• No results found

Effluent treatment and its re-use for the Kriel Power Station

N/A
N/A
Protected

Academic year: 2021

Share "Effluent treatment and its re-use for the Kriel Power Station"

Copied!
99
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Effluent treatment and its re-use for the Kriel

Power Station

P T Mkabane

21968942

(2)

1

Declaration

I, Palesa Mkaba n e hereby certify that the work done on, “Effluent T reatment and its re -use f or Kriel power station”, in this document is my o wn orig in a l study, e xcept wher e other wise stated a s ref erences or ack no wledg ement. Ne ither the substa n ce nor a n y p art of this re port has been s ubmitte d f or any other co urse at th is or an y other un ive rsit y.

Sig nature: _ ___ ___ _ ____ ___ ___ . Date: _1 6 October 2 015 _ ___ ___ .

(3)

2

Abstract

Pales a Mkaba ne, Gerhard Ge ric ke (Me ntor) and Pr of. Fran s Waand ers (Super vi sor)

Chem ica l En gineer in g department, North W est Univers ity Fac ulty of Eng ine ering

Krie l P o wer Station g enerates eff luent of about 5 ML per d a y f rom diff erent eff luent streams of the pre -treatment p la nt. Currently t he water is reco vered into the eff luent sum p and p umped to the hig h le vel ash water sumps wher e a percent ag e is use d f or the ashing syste m wh ile most water remain s within the sump. T here is a contin uou s int ak e of ra w water to the c o oling water (CW ) system due to water losses thr oug h evaporat io n, eff luen t, leak s etc. Due to water scarc it y in S outh Af rica, Es k om embark ed on a drive to s a ve and prote ct water re sources . A propo sa l is made thro ug h this research to reco ver most ef f luent into the CW system i n order to s a ve water and to reduce th e dispos al t o the en vironme nt. CW system is chos en as the best optio n f or eff luent re co ver y be caus e ther e is more co ntrol o v er it on chemistr y in terms of operation .

Dif f erent technolog ie s are dis cuss ed as o ption s on h o w to rec over eff luent water; treat it up to accepta ble Esk om Cooling W ater Chemis try Sta ndard s and re-use it into the station’s cooling water (CW ) system. The study revea led s a ving s of about R14.6 M per year if eff luent could be reuse d in the CW instead of f resh ra w water intak e f or mak e -up; wh ich can be in vested into in itiat in g eff luent reco ver y p roject.

(4)

3

Acknow ledgements

T he inf ormation pre sented in th is d iss ertation is b ased o n th e researc h supporte d b y the So uth Af rican Rese arc h Cha irs In itiative (SARChI) of the Department of Sc ien ce a nd T ech no log y and Nat ion al Resear ch F ound ation of South Af rica (Coa l Resear ch Ch a ir Grant No. 868 80).

An y op in io n, f inding or conclus ion or r ecomme ndat io n e xp ressed in this materia l is that of the author(s) and the NRF d oes not acc ep t any lia bilit y in this reg ard.

A messag e of g ratitude e xpress ed to th e f ollo wing pe op le f or work done on this project:

 T o my heavenly father; to God be the glory, I’m h umbled.

 Prof essor F ran s W aanders, m y sup er vis or at North W est Universit y (Potchef stroom); wit hout yo u I wo uld h ave ne ver mad e it, you are such a p atie nt be ing .

 Mr G Gericke “Mentor GG”, your passion in doing things right has made me th e pers o n that I am, w ith out your h elp o n th is r esearch I wou ld h a ve g ive n up .

 My h usba nd Sibus is o and m y daug hter s T hozama an d Hlu band isa, yo ur lo ve sust ains me.

 My co lleag ue s in Esk om research at Rosh er ville; chemic al eng ine ering an d che mistry.

 T he sen ior ch emists f or laborat or y and c ooling water s ystem s at Kr ie l po wer stat io n.

 T he po wer station manag er at Kriel, Mr Jabu lan e Ma vimbe la f or his support and f or allo wing the res earch on the stat ion throug h his vision on so lutions to water challe ng es.

(5)

4

Table of Contents

Dec larat ion ... ... ... 1

Abstract ... ... ... 2

Ack no wledg ements ... ... ... 3

List of Fig ures ... ... ... 6

Chapt er 1 ... ... ... 7

1. Prob lem Stateme nt ... ... .... 7

1.1. Introduction ... ... ... 7

1.2. Ke y Researc h Quest ion s ... ... 12

1.3. Prob lem Stateme nt and Objective ... ... 12

1.4. Project Sco pe ... ... .... 12

Chapt er 2 ... ... ... 13

2. Literatur e ... ... ... 13

2.1. W ater scarcity in S o uth Af rica ... ... 13

2.2. Importance of W ater and Kr ie l Po wer stat ion ... 14

2.3. Coo ling wat er stan d ard ... ... 19

2.4. Coo ling W ater contaminat ion ... ... 24

2.5. T reatment option s a nd techn ic al br ief ... ... 25

Chapt er 3 ... ... ... 35

3. E xper imenta l Data A nalysis ... ... 35

3.1. E xper imenta l Metho d ... ... 35

Chapt er 4 ... ... ... 49

4. Resu lts an d Discu ss ions ... ... 49

4.1. Interpretatio n of parameters ... ... 55

4.2. Dis cuss io ns ... ... ... 68

Chapt er 5 ... ... ... 70

5. T echnic al a nd E con o mic E va lu ations ... ... 70

5.1. T echnic al ... ... ... 70

5.2. Econom ic E valuat io n ... ... 76

5.3. Conc lu sion ... ... ... 78

Chapt er 6 ... ... ... 79

6. Conc lu sions an d Re commendat ions ... ... 79

6.1. Conc lu sions ... ... ... 79

6.2. Recommen dat ions ... ... 81

Appe nd ices ... ... ... 82

(6)

5 Bib liog raph y ... ... ... 95

(7)

6

List of Figures

Fig ure 1-1 Globa l W ater a va ilab ilit y tren ds ([1]) ... ... 7 Fig ure 1-2 W ater usag e in So uth Af rica ( [2] ) ... ... 9 Fig ure 1-3 Nett litres of water use d per u nit g enerate d of elec tricit y in

No vemb er 201 2, Kriel po wer sta t ion ([5]) ... ... 10 Fig ure 2-1 Rank in e Cyc le P o wer Plant e xam ple ([11]) ... 16 Fig ure 2-2 Ion E xch a ng e Units u sed in th e remova l of anions a nd cat ion s ([18]) ... ... ... . 26 Fig ure 3-1 S chemat ic f low d iag ram of ion chromatog raph y an alys is ([29]). 38 Fig ure 4-1 Kr ie l P o wer Statio n wa t er con sumptio n a verag e Ja nuar y to

No vemb er 201 4 ([30] ). ... ... ... 49 Fig ure 4-2 Kr ie l P o wer Statio n CW raw water mak e up averag e Janu ar y 2012 to No vemb er 2 014 ([30]). ... ... 51 Fig ure 4-3 CW north sid e chem istr y f rom Januar y 201 4 to Feb ruar y 201 5 ([31] [32]) ... ... ... 53 Fig ure 4-4 Illu stratio n of the CW circuit diag ram ... .... 69 Fig ure 5-1 Illu stratio n of cooling water lime treatment pla nt at Krie l po wer station ... ... ... 71

(8)

7

Chapter 1

1. Problem Statement

1.1. Introduction

W ater is a sc are c o mmodit y g lo ba lly an d So uth Af rica is no e xce ptio n. In f act South Af rica is r eg arded as a water scarce c ountr y a nd h ence th ere is a need to pre s er ve and re -use. T he countr y is f acing challeng es in deterioration of wat er q ualit y des pit e its q uantity lim itatio ns . Access to water is cru cial to e nsure eco nom ic g rowt h and su stainab ilit y . It is en visag e that more press ure in the f uture will b e p lac ed on the country’s limited water resource s .

F i g u r e 1 - 1 G l o b a l W a t e r a v a i l a b i l i t y t re n d s ( [ 1 ] )

An illustrat io n in Fig ure 1.1 s ho ws water a vaila bilit y t rends g lo ba lly spec if ically f or de ve loping cou ntries inc l uding So uth Af rica. I t can be note d that f rom the beg inning of the 20t h c entur y th ere ha s be en a s erio us de clin e in water a va ilab ilit y main ly due to soc io -econ omic g ro wth factors in the se countries. T he Nat io nal W ater Bill states that the ma in obje ct of th e bill is to provide for the management of the nation’s water resources ; so as to enable the ach ie vement of sustainab le use of water f or the bene f it of all water

(9)

8 users ( [1] ). T o that end it is ne cess ar y t o pro vid e f or the pr ote ctio n of the q ualit y of water re sources and f or the integ rated ma nag ement of wate r resource s with de leg ation of po wers to in stitutions at reg io na l or catc hment le vel s o as to ena b le ever yon e to particip ate in th e proces ses.

