• No results found

University of Groningen A computational study on the nature of DNA G-quadruplex structure Gholamjani Moghaddam, Kiana

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen A computational study on the nature of DNA G-quadruplex structure Gholamjani Moghaddam, Kiana"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A computational study on the nature of DNA G-quadruplex structure

Gholamjani Moghaddam, Kiana

DOI:

10.33612/diss.159767021

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Gholamjani Moghaddam, K. (2021). A computational study on the nature of DNA G-quadruplex structure.

University of Groningen. https://doi.org/10.33612/diss.159767021

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

[1] G. M. Blackburn, M. J. Gait, D. Loakes, D. M. Williams, J. A. Grasby, M. Egli, A. Flavell, S. Allen, J. Fisher, A. M. Pyle et al., Nucleic acids in chemistry and biology, Royal Society of Chemistry, 2006.

[2] E. P. Consortium et al., Nature, 2012, 489, 57–74. [3] J. D. Watson and F. H. Crick, Nature, 1953, 171, 737–738.

[4] S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd and S. Neidle, Nucleic acids research, 2006, 34, 5402–5415.

[5] J. L. Huppert and S. Balasubramanian, Nucleic acids research, 2005, 33, 2908–2916. [6] S. Neidle and S. Balasubramanian, Quadruplex nucleic acids, Royal Society of

Chem-istry, 2006, vol. 7.

[7] S. Neidle, Current opinion in structural biology, 2009, 19, 239–250. [8] J. Dai, M. Carver and D. Yang, Biochimie, 2008, 90, 1172–1183. [9] S. Neidle, Journal of medicinal chemistry, 2016, 59, 5987–6011.

[10] W. E. Wright, V. M. Tesmer, K. E. Huffman, S. D. Levene and J. W. Shay, Genes &

development, 1997, 11, 2801–2809.

[11] S. Cogoi and L. E. Xodo, Nucleic acids research, 2006, 34, 2536–2549.

[12] J. Dai, T. S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R. A. Jones and D. Yang, Journal

of the American Chemical Society, 2006, 128, 1096–1098.

[13] A. Siddiqui-Jain, C. L. Grand, D. J. Bearss and L. H. Hurley, Proceedings of the National

Academy of Sciences, 2002, 99, 11593–11598.

[14] H. Fernando, A. P. Reszka, J. Huppert, S. Ladame, S. Rankin, A. R. Venkitaraman, S. Neidle and S. Balasubramanian, Biochemistry, 2006, 45, 7854–7860.

(3)

[15] S. Rankin, A. P. Reszka, J. Huppert, M. Zloh, G. N. Parkinson, A. K. Todd, S. Ladame, S. Balasubramanian and S. Neidle, Journal of the American Chemical Society, 2005,

127, 10584–10589.

[16] S. Neidle, Nature Reviews Chemistry, 2017, 1, 1–10.

[17] R. Hänsel-Hertsch, M. Di Antonio and S. Balasubramanian, Nature Reviews Molecular

Cell Biology, 2017, 18, 279–284.

[18] F. Wang, X. Liu and I. Willner, Angewandte Chemie International Edition, 2015, 54, 1098–1129.

[19] K. Diveshkumar, S. Sakrikar, S. Harikrishna, V. Dhamodharan and P. Pradeepkumar,

ChemMedChem, 2014, 9, 2754–2765.

[20] M. Małgowska, Acta Biochimica Polonica, 2016, 63, 609–621.

[21] G. W. Collie and G. N. Parkinson, Chemical Society Reviews, 2011, 40, 5867–5892. [22] S. Neidle and G. Parkinson, Nature Reviews Drug Discovery, 2002, 1, 383–393. [23] S. Neidle and G. N. Parkinson, Current opinion in structural biology, 2003, 13, 275–283. [24] S. Balasubramanian, L. H. Hurley and S. Neidle, Nature reviews Drug discovery, 2011,

10, 261–275.

[25] T.-m. Ou, Y.-j. Lu, J.-h. Tan, Z.-s. Huang, K.-Y. Wong and L.-q. Gu, ChemMedChem, 2008, 3, 690–713.

