phthalonitrile (4g) 4-(4-Bromobenzyloxy)phthalonitrile (4h) 4-[2-(4-Bromophenyl)ethoxy]phthalonitrile (4i) 4-(Benzyloxy)benzonitrile (5a) min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG019.D)

8 .0 3 8 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG017.D)

8 .1 8 3 5 .9 5 6 5 .3 2 0 3 .7 6 5 min 0 2 4 6 8 10 12 14 mAU 0 500 1000 1500 2000

DAD1 A, Sig=210,4 Ref=off (JACQUES\19AUG018.D)

8 .5 7 2 9 .7 7 4 8 .1 8 7 7 .6 1 9 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR025.D)

7

.6

4

(40)

3-(Benzyloxy)benzonitrile (5b) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5c) 3-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5d) min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR026.D)

7 .8 5 6 9 .3 3 0 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR027.D)

8 .3 6 7 5 .9 9 6

(41)

4-(4-Bromobenzyloxy)benzonitrile (5e) 3-(4-Bromobenzyloxy)benzonitrile (5f) 4-[2-(4-Bromophenyl)ethoxy]benzonitrile (5g) min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR029.D)

8 .6 5 6 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR031.D)

9 .1 7 7 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR030.D)

8 .9 3 5 7 .2 2 7

(42)

4-[2-(Benzyloxy)ethoxy]benzonitrile (5h) {[(2E)-3-phenylprop-2-en-1-yl]oxy}benzene (6b) 1-Bromo-4-(phenoxymethyl)benzene (6c) min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR024.D)

7 .5 8 0 6 .8 9 4 1 1 .9 3 8 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR033.D)

9 .5 7 8 min 0 2 4 6 8 10 12 14 mAU 0 250 500 750 1000 1250 1500 1750 2000

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR034.D)

1

0

.0

9

(43)

1-Bromo-4-(2-phenoxyethyl)benzene (6d) min 0 2 4 6 8 10 12 14 mAU 0 100 200 300 400 500 600 700

DAD1 A, Sig=210,4 Ref=off (PETZER\31MAR035.D)

1

0

.8

3

(44)

S2: 1H NMR spectra of the following new/unknown compounds 4-Phenoxyphthalonitrile (4a) 4-Benzyloxyphthalonitrile (4b) 4-(2-Phenylethoxy)phthalonitrile (4c) 4-(3-Phenylpropoxy)phthalonitrile (4d) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}phthalonitrile (4e) 4-(Naphthalen-2-yloxy)phthalonitrile (4f) 4-(4-Bromophenoxy)phthalonitrile (4g) 4-(4-Bromobenzyloxy)phthalonitrile (4h) 4-[2-(4-Bromophenyl)ethoxy]phthalonitrile (4i) 4-(Benzyloxy)benzonitrile (5a) 3-(Benzyloxy)benzonitrile (5b) 4-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5c) 3-{[(2E)-3-Phenylprop-2-en-1-yl]oxy}benzonitrile (5d) 4-(4-Bromobenzyloxy)benzonitrile (5e) 3-(4-Bromobenzyloxy)benzonitrile (5f) 4-[2-(4-bromophenyl)ethoxy]benzonitrile (5g) 4-[2-(Benzyloxy)ethoxy]benzonitrile (5h) {[(2E)-3-phenylprop-2-en-1-yl]oxy}benzene (6b) 1-Bromo-4-(phenoxymethyl)benzene (6c) 1-Bromo-4-(2-phenoxyethyl)benzene (6d)

Proton (1H) and carbon (13C) NMR spectra were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz and 150 MHz, respectively. All NMR measurements were conducted in DMSO-d6.

(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)

Referenties

GERELATEERDE DOCUMENTEN

laten der werkplaats moet voldoen (deze eisen zijn uiteraard in.

(2002) that DLPFC activity correlates with conscious awareness of fluctuation of a rhythmic tone and conscious adaption of finger tapping to that tone, it might be expected

De vakgroep Ontwerp, Productie en Management van de Universiteit Twente is namelijk een van de wegbereiders binnen WCM geweest, onder meer door binnen WCM te acteren

Late laser EP components (P390) were also enhanced in fibromyalgia subjects [88]. In contrast amplitudes in migraine patients subjects were similar to healthy subjects

a certain target number of good recordings are collected for each speaker (with the quality of speech data being dependent on the particular application of the data), by

The Occupational Safety and Health Administration (OSHA) (2012) promulgated the PSM standard in 1992, which incorporated fourteen elements, to decrease the occurrence

• they satisfy the expectations of the parents and school management; and • they are satisfied with the way in which they are supported by their managers. The responses of

Medicine management includes those aspects which fall under effective stock control, such as prescribing medication, ordering medication and receiving the ordered items,