T he Bill ac cord ing ly seek s to pro vid e f or the prote ctio n, us e, de ve lo pment, conservation, management and control of the nation’s water resources, tak ing into acco unt the nee d to :

(a) meet the bas ic huma n need s of present a nd f uture g eneratio ns;

(b) promote eq uitab le access to water;

(c) redress the resu lts of past racial a nd g ender dis crim inat io n; (d) promote the eff icient, sust ainab le a nd benef icial use of wa ter in the p ub lic int erest ;

(e) f acilitate s oc ia l a nd eco nomic de ve lo pment; (f ) provide f or g rowing demands f or wate r use;

(g ) protec t aq uatic and asso ciated ec os ystems and the ir b io lo g ical diversit y;

(h) reduce a nd pre ve nt pollut ion and d eg radation of water resource s;

(i) meet intern ationa l oblig atio ns (j) promote dam saf ety; an d (k ) manag e f loods a nd droug hts.

It is throug h this Act t hat the ava ilab le wate r reser ves can b e protected f or current and f uture generat ion a nd ens ure that string ent measures ca n be app lied to thos e wh o exploit water reso urces.

(10)

9

F i g u r e 1 - 2 W a t e r u s a g e i n So u t h Af r i c a ( [ 2 ] )

Fig ure 1.2 s ho ws wa ter use b y se ctor in South Af rica, with f o rest pla ntations using an estimated 8% of the 21 billion m3 a va ilab le wa ter ( [2] ). T he amount of water act ually use d b y p lanta tions is co ntro vers ia l, as d iff erent studies report d iff erent resu lts. Scott 1 998 use s f lo w redu ction c ur ves to estimate that the 1.5 million ha (1.18% of land area) reduce total runoff in South Af rica b y a b out 3% (1,41 7 million m3 p er year), whic h eq uates to mean increme nta l water use abo ut 1 00 mm per ye ar. Other researc h, ho we ver, sho ws su b stantia lly d iff erent estimates of water us e b y plantat ion s at about 40 0 millio n m3 p er year ( [3] ).

T he water usag e statistics are on a n increase d ue to po p ulat ion in cr ease and numb er of people who no w ha ve a c cess to cle an water as part of the post -apartheid government’s water policy of providing water for all humans.

T he po wer in dustr y is the sec ond larg est water us er other th an ag ric u lture in th e c ountr y; th eref ore Esk om has e mbark ed on a dr ive to sa ve a nd protect wat er resou rces throug h wat er manag ement in it iative s acros s it s coa l f ired po wer station s.

(11)

10

F i g u r e 1 - 3 N e t t l i t r e s o f w a t e r u s e d p e r u n i t g e n e r a t e d o f e l e c t ri c i t y i n N o v e m b e r 2 0 1 2 , K ri e l p o w e r s t a t i o n ( [ 5 ] )

.

Fig ure 1.3 illu strate s the measureme nts of water us ed to produce one k ilo watt of electric ity; Esk om set monthly targ ets of wate r usag e whe n produc ing e lectr ic it y and enf orce pen alt ies such as p erf ormance bon uses when thes e are not met. T hese measur e ments sup port the dr ive t o sa ve a nd protect water reso urces as part of the visio n of Esk om and t he g o vernment. It can be o bser ved that there were mor e litres of water us ed t o pro duce ele ctric it y, ab o ve th e targ et until on th e 12t h No vember whe n the water line droppe d be lo w the ta rg et.

Krie l Po wer Stati on g enerates ef f luent o f about 3 ML a nd 4 ML per da y; 5 ML being the maximum f rom diff erent eff luent streams e xclud ing se wag e wh ic h orig in ates f rom the pre-treatment p la nt. Curre ntly the wate r is r eco vered into the eff luent sum p and p umped to the hig h le vel ash water sumps wher e a perce ntag e is us e d f or the ashing s ystem and most water just remains with in th e sump. T here is a c onti nuo us intak e of raw water to the coo ling water (CW ) system due to water lo sses th roug h evaporat ion, e ff luent, leak s, blo w d o wns etc. Alth oug h not muc h can be do ne about t he e va porat ion; it is

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 0 10000 20000 30000 40000 50000 60000 20 12 /1 1/ 01 20 12 /1 1/ 02 20 12 /1 1/ 03 20 12 /1 1/ 04 20 12 /1 1/ 05 20 12 /1 1/ 06 20 12 /1 1/ 07 20 12 /1 1/ 08 20 12 /1 1/ 09 20 12 /1 1/ 10 20 12 /1 1/ 11 20 12 /1 1/ 12 20 12 /1 1/ 13 20 12 /1 1/ 14 20 12 /1 1/ 15 20 12 /1 1/ 16 20 12 /1 1/ 17 20 12 /1 1/ 18 20 12 /1 1/ 19 20 12 /1 1/ 20 20 12 /1 1/ 21 20 12 /1 1/ 22 20 12 /1 1/ 23 20 12 /1 1/ 24 20 12 /1 1/ 25 20 12 /1 1/ 26 20 12 /1 1/ 27 20 12 /1 1/ 28 20 12 /1 1/ 29 20 12 /1 1/ 30

Nett l/USO versus Loading

Total Production

MWhrs

Nett Water Use/ Units Sent Out (l/kWhr) Nett Water Use - Year to Date l/kWhr

(12)

11 assumed that somet hing can be d one wit h the re-treating of the eff luent and blo w do wns a nd the pre vent ion of leak s.

A propos al is made throug h this project to reco ver most eff luent into the CW system in order to s ave water, redu ce the dis pos al to the e nviro nment and achieve Eskom’s Zero Liquid Effluent Discharge (ZLED ) policy. The policy ( [4] ) states that Esk om will ende a vo ur t o ap ply ZL ED po lic y to pre vent the pollut ion of water re sources un le ss the Rece iving W ater Qualit y Object ives of DW AF specif ies other wise. W here pollution pre vention measures d o not suff ice, Esk om will implement a h ier arch y of strateg ies name ly:

1. water/ef f luent re -use and min imisation 2. water/ef f luent treatment, and

3. licenc e app licat ion motivat ing a contro lled discharg e .

T he prolo ng ed stora g e of eff luent into th e ash s ump pos es a risk of seepag e into en vironme nt wh en the sump lin ing start ag ing . ZLE D is def ined as no liq u id discharg e into the e n vironment, in principle. S o of ten zer o d isc harg e and zero liq uid disc harg e are used in t he same mean ing . Practica lly, the conce pt of zero d isc harg e means:

1) reco ver y of reusa ble water or oth er materia ls f rom wa ste water; 2) minim isat ion or, no disch arg e of pollut ing substanc es into the en vironment f rom th e water treatment p lant ( [5] ).

T he CW system is c hosen as the be st o p tion to re co ver water bec ause ther e is more ch emistr y c ontrol in terms of op eratio n. Since the p o wer station is a bus ine ss wh ic h it s sur vival hig h ly d epen ds on c osts; the dec is io n on eff luent reco ver y int o the CW system is depe nde n t on the techno -ec onom ic via bilit y of the pro c ess. B y reco vering and re - using eff luen t water; f resh water intak e will be reduce d at Kr ie l P o wer Station a nd th is will resu lt in better complia nce to the ZLE D po lic y .

Eff luent reco ver y an d re -use can be co mpl e x be caus e the water g enera ll y conta ins hig h le vels of total d isso lve d so lids ( T DS) whic h are g enerally ver y corrosive . T here are dif f erent eff luent s ources f rom water t reatment p la nt with in th e po wer stat ion wit h dif f erent chemica l comp osit io ns , namely:

(13)

12  ra w wat er clar if ier blo w do wns

 CPP’s (Condensate Polishing Plant): regeneration effluents, resin ABRO S (Air Bump Rinse Operat ions) a nd rinse water

 Deminera lisation p lant: reg en eratio n e ff luents, resin b ack wash ing and rins ing .

W ater f rom diff erent eff luent source s will ha ve to be c la ssif ied in terms of their chemica l c ompos itio n in ord er to f ind the b est s olut ion f or treatment and re -us e .

1.2. Ke y Researc h Que stions

1.2.1. W hat are the lim itations whe n re co ver ing eff luent wa ter to the CW system?

1.2.2. Ho w mu ch of fresh ra w wat er int ak e will b e sa ved when reco vering eff luent into th e CW system in vo lume an d in Rand s?