[26] Q. Cao, Y. Li, E. Freisinger, P. Z. Qin, R. K. Sigel and Z.-W. Mao, Inorganic Chemistry

Frontiers, 2017, 4, 10–32.

[27] S. N. Georgiades, N. H. Abd Karim, K. Suntharalingam and R. Vilar, Angewandte

Chemie International Edition, 2010, 49, 4020–4034.

[28] J. Spiegel, S. Adhikari and S. Balasubramanian, Trends in Chemistry, 2020, 2, 123–136. [29] S. Kumari, A. Bugaut, J. L. Huppert and S. Balasubramanian, Nature chemical biology,

2007, 3, 218–221.

[30] O. Mendoza, A. Bourdoncle, J.-B. Boulé, R. M. Brosh and J.-L. Mergny, Nucleic acids

(4)

[31] H. Sun, J. K. Karow, I. D. Hickson and N. Maizels, Journal of Biological Chemistry, 1998,

273, 27587–27592.

[32] Y. Wu, K. Shin-ya and R. M. Brosh, Molecular and cellular biology, 2008, 28, 4116–4128. [33] C. Ribeyre, J. Lopes, J.-B. Boulé, A. Piazza, A. Guédin, V. A. Zakian, J.-L. Mergny and

A. Nicolas, PLoS genetics, 2009, 5, e1000475.

[34] L. Crabbe, R. E. Verdun, C. I. Haggblom and J. Karlseder, Science, 2004, 306, 1951–1953. [35] J. P. Vaughn, S. D. Creacy, E. D. Routh, C. Joyner-Butt, G. S. Jenkins, S. Pauli, Y. Nagamine and S. A. Akman, Journal of Biological Chemistry, 2005, 280, 38117– 38120.

[36] M. C. Chen, P. Murat, K. Abecassis, A. R. Ferré-D’Amaré and S. Balasubramanian,

Nucleic acids research, 2015, 43, 2223–2231.

[37] F. Iwamoto, M. Stadler, K. Chalupníková, E. Oakeley and Y. Nagamine, Experimental

cell research, 2008, 314, 1378–1391.

[38] S. Lattmann, B. Giri, J. P. Vaughn, S. A. Akman and Y. Nagamine, Nucleic acids research, 2010, 38, 6219–6233.

[39] C. Zhao, Y. Song, J. Ren and X. Qu, Biomaterials, 2009, 30, 1739–1745.

[40] Y. Mao, D. Liu, S. Wang, S. Luo, W. Wang, Y. Yang, Q. Ouyang and L. Jiang, Nucleic acids

research, 2007, 35, e33.

[41] R. Rodriguez, G. D. Panto¸s, D. P. Gonçalves, J. K. Sanders and S. Balasubramanian,

Angewandte Chemie, 2007, 119, 5501–5503.

[42] X. Wang, J. Huang, Y. Zhou, S. Yan, X. Weng, X. Wu, M. Deng and X. Zhou, Angewandte

Chemie International Edition, 2010, 49, 5305–5309.

[43] D. Miyoshi, S. Matsumura, W. Li and N. Sugimoto, Nucleosides, Nucleotides and

Nucleic Acids, 2003, 22, 203–221.

[44] T. Li, S. Dong and E. Wang, Journal of the American Chemical Society, 2010, 132, 13156–13157.

[45] D. M. Engelhard, J. Nowack and G. H. Clever, Angewandte Chemie International

(5)

[46] D. P. Gonçalves, R. Rodriguez, S. Balasubramanian and J. K. Sanders, Chemical

com-munications, 2006, 4685–4687.

[47] D. P. Gonçalves, S. Ladame, S. Balasubramanian and J. K. Sanders, Organic &

biomolec-ular chemistry, 2006, 4, 3337–3342.

[48] A. S. Lubbe, W. Szymanski and B. L. Feringa, Chemical Society Reviews, 2017, 46, 1052–1079.

[49] H. Ito, X. Liang, H. Nishioka and H. Asanuma, Organic & biomolecular chemistry, 2010, 8, 5519–5524.