1.3. Problem Sta tement and Objec tive

T he objective of the research is to de sig n a system that will reco ver most eff luent wat e r; treat it u p to accept ab le Esk om Co oling W ater Ch emistr y Stand ards ( [6] ) and re -use it into the station’s cooling water (CW ) system.

1.4. Project Scope

T he scope co vers a literatur e stud y on what has be en do ne on ef f luent reco ver y f or a po wer in dustr y . It als o disc usse s eff luent sample resu lts wh ich were tak en f rom diff erent eff luent s ources at Kriel Po we r Statio n. T he chemistr y c onte nt of these s ample resu lt s will the n be compa red to the CW chemistr y req uirem e nts; and be asse sse d on wh ich reco ver y method will be best su itab le f or eff luent reco ver y .

(14)

13

Chapter 2

2. Literature

2.1. Water scarcit y in South Africa

Access to f resh clea n water is cons id ere d as a bas ic rig ht a s stipu late d in the So uth Af rica n Constitut io n. T he a va ilab ilit y of fresh wate r is a ls o k ey t o ind ustrial and econ omic d e ve lopme nt. South Af rica is, ho we ver a water -stressed cou ntr y an d f resh water is co nsidered a scarc e resource wh ich needs to b e well -ma nag ed an d prot ected ag ainst po llutio n, u ncontro lled use and wastag e. T his a lso in cludes th e prot ectio n of wet lan ds a nd g round water sources. T he Nat io nal W ater Act e xist in th e co untr y to ensure t hat the natio n's water r es ources are protect ed, us ed, de ve lo p ed, co nser ved, manag ed and co ntrolled in wa ys wh ic h tak e into acco unt among st other f actors: meeting the bas ic human nee ds of present a nd f utu re g enerations, promoting eq uit ab le access to water, r edress ing the re su lts of past racial and g ender d iscr im inat ion and pr omoting the eff icient, su stain ab le an d benef ic ia l use of wat er in the p ub lic int erest ( [1] ).

South Af rica is f undamentally a s emi -ar id and water scarce countr y with a mean annu a l rainf all of 490mm, wh ich is half the wor ld a ver ag e, with on ly 9% of that rainf all end ing up as ru n-o ff water to r ivers ( [7] ). Rainf all dis pla ys a d istinct d ecreas ing trend f rom east to we st o ver S outh Af rica an d is h ig hly variab le [8] with in and b et we en ye ars with rec urrent droug hts; this results in h ig hly variable river le vels, da m storag e and g round water storag e over time ( [ 7] ). T he water u se f rom the majorit y of the catc hment area of South Af rica e xcee d s the a va ilab ilit y o n an ann ua l bas is ( [9] ).

In 200 4, 98% of So uth Af rica's s urf ace water yie ld, as we ll as 41% of the annu al us ab le pot en tia l of g round wat er were a llocate d f or use ( [10] ). Of this allo cation, 60% went to ag ric ultur al activities, 2 7% to do mestic de man d, 23% to urban n eeds , 4% to rural, 6% to mining and bu lk industr y, 3% to aff orestation a nd p o wer g ener atio n ut ilised on ly 2% ( [ 9 ] ). T he close interco nne ctedn ess bet we en the c lim ate and the h ydrolog ic al c yc le mea ns that wat er reso urce s will be impacte d on b y climate cha n g e and th is will pla ce increa sed pr es sure on water res our ces an d ult imate ly t hreaten ing the sustainab ilit y of f uture a va ilab ilit y ( [9] ). Schu lze et a l. ( [11] ) state that

(15)

14 water res ources are direct ly impacte d on by current c limate varia bilit y an d it is e xp ected that climate chang e cou ld impact on resource s sig nif icant ly in the f uture. T he m ost s ig nif icant imp acts of climate ch ang e on water resource s ar e the potent ia l ch ang es in the int ens it y a nd seas ona lit y of rainf all. W hile some reg ions ma y rece ive more surf ace wat er f low, f uture prob lems are lik ely to inc lu de water sc a rcit y, increas ed dem and f or water, and water q ualit y det eriorat io n.

T he Department of W ater and Enviro nmental Aff airs outline s the pressure s on South Africa’s natural water resources as well as the need t o manage these reso urces wis ely ( [12] ). In the 19 60s an d 197 0s, Esk om realised th e lim itations in South Africa’s water resources and investigated and tested the use of dr y co oling t echno log y f or its ne w co al -f ired po wer s tations. T od a y, the tota l dr y co ole d insta lled cap acit y is 10 47 7meg a wat ts. Dr y -coo ling techno log y d oes not rely on e vap orative coo ling f or the f unction ing of the main coo ling s yste ms. As a res ult dry co oled po wer stations use appro ximate ly 1 5 times les s wat er tha n con ventiona l wet coo led p o wer stations. Eskom’s leading role in this field is attested to by the fact that it operates the larg es t indir ect dr y coo le d po wer stat ion (K enda l - 4 116 Meg a watts) and the larg est dire ct dr y co ole d po wer station ( Mat imba -3 99 0 meg awatts) in the world ( [8] ). T he in ve stment in dr y -c oo lin g results in an estimated comb ine d sa ving o f over 2 00 meg aliters of water p er da y ( Ml/d a y), or in e xces s of 90 million c ub ic metres per ann um.

T he Nat ion al W ater Reso urce Strateg y ( [12] ) release d b y the Dep artment of W ater and Environm ental Af f airs outline s the pressures on South Africa’s natura l water res ou rces as we ll as the need to manag e these reso urces wis ely. E ver y po wer station, or po wer g eneration en tity, ha s the respons ib ilit y to eff ective ly man ag e their water con sumption and sa ve water wh ile not comprom is ing o n g enerating po wer.

2.2. Importance of Water and Kriel Pow er sta tion

A n eed has be en id entif ied at Kriel Po wer Station to reco ver most of th e eff luent g enerated with in the Po wer Stat ion to treat the eff luent and re -use it with in th e main c ooling water s ystem . Esk om, produc ing 95% of South

(16)

15 Africa’s power, is one of South Africa’s biggest water consumers, and theref ore Esk om is r espon sible f or establish ing eff ective wate r manag ement proced ures and re search init iat ives. E ver y po wer stat ion, or po wer g eneratio n e nt it y, h as the re spo nsibilit y to eff ective ly man a g e their water consumpt ion and s a ve water wh ile not c ompromis ing on g en erating po wer. This must be done in order to contribute to protecting South Africa’s natura l water reso urces and co nser ve water i n lin e with the nation al polic y ( [13] ). T he g oal of water ma nag ement within the p o wer g enerat ion sector is to lim it wa ter consumpt ion a nd to elim inate th e co ntaminat io n of natura l water reso urces ( [8] ). T he prob lem Esk om is curre ntly f acing is t hat old er p o wer stat ions that ar e st ill in o per ation a nd will be in operat ion f or at lea st the ne xt t wen ty years; mak e use of larg e q uantities of water f or coo ling and ash rem ova l purpo ses ( [14] ) .

T here are many tech nolog ies an d proces ses in us e wh ich ha ve b een pro ve n successf ully f or the reco ver ing and treat ing of eff luent water and some ar e disc usse d in th is c hapter. Some tech n olog ies remo ve cert ain sp ec ies of contaminants where by a dd itio na l treat ment techn iq ues st ill ha ve to be app lied do wnstre am to ensure the des ire d spec if ications.

Process choice and identification of a process also depends on the user’s req uirements i.e. po table water produ ction f rom the eff luent wou ld req u ire more string ent a nd c omple x s ystems to e nsure the correct s p ecif icat ions are obtained as it will be f or huma n c ons umption. Other f actors ca n inc lu de materia ls of construction where corros iveness or f ouling f actor of water will pla y a major role an d the q ualit y of the feed wat er to the sys tem will ha ve to match the materia l tolera nces. F ou ling of eq uipment not only res ults in inef f icient heat tra nsf er and incre ase d costs, but in micro -biolog ica ll y ind uced c orros ion ( g enerally a naero bic) is en hanc ed. S ilic e ous sus pen ded matter can a lso g ive rise to eros io n or c orrosion of pump int erna ls, vo lutes, heat e xcha ng er tub ing and pipe - work [6] . Asset s election a nd man ag ement thus p la y an imp orta nt role in d ef ining the best so lution i n ef flue nt reco ver y in terms of eq uipm ent req uireme nts f or a sust ainab le op e ration al s ystem and the e n vironment .