[50] H. Nishioka, X. Liang, T. Kato and H. Asanuma, Angewandte Chemie, 2012, 124, 1191– 1194.

[51] V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov, P. Samorì, M. Mayor and M. A. Rampi, Angewandte Chemie, 2008, 120, 3455–3457.

[52] S. Lena, P. Neviani, S. Masiero, S. Pieraccini and G. P. Spada, Angewandte Chemie

International Edition, 2010, 49, 3657–3660.

[53] S. Ogasawara and M. Maeda, Angewandte Chemie International Edition, 2009, 48, 6671–6674.

[54] A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced

electronic structure theory, Courier Corporation, 2012.

[55] B. O. Roos, K. Andersson, M. P. Fulscher, P.-A. Malmqvist, L. SerranoAndres, K. Pierloot and M. Merchán, Advances in chemical physics, vol xciii, 1996, 93, 219–331.

[56] B. O. Roos, P. R. Taylor and P. E. Sigbahn, Chemical Physics, 1980, 48, 157–173. [57] W. Kohn, A. D. Becke and R. G. Parr, The Journal of Physical Chemistry, 1996, 100,

12974–12980.

[58] R. G. Parr, in Horizons of quantum chemistry, Springer, 1980, pp. 5–15.

[59] C. D. Pun, Recent Advances In Density Functional Methods, Part I, World Scientific, 1995, vol. 1.

(6)

[61] Y. Shao, M. Head-Gordon and A. I. Krylov, The Journal of chemical physics, 2003, 118, 4807–4818.

[62] F. Wang and T. Ziegler, The Journal of chemical physics, 2004, 121, 12191–12196. [63] S. Hirata and M. Head-Gordon, Chemical Physics Letters, 1999, 314, 291–299. [64] A. A. Golubeva, A. V. Nemukhin, S. J. Klippenstein, L. B. Harding and A. I. Krylov, The

Journal of Physical Chemistry A, 2007, 111, 13264–13271.

[65] F. Bell, D. Casanova and M. Head-Gordon, Journal of the American Chemical Society, 2010, 132, 11314–11322.

[66] X. Lu, S. Lee, Y. Hong, H. Phan, T. Y. Gopalakrishna, T. S. Herng, T. Tanaka, M. E. Sandoval-Salinas, W. Zeng, J. Ding et al., Journal of the American Chemical Society, 2017, 139, 13173–13183.

[67] X. Zhang and J. M. Herbert, The Journal of chemical physics, 2015, 142, 064109. [68] X. Zhang and J. M. Herbert, The Journal of Chemical Physics, 2014, 141, 064104. [69] Y. Harabuchi, K. Keipert, F. Zahariev, T. Taketsugu and M. S. Gordon, The Journal of

Physical Chemistry A, 2014, 118, 11987–11998.

[70] L. Yue, Y. Liu and C. Zhu, Physical Chemistry Chemical Physics, 2018, 20, 24123–24139. [71] D. Casanova, Journal of chemical theory and computation, 2014, 10, 324–334. [72] O. Varnavski, N. Abeyasinghe, J. Arago, J. J. Serrano-Perez, E. Ortí, J. T. Lopez Navarrete,

K. Takimiya, D. Casanova, J. Casado and T. Goodson III, The Journal of Physical

Chemistry Letters, 2015, 6, 1375–1384.

[73] X. Feng, D. Casanova and A. I. Krylov, The Journal of Physical Chemistry C, 2016, 120, 19070–19077.

[74] X. Zhang and J. M. Herbert, The Journal of chemical physics, 2015, 143, 234107. [75] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, Journal of

computa-tional chemistry, 2004, 25, 1157–1174.

[76] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov et al., Journal of computational chemistry, 2010, 31, 671–690.

(7)

[77] C. Oostenbrink, A. Villa, A. E. Mark and W. F. Van Gunsteren, Journal of computational

chemistry, 2004, 25, 1656–1676.

[78] W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Journal of the American Chemical

Society, 1996, 118, 11225–11236.

[79] L. Monticelli and E. Salonen, Biomolecular simulations: methods and protocols, Springer, 2013, vol. 924.

[80] M. L. Klein and W. Shinoda, Science, 2008, 321, 798–800.

[81] H. I. Ingólfsson, C. A. Lopez, J. J. Uusitalo, D. H. de Jong, S. M. Gopal, X. Periole and S. J. Marrink, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014,

4, 225–248.

[82] W. Noid, The Journal of chemical physics, 2013, 139, 09B201_1.

[83] G. A. Voth, Coarse-graining of condensed phase and biomolecular systems, CRC press, 2008.

[84] S. J. Marrink and D. P. Tieleman, Chemical Society Reviews, 2013, 42, 6801–6822. [85] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman and A. H. De Vries, The journal

of physical chemistry B, 2007, 111, 7812–7824.

[86] S. J. Marrink, A. H. De Vries and A. E. Mark, The Journal of Physical Chemistry B, 2004,

108, 750–760.

[87] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman and S.-J. Mar-rink, Journal of chemical theory and computation, 2008, 4, 819–834.

[88] D. H. de Jong, G. Singh, W. D. Bennett, C. Arnarez, T. A. Wassenaar, L. V. Schafer, X. Pe-riole, D. P. Tieleman and S. J. Marrink, Journal of chemical theory and computation, 2013, 9, 687–697.

[89] H. Lee, A. H. de Vries, S.-J. Marrink and R. W. Pastor, The journal of physical chemistry

B, 2009, 113, 13186–13194.

[90] G. Rossi, P. Fuchs, J. Barnoud and L. Monticelli, The Journal of Physical Chemistry B, 2012, 116, 14353–14362.

[91] G. Rossi, L. Monticelli, S. R. Puisto, I. Vattulainen and T. Ala-Nissila, Soft Matter, 2011,

(8)

[92] C. A. López, A. J. Rzepiela, A. H. De Vries, L. Dijkhuizen, P. H. Hunenberger and S. J. Marrink, Journal of Chemical Theory and Computation, 2009, 5, 3195–3210.

[93] L. Monticelli, Journal of chemical theory and computation, 2012, 8, 1370–1378. [94] J. J. Uusitalo, H. I. Ingólfsson, P. Akhshi, D. P. Tieleman and S. J. Marrink, Journal of

chemical theory and computation, 2015, 11, 3932–3945.

[95] S. Sakurai, T. Fukasawa, J.-M. Chong, A. Tanaka and M. Fukayama, Japanese journal

of cancer research, 1999, 90, 1321–1328.

[96] A. Yasuda, H. Sawai, H. Takahashi, N. Ochi, Y. Matsuo, H. Funahashi, M. Sato, Y. Okada, H. Takeyama and T. Manabe, Molecular cancer, 2006, 5, 1–10.

[97] A. McIntyre, B. Summersgill, B. Grygalewicz, A. J. Gillis, J. Stoop, R. J. van Gurp, N. Dennis, C. Fisher, R. Huddart, C. Cooper et al., Cancer research, 2005, 65, 8085– 8089.

[98] M. Miettinen and J. Lasota, Applied immunohistochemistry & molecular morphology, 2005, 13, 205–220.

[99] K. S. Smalley, K. L. Nathanson and K. T. Flaherty, Cancer research, 2009, 69, 3241–3244. [100] X. Wang, C.-X. Zhou, J.-W. Yan, J.-Q. Hou, S.-B. Chen, T.-M. Ou, L.-Q. Gu, Z.-S. Huang

and J.-H. Tan, ACS medicinal chemistry letters, 2013, 4, 909–914.

[101] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Mont-gomery Jr, T. Vreven, K. Kudin, J. Burant et al., Wallingford, CT, 2004, 6492, year. [102] A. W. S. Da Silva and W. F. Vranken, BMC research notes, 2012, 5, 367.

[103] D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang and R. J. Woods, Journal of computational chemistry, 2005,

26, 1668–1688.

[104] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J. Olson, Journal of computational chemistry, 1998, 19, 1639–1662.

[105] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen,

Journal of computational chemistry, 2005, 26, 1701–1718.

[106] A. Pérez, I. Marchán, D. Svozil, J. Sponer, T. E. Cheatham III, C. A. Laughton and M. Orozco, Biophysical journal, 2007, 92, 3817–3829.