Over the last t wo decade s, Esk om has introduce d a number of inn o vat ive techn olo g ies to save water . T hese include dr y coo ling - both direct and ind irect, desa linat ion of pollu ted min e water f or use at p o wer

(17)

16 station s, use of limited pump ed stor ag e and h ydropo we r potential and techn ica l impro veme nts in treatment reg imes to maximise th e benef icial u se of water. T he compan y ha s tak en a pro -active stanc e in its eff orts to conser ve water, in some cases e ve n pre -empting ne w leg is lation in implement ing eff icie nt and ef f ective water use pract ices. It has con stant ly striven to impro ve on its water use ta rg ets, contin ua lly re search ing a nd implement ing ne w techno log ies to redu ce or lim it water us e, and work ing clos ely wit h the Department of W ater Aff airs and Fore stry (DW AF) to contrib ute to wards long -term water res ource p lan ning and manag ement. This commitment is documented in Eskom’ s W ater Management Policy ( [8] [4] ).

Krie l po wer station is a 360 0 MW g enerating coa l f ired f uel p o wer p lant and it con sists of six u nits e ach produ cing 600 MW . About 3 ML p er da y of demin era lized water is su pp lied to s ix boilers to prod uce steam that will drive th e turb ine t hat e ve ntua lly prod uces e lectr ic it y. Kriel is a t yp ic a l examp le of a Rank in e Cyc le p o wer plant where b y steam f rom the bo iler sent to the t urbine, pass e s throug h th e c ond e nser a n d then it is r ec yc led back to the bo iler, (see F ig ure 2.1).

(18)

17 One of the main au xiliarie s at Krie l po wer statio n is the water treatment pla nt (W T P). T he m ain f unct ion of the W TP is to clar if y an d treat ra w water up to req uired ch emistr y spec if icatio ns in order to pr oduce p otab le, demin era lis ed a nd c ooling water ( CW ) for the po wer station . Potab le water is us ed f or human consumpt ion, k itch e n and bathro om f ac ilit ies; where as demin era lized water is use d to g ener ate steam in t he b oile r wh ich is sent throug h to dr ive the turbine f or electric ity produ ctio n. T he CW is used to coo l steam b lee ds f rom the turbin e whic h is the f eed water rec ycle as well as pro vid ing co o ling to other au xiliarie s in the main plants.

W hile the proces s o f treating ra w water is tak ing p lac e at the W T P; there are many “by-products” which are formed and they are not wanted as part of the f inal prod uct and are colle ctive ref erred to as eff luen ts. Eff luent is contaminated and u n want ed water g en erated f rom water t reatment p lant processes that does not meet required “clean water” specifications and also poses an e n vir onm ental impact. Eff lue nt water g enerally conta ins h ig h le vels of total d isso lve d so lids (T DS) wh ich are ver y corros ive. Krie l Po wer Statio n g enerat es ef f luent of appro ximat ely 3 ML to 4 ML p er da y; 5 ML be ing the ma xim um f rom dif f erent eff luent streams e xc lud ing se wag e wh ich orig in ates f rom the pre -treatment pla nt.

T here dif f erent eff l uent sourc es g enerat ed f ro m W T P are reco vered int o the eff luent sump at th e W T P and then pum ped to th e h ig h le ve l ef f luent water sumps wher eb y abo ut 20% is us ed f or the as hing s ystem t o dr ive coars e ash f rom the boiler to the ash d ams.

Most of the ef f luent remain s in the se d ams as the ir ho ld in g capacit y, t o reduce the disposal to the environment and to achieve Eskom’s Zero Liquid Eff luent Discharg e (ZLE D) po lic y. T he Eskom’s W ater Management Policy ( [4] , states that Esk om will e n dea vour to apply ZLE D po lic y to prevent the pollut ion of water re sources un le ss the Rece iving W ater Qualit y Object ives of DW AF specif ies o ther wise. T he pro lon g ed storag e of eff luent into the ash sumps p oses a r isk of seepag e into en vironment when the s ump lin ing start ag ing ; hence proact ive civil pr e ventat ive mainte nanc e ha s b een a pp lied to ins pect th ese dams over a certa in f req uenc y of ye ars to ad dress th is r isk . T here is a wat er h ie rarch y with in Kr ie l p o wer station in terms of costs a nd chemistr y s pec if i cations req uireme nts an d it is a s f ollo ws:

(19)

18 a) Potab le W ater: it is water prod uce d f or human co nsumpt ion and it is guided by Eskom’s Water Quality Stand ard for Potable water ( [15]) to ensure that th e a e sthetic, chem ica l, microb io l og ic al an d ph ys ica l q ualit y is at an ac c eptab le le vel on p otable water chem istr y f or the hea lth of the peop le consum ing the water .

b) Deminera lised W ater: the wat er is prod uc ed f or steam g eneration that will produce electricity and it is guided by Eskom’s Che mistry Stand ard f or Coal Fired Un its with Onc e T hroug h Boilers o pe ratin g at 17 MPa ( [16] ) to ensur e that th e materia l of constru ction f or eq uipment h and ling this water lasts u p to its e nd of lif e as we ll as resin th at produ ce th e water.

c) Coo ling W ater: it is water us ed ma in ly f or the remo va l of he at off the f eed water thro ug h the cond enser as well as sup plying cooling f or au xiliar ies; the wat er spec if icatio ns ar e g uided b y th e Chemistr y Stand ard f or Coo ling W ater f rom Esk om ( [6] ) to ens ure th at t he water is up to req uire d sp ecif icat ions f or the protection of conden ser tube s and au xiliar ies.

Coo ling water allo ws f or a better chemistry c ontro l in terms o f operation as compared to the o ther two, demin e ra lise d and pota ble. It is theref ore chose n as t he b est optio n to re co ver t h e eff luent to. T here is a cont in uous intak e of f resh raw water da ily into the coo ling towers due t o water losse s throug h e va porat ion, eff luent, le ak s, blo w do wns etc. T he main obje ct ive of this proje ct is to discuss b est opt ions of recover ing eff lue nt into th e CW system in order to s ave water, re duc e t he d is posa l t o the e nviro nment (to the holding sump capacity) and achieve Eskom’s Zero Liquid Effluent Dis charg e (ZL ED) p olic y. Esk om ado pte d the ZL ED p olic y d uring 198 7, in terms of wh ich a ll r eason ab le measur es are tak en to preve nt pollut ion of water res ources thr oug h the esta b lis h ment of a hierarc h y of water uses based on q ualit y. Cascad ing the water from hig her q ualit y to lo wer q ual it y uses, e nab les e xten sive r e -use. W here poss ib le, water is lo st only throug h evapor atio n, retaining the accompan yin g dissolved an d sus pend ed so lids. T he net resu lt is t hat there is no de liber ate d isch arg e of polluta nts to a water r esourc e un der norma l o perating con dit io ns an d a verag e climatic c ond itions ( [8] ).

(20)

19 T he Department of W ater Aff airs is currently charg i ng Krie l po wer statio n almost R8 00 0 per ML of raw water. Res e arch has s ho wn that South Af rica is currently f acing cha lleng es in the deter ioratio n of water q ua lit y, des pite its q uantit y lim itations and f urthermore to ens ure s usta inab ilit y on th e econom ic g ro wt h su ccess ( [17] ). T here is a g uarant ee of more press ures in the f uture on lim ited water resourc es he nce the ne ed to ha ve projects suc h as this o ne to sa ve water an d sa ving the en viro nment.

2.3. Cooling w ater standard

T he Esk om Coo ling W ater standar d est ablis hes t arg ets, up per a nd lo wer boun d va lue s f or chemic al parameters in o pen e va porat ive rec ircu lated coo ling systems. S pec if ic modes of operation a pp ly at individua l p o wer station s ac cord ing to the p la nt which is in stalled, in part icu lar, the q ua lit y of the mak e-up water s upp ly. T he o bjective s of this stan dard ar e to f orm ulate ag reed chemica l c ond itio ns whic h will ens ure the most cost eff ective operat ion of a coo lin g water s ystem. T he f ocus is on importan t aspects suc h as o vera ll water m anag ement, cost ef f ective treatment a nd contro l, the ava ilab ilit y and ef f icie nc y of the proc e ss an d plant in co ntact with the coo ling water ( [6] ).

T he limits an d ra ng es ref lect pr actic a l a n d ac hie vab le ch emis try th at c an be mainta ine d thr oug h the app licat ion of sou nd water treat ment an d water manag ement tech niq ues, wh ilst tak ing cog nisa nce of specif ic lim itations. Recommen dat ions f rom such org an isa tions as E PRI (E lectric po wer research institute) and VGB (V erein ig ung Der Grossk raf twerk sbetreiber) with resp ect to mo dern po wer p la nt p ractice s h a ve bee n cons id ered f or implementat ion of su ch techn iq ues.