(9)

[107] D. J. Price and C. L. Brooks III, The Journal of chemical physics, 2004, 121, 10096– 10103.

[108] T. Darden, D. York and L. Pedersen, The Journal of chemical physics, 1993, 98, 10089– 10092.

[109] B. Hess, H. Bekker, H. J. Berendsen and J. G. Fraaije, Journal of computational

chem-istry, 1997, 18, 1463–1472.

[110] G. Bussi, D. Donadio and M. Parrinello, The Journal of chemical physics, 2007, 126, 014101.

[111] M. Parrinello and A. Rahman, Journal of Applied physics, 1981, 52, 7182–7190. [112] S. Nosé and M. Klein, Molecular Physics, 1983, 50, 1055–1076.

[113] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, Journal of Computational Chemistry, 2004, 25, 1605–1612.

[114] N. A. Baker, D. Sept, S. Joseph, M. J. Holst and J. A. McCammon, Proceedings of the

National Academy of Sciences, 2001, 98, 10037–10041.

[115] P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang et al., Accounts of chemical research, 2000, 33, 889–897.

[116] D. Spiliotopoulos, A. Spitaleri and G. Musco, PloS one, 2012, 7, e46902.

[117] C. Paissoni, D. Spiliotopoulos, G. Musco and A. Spitaleri, Comput. Phys. Commun., 2015, 186, 105–107.

[118] B. Jayaram, D. Sprous, M. Young and D. Beveridge, Journal of the American Chemical

Society, 1998, 120, 10629–10633.

[119] R. Štefl, T. E. Cheatham III, N. Špaˇcková, E. Fadrná, I. Berger, J. Koˇca and J. Šponer,

Biophysical journal, 2003, 85, 1787–1804.

[120] S. Alcaro, C. Musetti, S. Distinto, M. Casatti, G. Zagotto, A. Artese, L. Parrotta, F. Moraca, G. Costa, F. Ortuso et al., Journal of medicinal chemistry, 2013, 56, 843–855.

[121] T.-M. Ou, Y.-J. Lu, C. Zhang, Z.-S. Huang, X.-D. Wang, J.-H. Tan, Y. Chen, D.-L. Ma, K.-Y. Wong, J. C.-O. Tang et al., Journal of medicinal chemistry, 2007, 50, 1465–1474.

(10)

[122] Z. A. Waller, S. A. Sewitz, S.-T. D. Hsu and S. Balasubramanian, Journal of the American

Chemical Society, 2009, 131, 12628–12633.

[123] J. Dash, P. S. Shirude, S.-T. D. Hsu and S. Balasubramanian, Journal of the American

Chemical Society, 2008, 130, 15950–15956.

[124] K. Jantos, R. Rodriguez, S. Ladame, P. S. Shirude and S. Balasubramanian, Journal of

the American Chemical Society, 2006, 128, 13662–13663.

[125] M. Bejugam, S. Sewitz, P. S. Shirude, R. Rodriguez, R. Shahid and S. Balasubramanian,

Journal of the American Chemical Society, 2007, 129, 12926–12927.

[126] J.-Q. Hou, J.-H. Tan, X.-X. Wang, S.-B. Chen, S.-Y. Huang, J.-W. Yan, S.-H. Chen, T.-M. Ou, H.-B. Luo, D. Li et al., Organic & biomolecular chemistry, 2011, 9, 6422–6436. [127] K. G. Moghaddam and S. M. Hashemianzadeh, RSC Advances, 2015, 5, 76642–76650. [128] B. Machireddy, G. Kalra, S. Jonnalagadda, K. Ramanujachary and C. Wu, Journal of

chemical information and modeling, 2017, 57, 2846–2864.

[129] A. Spinello, G. Barone and J. Grunenberg, Physical Chemistry Chemical Physics, 2016,

18, 2871–2877.

[130] Z. Shen, K. A. Mulholland, Y. Zheng and C. Wu, Journal of molecular modeling, 2017,

23, 256.