2.3.1 Turbidit y

T urbid it y in coo ling water resu lts f rom the prese nce of silt, cla y, pu lveris ed f uel ash, co al du st prec ip itated sa lts and alg ae. T he s o urce of thes e suspe nde d particles is the mak e -up wat er, inter na l microb io log ic al g ro wth and/or dust part ic le s scrubbe d f rom the air be ing supp lied to the cooling to wer. T urbidit y is a g eneral term use d to descr ib e the opt ical opa cit y of water cont aining an y f orm of insolub le su spend ed so lids matt er.

(21)

20 Susp end ed ma tter is resp ons ib le f or f ouling of pipe - work , heat e xcha ng er surf aces, cooling to wer pack ing s and d rif t elimin ators, part icu lar ly where the ve loc ities ar e lo w or h a ve b een r ed uced inte ntiona lly. F ouling of heat excha ng er surf aces not only re su lts in ineff i cient h eat trans f er and hence incre ased c ost bu t, in add itio n, microbiolog ica lly in du ced corros io n (g enerally ana erob ic) is en han ced. S uspen ded mater ia ls can a lso co -precipit ate with ca lc ium carbonat e and c a lc ium su lph ate.

Alg ae, f ung i and bac teria l g ro wt hs f louris h in the c oo ling tower en vir onmen t and co nd itio ns suc h as the prese nce or absenc e of sunlig ht and adeq uat e f ood supply susta in such g ro wth.

The limit for turbidity has be en spe cified as <100 For mazin turbidity units (FT Us ). Ho we ver, th is must n ot b e tak en as a mandat e to operate at the maximum le vels. Generally, the turbidit y sho uld be contr olled as lo w a s cost -eff ectively pos sib le. During f lood ing condit ions th e turbidit y of raw water sup plie s can rise dramat ica lly o ver a perio d of a f ew d a ys. Dur ing these per iod s, statio ns may well de pen d on their reser voir s to supp ly water until the t urbidit y s ubs ides. E xten ded operat ion of conden sers ab o ve 1 00 FT U thresh olds h as pro ve n to b e d etrimenta l to t he c on denser tubes. Se vere thinn ing of cond enser tu b es has b een e xper ie n ced where th e thresho ld was reg ula rly e xc eede d.

2.3.2 Co ndu cti vit y at 25°C

T he condu ctivit y at 2 5°C is a f unction of the tota l d isso lved io nic s olid s. For the raw water currently being supplied to Eskom’s coal fired plant, the limit for the con centrat ed c ooling water system has be en set at < 400 0 µS/cm at 2 5°C . T h is is an ar bitrar y limit and has bee n s et to min imise g alvan ic corros io n in hig hly sa line/o xyg enated water, to pre ve nt damag e to adjacent veg etatio n by sa lts re leas ed b y the coo ling to wer dr if t, and to a llo w suff icient hig h c yc le s of conce ntratio n t o be obta in ed in or der to ma inta in zer o liq uid eff luent disc harg e. Con duct ivit y le ve ls of Esk om cooling water samples rang e bet ween 96 0 to 305 0 µS/ cm.

It must be clearly u n derstood th at the co nduct ivity limit must not be vie we d in iso lat ion as some ions are s ig nif icant ly more c orros ive th an others, e.g . chlorid e ion s are more corro sive th an sulphate with r espe ct to meta llic compone nts.

(22)

21 2.3.3 Alkalinit y, p H, calcium hard nes s, con d uct i vit y an d ca lcium

carbo nate (pre cipit ation pote ntial and sulphat e con centr a tion) All f ive paramet ers are inter -re lat ed an d , as such, the lim its spec if ied must be vie wed in c onjun ction wit h o ne a noth er. T he objective in controlling this g roup of parameters is to:

 minim ise c orros ion b y ma inta in ing adeq u ate protect ive a lk alin it y,  pre vent/minim ise th e le ach ing of calc iu m f rom asbestos ce ment drif t

elimin ators or co olin g tower pa ck ing s,

 avo id prec ip itat ion o f calcium carbo nate scale on h eat e xch a ng er surf aces a nd on th e coo ling tower pack in g s,

 allo w eff ective remo va l of alk alin it y b y pr ecipitat ion proces se s, and  minim ise the us e of sulphuric acid as a neutra lis ing ag ent f or

alk alin it y.

A prob lem wh ic h has arisen more f req uently is the lo w c a lcium conce ntratio n of the cooling water in t h e so -ca lled b ottom -end pro blems, wh ich is pr imarily as a res ult of the so dium alk a linit y in th e mak e -up water. Water contains sodium alkalinity when the “M” alkalinity > total hardness. M-a lk alinit y is a me asure of the amou nt of acid it tak es to drop th e p H to appro ximate ly 4.3. Alk alin it y is def ined as the acid a bsorb ing propert y of water. T here is a ls o P -alk alin it y which is a measure of the amount of acid req uired to drop th e pH to a ppro ximat ely 8.3. T he major acid ab sorb ing constit uents that ar e typ ica lly dea lt wit h are hydro xide (O H-), b icarb onate (HCO3 -) an d carb on ate (CO3) ions ( [1 8] ). T he sodium a lk alinit y co n verts to

soda ash d uring the lime treatment process and prec ip ita te the ca lc ium assoc iate d with s ulp hates a s ca lc ium car bonate. T he paramet ers f or cooling water at se lecte d Es k om power stat io ns are prese nted in T ab le 1.

Table 1: S ummar y o f cooling w ater qua lit y at Es kom pow er stations

Parameters Rang e

Alk alin it y T o tal (a s CaCO3) Bet we en 9 0 and 2 00 mg /l

pH @ 25 0C 8.1 to 8.6

Ca lcium hardn ess (a s CaCO3)

Bet we en 2 00 an d 75 0 mg /l Cond uctivit y @ 25 0C

(µS/cm)

Bet we en 9 60 an d 30 50 Ca lcium (as Ca CO3) Bet we en 2 00 an d 50 mg /kg

(23)

22 2.3.4 Calcium p hos phate

T he ortho -ph osph ate that comes f rom se wag e is ver y r eact ive with ca lc ium and th e limit is set at 0.5 mg /l as PO4 so as to a vo id ca lcium phos phate,

particu larly at e le vat ed coo ling water tem peratures e xper ien c ed at the out let of the condensers and co olers. It is recommend e d that treated se wag e water be introduc ed via cold lime sof tening clar if iers. T his will pre vent the accumu lat ion of pho sphate in the c oo ling water s ystem.

2.3.5 Nitrate a nd Ni trite

W hilst no limits are spec if ied as yet f or nitrate an d nitr ite it is nece ss ar y f or these parameters to be measur ed as discharg e of b lo w - do wn to th e en vironment ma y b e req uire d. Nitrate and nitr ite are ind icators of both ind ustrial an d d ome stic po llutio n of wat er sup plie s ma in ly f rom se wag e a nd se wag e eff luent. Nit rate le ve ls in t he E sk om cooling water rang e bet ween 0.1 and 1 1 mg /l, wh ile that of nitrite rang es bet ween 0.0 2 an d 0.42 mg /l. 2.3.6 Alga e

Alg ae, lik e f ung i, are relatively larg e or g anisms a nd ar e no rmally co lo ured g reen or blue g reen by the pres ence of chloro ph yll. S u n lig h t is necess ar y f or g rowth and the most eff ective co ntrol method is th e exclusion of sun lig ht. Dep os its of dead a lg ae pro vide f ood f or bacteria a nd f ung i, since the y act a s f ilters a n d catch other org an isms. Alg ae are not k no wn to ca use corrosion d irec tly, e xc ept f or occ as ion al occurr ence un der a lg ae d epo sits. Alg ae g ro wth is main ly resp ons ib le for the b lock ag e of coo ling to wer screens a nd mass ive build -u p in th e clarif ier laun ders.

2.3.7 Bact eria

E xcess ive biof ilm ca n be seen wit h the nak ed e yes when la rg e colon ies of bacteria are prese nt. Species are id entif ied with the a id of a microscop e at a mag nif ication of 800 times or more. E ach type of bacteria has a spec if ic actio n and of ten is ref erred to by its eff ect on materia ls. Some class es of bacteria c au se s lim e, corrosion an d g as product ion. Bacte ria common in coo ling water s yst ems, are the slim e -f ormers, they pr oduce a s limy, g elatin ous dep osit t hat can c log he at excha ng er tubes, in crease f riction loss es an d sh ie ld h eat e xch ang er surf aces f rom inhib itors and the c oo ling medium. In re verse osmosis, the ba ck diff usion of the con c entrated s alt is

(24)

23 retarded b y s lim y layers o n the memb rane surf aces, thus aff ecting the osmotic pre ssure a n d the permeate q ua lity.