[131] S. Sillapapongwarakorn, S. Yanarojana, D. Pinthong, A. Thithapandha, J. Ungwitaya-torn and P. Supavilai, Bioinformation, 2017, 13, 284.

[132] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Naka-jima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,

(11)

A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

[133] O. Trott and A. J. Olson, Journal of computational chemistry, 2010, 31, 455–461. [134] M. F. Sanner et al., J Mol Graph Model, 1999, 17, 57–61.

[135] D. M. York, T. A. Darden and L. G. Pedersen, The Journal of chemical physics, 1993, 99, 8345–8348.

[136] X. Daura, K. Gademann, B. Jaun, D. Seebach, W. F. Van Gunsteren and A. E. Mark,

Angewandte Chemie International Edition, 1999, 38, 236–240.

[137] W. Humphrey, A. Dalke, K. Schulten et al., Journal of molecular graphics, 1996, 14, 33–38.

[138] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, Journal of computational chemistry, 2004, 25, 1605–1612.

[139] N. Homeyer and H. Gohlke, Molecular Informatics, 2012, 31, 114–122.

[140] S. Harikrishna, S. Kotaru and P. Pradeepkumar, Molecular BioSystems, 2017, 13, 1458– 1468.

[141] R. Kumari, R. Kumar, O. S. D. D. Consortium and A. Lynn, Journal of chemical

infor-mation and modeling, 2014, 54, 1951–1962.

[142] M. K. Gilson and B. Honig, Proteins: Structure, Function, and Bioinformatics, 1988, 4, 7–18.

[143] W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, Journal of the American

Chemical Society, 1990, 112, 6127–6129.

[144] B. Honig and A. Nicholls, Science, 1995, 268, 1144–1149.

[145] J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman and D. A. Case, Journal of the

American Chemical Society, 1998, 120, 9401–9409.

[146] D. Sitkoff, K. A. Sharp and B. Honig, The Journal of Physical Chemistry, 1994, 98, 1978–1988.

(12)

[148] D. Shi, Q. Bai, S. Zhou, X. Liu, H. Liu and X. Yao, Proteins: Structure, Function, and

Bioinformatics, 2018, 86, 43–56.

[149] D. Wei, J. Husby and S. Neidle, Nucleic acids research, 2015, 43, 629–644.

[150] A. T. Phan, V. Kuryavyi, S. Burge, S. Neidle and D. J. Patel, Journal of the American

Chemical Society, 2007, 129, 4386–4392.

[151] A. Głuszy´nska, B. Juskowiak, M. Kuta-Siejkowska, M. Hoffmann and S. Haider,

Molecules, 2018, 23, 1134.

[152] B. Hess, The Journal of chemical physics, 2002, 116, 209–217.

[153] M. McCullagh, I. Franco, M. A. Ratner and G. C. Schatz, Journal of the American

Chemical Society, 2011, 133, 3452–3459.

[154] W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema and B. L. Feringa, Chemical

reviews, 2013, 113, 6114–6178.

[155] J. Thevarpadam, I. Bessi, O. Binas, D. P. Gonçalves, C. Slavov, H. R. Jonker, C. Richter, J. Wachtveitl, H. Schwalbe and A. Heckel, Angewandte Chemie International Edition, 2016, 55, 2738–2742.

[156] H. D. Bandara and S. C. Burdette, Chemical Society Reviews, 2012, 41, 1809–1825. [157] T. Schultz, J. Quenneville, B. Levine, A. Toniolo, T. J. Martínez, S. Lochbrunner,

M. Schmitt, J. P. Shaffer, M. Z. Zgierski and A. Stolow, Journal of the American Chemical

Society, 2003, 125, 8098–8099.

[158] M. Bockmann, N. L. Doltsinis and D. Marx, The Journal of Physical Chemistry A, 2010,

114, 745–754.

[159] C. Ciminelli, G. Granucci and M. Persico, Chemistry–A European Journal, 2004, 10, 2327–2341.

[160] A. Toniolo, C. Ciminelli, M. Persico and T. Martínez, The Journal of chemical physics, 2005, 123, 234308.

[161] M. Böckmann, C. Peter, L. D. Site, N. L. Doltsinis, K. Kremer and D. Marx, Journal of

chemical theory and computation, 2007, 3, 1789–1802.