Sulph ide - produ cing bacteria produ ce c h emica ls t h at res ults dir ectly in th e corrosion of metals. T hese bacter ia con vert water s olu ble su lph ur compoun ds t o h ydro g en su lph id e. Clo strid ium is a lso a h ydr og en su lp hide produc er b ut not a sulphate redu cer. T his con vers ion usu a lly starts with sulphates that e it her occur n atura lly or c ome f rom the addit ion of sulphur ic acid f or alk alin it y co ntrol.

Hydrog en su lph id e is acid ic a nd ag g ressively attack s met als, principa lly mild stee l, but a ls o s tain les s stee l a nd co pper a llo ys. Ho we ve r, most metals are subject ed to c orrosion un der lo w pH, reduc ing con dit ions and th e presenc e of sulph id e s.

In a rec ircu lat ing co oling - water s ystem, corrosion d ue to th ese org an isms can oc cur at a ra pid rate an d perf oration of a 16 mm mild stee l co upo n with in 60 da ys ha s bee n recor ded. Usi ng chlorine to control thes e org anisms is not ef f ective b ecau se:

 T he org anisms are usua lly co vered b y slime masses that p revent the chlorine f rom reaching the sulp hide pr oducers; a nd

 T he h ydrog en s ulp hite s urroun ding these org an isms rea c ts with chlorin e to f orm chloride sa lts that n eg ate the eff ect of chlorine.  T he eff icienc y of chlorin e at the e le vated pH le ve ls f ound in c ooling

water is limite d.

Spec ia l t o xicants ar e ne cess ar y to co ntrol th ese ba cteria a nd f avoura ble temperature an d hig h ra w water mak e -u p f urther complicate control. T he app lication of bioc id es pro vide s a limit e d protect ion d ue to f actors alread y mention ed. B io -d is p ersants ca pab le of controlling the attac hment of slime produc ing bacter ia h ave pro vide d the most cost eff ective co ntrol f or the se bacteria. B io -d isp er sants ca n pro vid e s uff icient prot ection in areas wher e water f lo w c ond it ion s are suc h that the dis persant c an f unct ion, ar eas s uch as stag nant lo w f lo w and under de pos its may still be su bject e d to microbial corrosion.

(25)

24 Table 2: Cooling w ater standar ds for bi ological q ualit y

C o m p o n e n t U n i t S t a n d a r d T o t a l a e r o b i c b a c t e r i a C F U / m l 1 04 C F U / m l ( t a r g e t ) T o t a l a n a e r o b i c b a c t e r i a C F U / m l 1 03 C F U / m l ( t a r g e t )

2.4. Cooling Water c ontamination

T he q ualit y of the ava ila ble mak e-up wa ter is e valuate d as a crit ica l f actor during the desig n st ag e of a power stat ion. Nee ds suc h as t he use of third party eff luents are of ten not f oreseen dur ing the desig n stag e. South Af rica n surf ace water sour ces (rivers and da ms) are cha lleng ed with dec lining q ualit y an d re cent r eports in dic ate th at at least one th ird of So uth Af rican rivers are eutro ph ic (i.e. contain e xc essive le ve ls of phosph ates an d nitrates), wh ile a not her on e th ird of the rivers are con sid ered b order line eutroph ic. Most of th e river s that f all with in th e ab o ve c ateg ories are with in Esk om po wer stat ion s water sup ply r eg io ns ( [18] ).

Ra w water f rom the Vaa l catc hment are a has h ig h sus pen d ed so lid le ve ls (up to 2 00 p pm), as we ll as h ig h le ve ls of iron, mang anese, alum in ium a nd copper a nd the r is ing sulph ate le ve ls of these water sour ces are a lso a g rowing concern. It is be lie ve d that the q ualit y of process water used b y Esk om has t he hig h est nutr ient le ve ls in the wor ld, as b oth phosp hate an d nitrate le vels are e xces s ive ly h ig h ( [19] ). Hig h nitrog en le ve ls in water tend to attack metals resu lting in a h ig hly corr osive compo und.

T he recover y of the station dra ins to th e cooling water s yst em is of ten a source of contamin a tion of the coo ling water. Co ntaminants that typ ica lly f ind their wa y into th e coo ling water s yst ems alo ng this route are:

 Org anic solvents

 Dis perse d or d isso lved lu bricants, or as f ree oil  Ash part ic les

(26)

25  Soap s and d eter g ent s

 Chem ica l inh ib itors from auxiliar y co oling systems.

T hese produ cts ca n be detr imenta l to the treatment p rocesse s and conde nser p erf ormance. T he y are also e xce llent nutrients f or microorg an isms thu s of ten resulting in microb ia l co ntaminat ion. Spe nt reg enerants will ad versely in creas e the blo w do wn req u irem ents and of ten cause d amag e to the concrete dra in s yste ms.

2.5. Treatme nt options and technical brief

T here are man y t ech nolog ies and proces ses whic h h a ve b een pro ven as th e best opt io ns f or recovering and treat ing eff luent wat er, and some will be disc usse d in the f ollo wing sections. Som e techn olog ies remo ve certa in p arts of contaminants wh ereb y ad dit io na l processe s still h a ve to be app lied do wn stream to ens ure a f urther remova l depe nd ing on the req uired specifications. Chosen processes also depends on the user’s requirements i.e. p otab le g en era tion f rom eff luent wou ld req uire more string ent and comple x s ystems to ensure th at the best specif icat io ns are o btain ed as th e water prod uce d will be f or human con su mption.

2.5.1 Ion Ex cha nge Tech nolog y

Ion e xch ang e is a ch emica l rea ctio n proc ess wh ereb y an ion f rom a solutio n is e xch ang ed f or a sim ilarly ch arg ed ion attac hed to a n immobile so lid partic le. T hes e so lid ion e xc hang e p artic les ar e nat ura lly occ urring , inorg an ic zeo lites o r synth etic ally pro d uced org an ic resins . Ion exch ang e materia ls are in so lu ble su bstanc es cont ain ing loo se ly he ld ions wh ich are able to be e xc hang ed with oth er ion s in so lut ion s wh ich c ome in c ontact with th em. T hese exc hang es tak e pl ac e with out an y ph ys ical a lterat ion to the io n e xch ang e materia l ( [20] ).

Ion e xc hang e is u se d in water treatment proces ses to rep la ce un des irab le ion s present in wat er with more de sira ble ion s. It is achie ve d b y pas sing

(27)

26 water throug h a bed of insolub le s ynthet ic po lymer ic b ead s o f ion e xcha ng e resin s. T here are e s sentially t wo bas ic typ es of ion e xch ang e res ins; cation and a nion e xch ang e resins. T here are two categ or ies of cation e xch ang e resin n amely; strong and weak acid e x ch ang e resins. T he strong acid res in can neutra lise str ong bases and c on vert neutra l sa lts into the ir correspo nd ing ac ids . T he weak cat ion acid res in of cation resin is on ly eff ective in alk a line con dit ion s. W eak acid cat io n res in is on ly ab le to neutra lis e stro ng ba ses. R- be lo w ref ers to the f ixed po lyme r phas e of the catio n e xch ang e res in.

R - H+ + Na+ Cl - ↔ R - Na+ + H+ Cl

-T he anion e xch ang e resins a lso ha ve t wo categ ories; strong and weak bas e typ es. L ik e the stro ng acid cat ion res in s, the stro ng ba se a nio n res in s ca n operate o ver a wide pH rang e. T hese res ins c an n eutra lis e st rong acids and con vert n eutra l sa lts into the ir corre spond ing ba ses. T he we ak base excha ng ers are on ly eff ective in ac id ic solutio ns a nd e xch a ng e on ly ion s such as c hlorid e, ni t rate and su lp hate, b ut not silica or b ica r bonate ( [21] ) R+ OH - + Na+ Cl - ↔ R+ Cl - + Na+ OH –

F i g u r e 2 - 2 I o n E x c h a n g e U n i t s u s e d i n t h e r e m o v a l o f a n i o n s a n d c a t i o n s ( [ 1 8 ] )

All nat ural water c o ntain s, in various co ncentrat ions; d iss olv ed sa lts wh ic h diss oc iate in water to f orm charg ed io ns . T hese ions nee d t o be r emo ved f rom the water be ca use of their ad vers e eff ects in the b oiler and turb in e

(28)

27 pla nt, name ly sc alin g and corros ion. T he proc ess work s b y bring ing the solutio n co ntain ing the minera l ions into contact wit h sp ec ia l ion -e xcha ng e materia l (in the f orm of resin bea ds). T hese beads h a ve h ydrog en or hydro xide io ns on th eir surf ace. T hese s urf ace ions are e xch ang ed f or other ion s in the so lut io n; posit ive ly ch arg ed io ns are ca lled cations a nd neg ative ly ch ar g ed ions are ca lled an ion s ( [22] ).

Ion e xch ang e curre ntly rema ins t he p ref erred and eco no mic cho ic e of treating water c ont ain ing lo w tota l d issolved s alts f or the purp ose of produc ing de io nis ed mak eup water. T he t echno log y is wid ely used in Esk o m po wer p lants an d is hig hly re liab le in ac hie ving the e xpecte d spec if ications f or the product io n of the d eminera lised water. A f ully reg en erated re sin i.e. catio n is loa ded with H+ io ns a nd water p assing o ver th e res in bea ds enters the p orous structure an d the ions in th e water disp lace the H+ ions f rom the excha ng ed sig hts wh ere one H+ is e xch an g ed per Na+ or K+ ( [23] ).

2.5.2 Clarification T echn olog y

Susp end ed matter in the ra w water sup p lies is remo ved b y va rious metho ds to pro vide water s uitab le f or domest ic purp oses an d m ost industr ia l req uirements. Clar if icatio n is u sed e xt en sive ly thro ug hout th e Esk om water treatment plants a nd has be en pro ven reliab le a nd af f ordable. T he suspe nde d matter in ra w water ma y c o nsist of larg e solids , settlea ble b y g ravit y a lon e wit hou t an y e xtern al a ids, and n onsett lea ble materia l, of ten collo id al in natur e. T he matter remova l is a clarif icat ion pr ocess which is g enerally accomp lis hed b y a comb in atio n of the f ollo wing pr ocesse s with in clar if ication: c oag ulation, f loccu lat ion, a nd s ed imentat ion. T he c ombination of these three proce sses is ref erred to as con ve ntio na l clarif icatio n.

T he perf ormance of the clar if icatio n de vice is en hanc ed b y red uc ing the number of smaller p artic les thro ug h f loccul atio n. T he result is a h ig her un it capac it y and impr o ved o verf lo w q ualit y becau se of the f ormation of f aster settling , larg er ag g lomerate s f rom the f iner particles. F loc she ar an d break up in the a erat ion s yst em is not ne cessar ily detrime ntal, because th is incre ases th e surf ace area an d decre ase s the dif f usion res ist ance ( [24] ). Coa gulation is the process of destab ilizat io n b y charg e ne utralizat ion a nd once n eutra lized; th e partic le s no lo ng er repe l on e an oth er and c an b e

(29)

28 broug ht tog ether. T he removal of suspen ded part icles wh ich will not settle by g ra vit y alone re q uires the ad dit ion of chemical comp ou nds common ly ref erred to as co ag ulants. Particu late ma teria ls c ompris ing d ispers ions ma y range in size from 0.1 to 100 μm. Materia ls within this particle size range are termed c ollo ids ; the sma ll s ize of collo ids cou pled wit h their surf ace charg e is pr imarily r espon sible f or estab lish ing co nd itio ns f avourab le f or the creatio n of disper sio ns. Stab ilizing f actors associat ed with c ollo i d al dis pers ions are e lectrostat ic c harg e and h ydration; these surf ace phen omena are of g reater relative imp ortance d ue to th e larg e surf ace area to total vo lume rat io of a dispers ion of small partic le s ( [25] ). Coag ulation is necess ar y f or the removal of the collo id a l -sized s uspe nde d matter.

Floccul ation is th e process of bring ing tog ether the destab ilized, or "coag ulate d," particles to f orm a larg er ag g lomeration n ame ly "f loc." W hen two c ollo id al part ic le s join tog ether to f o rm a f loc, the y b eco me chem ica lly bridg ed int o a thr ee - dimen siona l n et work and t he c hemic al br idg ing pro cess is c a lled f locc ulation . Co llo ids are alwa ys neg ative ly c harg ed in n atura l a nd waste waters. Und er a micros cop e the c o lloida l matter ca n be made to mo ve around u nder the a ction of an electr ica l f ield. T he coag ula nt species are theref ore adsor bed onto the surf ace of the turbidit y par ticles and the y become co ated with the coag ulant.

T he mechan ica l f loc culatio n of ra w was te water to impro ve the remo va l of total sus pen ded s olids (T SS) and b ioc h emica l o xyg en d emand f or 5 days (BOD5) has bee n p ractice d f or a lo ng time. Combined f loccu lat ion and

sed imentation ( [ 26] ) was discuss ed wit h the perf ormance of centrally driven mechan ica l f loc cu lat ors in c ircu lar clarif iers. It was f ound th at these un its; with out chem ica l ad dit ion, perf ormed better than con vent io na l clar if iers. T he enha nced perf ormance is re cog nized tod ay t o be the re su lt of optimizing the f locculatio n pote ntia l of the inc oming part icu late s.

Sediment ation ref ers to the p h ys ica l re moval f rom suspe ns ion or sett ling , that occ urs o nce t he p artic les h a ve been co ag ulate d a nd f locc ulated. Sed imentat ion with o ut prior coag ulatio n results in the re moval of only relat ive ly coars e sus p end ed so lids, le a ving behin d some parts of the matter not be ing remo ved. Sed imentat ion is t he f inal step in th e clar if icat ion process. F locc ulated wat er f rom the slo w mixing phas e f lows to the settling zo ne wher e ag g regated f loc p artic les settle out. As th en ag g reg ated or

(30)

29 cong lomerate d f loc settles, c larif ie d (clear) water ris es an d is sep arated f rom the sedime nt. Settle d f loc particle s are remo ved in a thick ened st ate (as s ludg e) f rom the bottom of the se dimentat io n vesse l. Clarif ied water typ ica lly o verf l o ws f rom the surf ace and is treated f urther throug h f iltratio n eq uipment.

Crit ica l to succes s are g ood mixing and f loccu lat ion zo nes bef ore the sed imentation a nd f ilter un its, to g enera te suff icient part ic le size of solids f or remova l. T his a lso will decr e ase th e chem ica l dos ing r eq uirements ( [26] ).

2.5.3 Filtration Te c hnolog y

Filtration is the proc ess of pass ing settled water throug h a porous me dium to remove an y rema in ing matter held in suspe nsion. In wat er purif icat ion, the matter to be re moved is co lloida l in size and inc lu des suspen ded s ilt, cla y, org anic c ollo id s, and microorg an is ms, inc lud ing a lg ae, bacter ia, an d virus es.

Filtration cou ld b e c ons idere d a ver y f in e f orm of separatio n , since the f ilter media is inten ded t o ph ys ica lly remo ve impurit ies. Ho we ve r, f iltration is inten ded t o remo ve ver y small impur itie s that remain af ter the sep aration process. T here are var io us f iltrat ion t echno log ies su ch a s sand f ilt ers, cartridg e f iltration, onlin e f iltratio n and membran e f ilt ration. T hese techno log ies c an t arg et ver y f ine p artic les such as sand an d s ilt, microsco pic part icle s such a s bacter ia and a lg ae, molecu lar const ituents such as virus es a n d ac ids, and e ve n ionic imp urit ies suc h as s alts and metals. T he costs as sociated with f iltration g reatly incre ase as the targ eted impur itie s decre ase in size.

Filters are d ivid ed in to two g enera l class es, depe nd ing on th eir f ilter med ia: g ranular and pref o rmed. Granu lar f ilt ers are de pth -t ype f ilters using ind ivid ua l g rain s in layers , su ch as s and charco a l or comb in ation s of these, as a f ilter me dium. Pref ormed f ilters ca n be s creen, s urf ace, or depth t ype, rang ing in th ick ness f rom a sing le th in membrane element t o a t hick f ilter mat ( [27] ).

(31)

30 Filtration in vo lves t he mech an isms of adsorpt ion (ph ys ic al and c hemica l), strain ing , se dime nta tion, interc ept ion, diff usion an d inert ia l compact ion. It does n ot remove diss olved so lids, b ut may be used t og ether with a sof tening process whic h does re duce th e conce ntr atio n of disso lved so lids. Filtration is used in addit io n to reg ular coag ulat ion and se dimentat io n f or removal of solids f rom surf ace water or wa ste water. It prepares the water f or use as potable, b oiler, or coo ling wat er mak e -up at the po wer p lants.

2.5. 4 Membran e Tec hnolog y

Membra ne proc esse s ha ve b een used incre as ing ly f or the product ion of pure wat er f rom fresh water a nd sea wa ter. T he processes are als o be ing app lied in pro cess and waste water s ys tems. Membran e microf iltratio n is replacing con ve ntio nal clarif icat ion an d f iltratio n pro cess es. Ho we ver, waters with h ig h le vels of suspend ed s olids st ill r eq uire to be treate d b y con ve ntio na l c lar if ic ation tech niq ue s. Over the years membr ane te chn olog y has bee n e xpen sive and re lat ive ly e xpe rimenta l; rec ently th e tech no log y is ad van cing q uick ly a nd b ecom ing less e xp ens ive, impr o ving perf ormance, and e xt end ing lif e expecta nc y. A me mbrane is a p ermeab le or s emi -permeab le, so lid ph ase (po lymer, inorg anic or metal), whic h controls the relat ive rates of transport of certa in spec ies pres ent in the so urce water an d restricts the ir mot io n. Genera lly, memb ranes work by se le ctive ly a llo wing some con stitu ents to pass thr oug h th e membrane wh ile blo ck ing the passag e of others ( [28] ).

Membra ne t ech no lo g ies is a g en era l te rm f or removing con taminants f rom f eed water b y mea ns of a thin, por ou s barrier ca lled a membrane. It is based o n a pro cess k nown a s cro ss-f lo w f iltration th at a llo ws f or continuo us treatment of inp ut liq uid streams. I n th is type of process, t he pre ssur ized ra w water in let f lo ws para llel to a poro us semipermeab le membrane f ilter. T he f act that this system is press uris e d, water is f orced throug h the f ilter membrane. T he c lean p ermeate p as ses throug h th e semip ermeab le membrane, a nd the un wante d p artic le s remain in the conc entrate stre am that is d isch arg ed to the se wer.

(32)

31 Common membrane process es in clude u ltraf iltration (UF), rever se osmos is (RO), electro d ia lysis (ED) an d e le ctro d ia lys is r e vers al (EDR). T hes e process es ( wit h the exce pt ion of UF) reduce most ions; RO a nd UF s ystems als o pro vid e ef f icien t reduction of non -io nis ed org an ics and p articu lates. UF membrane p oros it y is too larg e f or ion r ejectio n; the UF pro cess is us ed to reduce c ontam inants , such as o il and g re ase, and s usp end ed solids. Due to the co ncentrat e s tream cont inu ous ly remo ving cont amina nts; thes e pressure - driven membrane tech no lo g ies req uires on ly occa siona l back wash ing and c le aning ( [29] ).

RO membranes are desig ned f or remova l of dis so lved so lids with h ig h eff icienc y, b ut ad versely aff ected or f ouled b y su spen ded so lids, co lloida l materia l or sca le. Common e xamp le s of such f oul -a nt s are c alcium precipit ates, meta l oxides, co llo ida l s ilica an d var iou s org anics. In dustr ia l sid e-stream waste water t yp ica lly c onta ins most, if not a ll, of these f ouling substan ces. Once f oule d, limited b y its membrane material propert ies, on ly mild c lean ing c hemicals suc h as citr ic acid an d d eterg ent can b e us ed to restore the f lu x. S trong er or more ef fectiv e c lea ning che mica ls s uch as sulphur ic a cid, h ydr o chloric ac id, b le ach, and p ero xide can not be a pp lied as the y will ca use irre ver sible d amag es to the RO membran es. Ap propr iat e pre-treatment must be pr o vided to a chie ve st ab le p erf ormance of RO membranes.

Attentio n has re cen tly be en g ive n to munic ip al waste water t reatment plant eff luents as a s ourc e of ind ustria l and ag ricult ural reus e water throug hout the wor ld. Se vera l recent pu blic atio ns h ave portra yed the us e of membrane techno log ies on s e condar y and ter t ia ry ef f luents as re lative ly rec ent occurren ces. Ho we ver, f acilit ies ha ve b een utilizing such membranes on waste water streams f or many years. O ne of the pio neer in g sites to use reverse osmos is (RO) techno log y f or eff luent reuse in po wer pro duct io n witn ess e d en viab le oper atio na l e xperiences an d membrane lif e expecta nc ies ( [30] ).

In operat io n f or o ver eig ht ye ars, the f ac ilit y utilized the s ec ondar y eff luent f rom a municipa l tre atment f acilit y as th e so le sourc e of f eed wat er to a 49 Meg a watt natura l g a s po wer turb in e f acilit y in Lod i, Ca lif . As e viden ced b y this pr oject's succ e ss and b y the suc cesses of subseq ue nt eff luent -f ed po wer f acilities; ef flue nt reus e has be come a s ig nif icant ad va ntag e in

(33)

32 loc ating ne w p o wer product io n f a cilit ie s. T he po wer comp anies that ha ve embraced th e reuse of treated munic ip a l wast e water h a ve been we lcomed more op en ly in the p ursuit of reg iona l ap pro va ls and rece ive d more p olit ica l endors ements of projects ( [30] ).

EPRI is co llaborat ing with S and ia Nationa l L abor atories an d W EN Eng ine ering to evaluate the f easibilit y of integ rating membrane d istillat ion water treatme nt tec hno log y with coo ling to wer s ystems f or uncon vent ion al typ es of water treatment systems th at could s er ve as alternat ives to f reshwater f or mak eup water. Membra n e d istillat ion ( MD) t echno log y uses latent energ y f rom waste he at to dr ive a membrane s eparat io n proc ess th at removes sa lts a nd ot her tota l d isso lve d s olids f rom an un con ventio na l water typ e such as bra c k ish g round water o r sea water. B y us ing waste h eat sources at a po wer pla nt, MD c ou ld de s alinate water with ou t added e nerg y costs, repres enting a ne w lo w -c ost meth od to treat br ack ish g round water f or mak eup water. T he techno log y ma y a lso represent a n i nno vat ion th at allo ws man y po wer plants in sem i arid area s to mainta in f ull utilizat io n of wet -coo ling systems b y using alternat ive so urces of water ( [3 1] ). Membrane dist illat io n techno log y cuts e nerg y co sts by u sing latent en erg y f rom waste heat to drive a membrane sep aration pr ocess t hat remo ves salts and othe r total d isso lve d so lid s (T DS) f rom an uncon ventiona l water type suc h as brack ish g round wate r or sea water.

Rese arch st ill cont inu es o n th is te ch nolog y t o ass ess the ec on om ic f easibilit y of integ rating MD water treat ment techno log y int o wet coo ling to wer tec hno log y. E conom ic a na lys is will also e va luate a combined wet coo ling plus MD s ystem vers us a dr y co oling system.

2.5.5 Pinc h An al ysi s Tech nolo g y

Pin ch an alysis is a p r ocess integ ration to ol wh ic h was in itia lly used f or heat and mass transf er analog ies ( [32] ). T he techniq ue in vo lves th e conser vatio n of energ y throug h optimisat ion of heat exc hang er net work s. A similar ap proac h is no w ap plie d to the des ig n of water -usin g systems that conf orm to the usage of patterns described in the W ater Research Coun cil (W RC) report (85 1/1/03). T he p inc h conc ept en com passes wa ste minim isat ion and p ollut ion pre ve ntio n b y de velop ing mass e xc hang er

Referenties

GERELATEERDE DOCUMENTEN

[5] Want als wij met Hem één plant zijn geworden, gelijkgemaakt aan Hem in Zijn dood, dan zullen wij ook aan Hem gelijk zijn in Zijn opstanding.. Lied: Gezang 53 : 1

Snel kunnen reageren om zich aan te passen aan die veranderingen en ervan te profiteren, is voor beleggers dan ook van aan te passen aan die veranderingen en

Vorig jaar ben ik gestart met de opleiding PABO leer- kracht basisonderwijs en dan specifiek gericht op het geven van Nederlands onderwijs op een Nederlandse Taal en Cultuur

Vertalen visie &amp; missie naar concrete doelstellingen

de mens zit dus gevangen in samsara (het rad van wedergeboorte), en karma is de 'motor' achter samsara iemand’s maatschappelijke stand / kaste + levensfase is de orde (dharma)

Deze gids is dus een belangrijk naslagwerk be- doeld voor iedereen: voor nieuwe leerlingen en hun ouders, maar ook voor leerlingen en hun ouders die al langer aan onze school

de aanvarg van de werkzaamheden ţock de eventuele ontgravingswerkzaamheden) moet uiterlijk 7 dagen voor datum van aanvang het team Vergunningen, Toezicht S Handhaving worden gemeld

• Indien ondertekend kan rechtbank u veroordelen indien men weigert deel te nemen.. Als steunpunt voor Impulseo helpt Domus Medica u met uw aanvraag. Voor meer informatie:. mail