[162] I. Conti, M. Garavelli and G. Orlandi, Journal of the American Chemical Society, 2008,

(13)

[163] T. Cusati, G. Granucci and M. Persico, Journal of the American Chemical Society, 2011,

133, 5109–5123.

[164] O. Weingart, Z. Lan, A. Koslowski and W. Thiel, The Journal of Physical Chemistry

Letters, 2011, 2, 1506–1509.

[165] J. A. Gamez, O. Weingart, A. Koslowski and W. Thiel, Journal of chemical theory and

computation, 2012, 8, 2352–2358.

[166] Y. Harabuchi, M. Ishii, A. Nakayama, T. Noro and T. Taketsugu, The Journal of chemical

physics, 2013, 138, 064305.

[167] M. Pederzoli, J. Pittner, M. Barbatti and H. Lischka, The Journal of Physical Chemistry

A, 2011, 115, 11136–11143.

[168] T. Pancur, F. Renth, F. Temps, B. Harbaum, A. Krüger, R. Herges and C. Näther, Physical

Chemistry Chemical Physics, 2005, 7, 1985–1989.

[169] A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi and G. Orlandi, Journal of the

American Chemical Society, 2004, 126, 3234–3243.

[170] P. Tavadze, G. Avendano Franco, P. Ren, X. Wen, Y. Li and J. P. Lewis, Journal of the

American Chemical Society, 2018, 140, 285–290.

[171] D. Rastädter, M. Biswas and I. Burghardt, The Journal of Physical Chemistry B, 2014,

118, 8478–8488.

[172] M. Biswas and I. Burghardt, Biophysical journal, 2014, 107, 932–940.

[173] D. Wu, Y.-T. Wang, W.-H. Fang, G. Cui and W. Thiel, Chemistry–An Asian Journal, 2018,

13, 780–784.

[174] S.-H. Xia, G. Cui, W.-H. Fang and W. Thiel, Angewandte Chemie, 2016, 128, 2107–2112. [175] P. Mondal, G. Granucci, D. Rastädter, M. Persico and I. Burghardt, Chemical science,

2018, 9, 4671–4681.

[176] M. P. Long, S. Alland, M. E. Martin and C. M. Isborn, Physical Chemistry Chemical

Physics, 2020, 22, 5584–5596.

[177] H. W. Kim, Y. M. Rhee and S. K. Shin, Physical Chemistry Chemical Physics, 2018, 20, 21068–21074.

(14)

[178] A. K. Sahoo, B. Bagchi and P. K. Maiti, The Journal of chemical physics, 2019, 151, 164902.

[179] T. Fox and P. A. Kollman, The Journal of Physical Chemistry B, 1998, 102, 8070–8079. [180] J. Aqvist, The Journal of Physical Chemistry, 1990, 94, 8021–8024.

[181] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, The

Journal of chemical physics, 1983, 79, 926–935.

[182] I. S. Joung and T. E. Cheatham III, The journal of physical chemistry B, 2008, 112, 9020–9041.

[183] H. Berendsen, J. Grigera and T. Straatsma, Journal of Physical Chemistry, 1987, 91, 6269–6271.

[184] M. Havrila, P. Stadlbauer, B. Islam, M. Otyepka and J. Sponer, Journal of chemical

theory and computation, 2017, 13, 3911–3926.

[185] H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, The

Journal of chemical physics, 1984, 81, 3684–3690.

[186] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, The

Journal of chemical physics, 1995, 103, 8577–8593.

[187] B. Hess, C. Kutzner, D. Van Der Spoel and E. Lindahl, Journal of chemical theory and

computation, 2008, 4, 435–447.

[188] Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng et al., Molecular Physics, 2015, 113, 184–215.

[189] A. I. Krylov and P. M. Gill, Wiley Interdisciplinary Reviews: Computational Molecular

Science, 2013, 3, 317–326.

[190] H. M. Senn and W. Thiel, Angewandte Chemie International Edition, 2009, 48, 1198– 1229.

[191] T. H. Dunning Jr, The Journal of chemical physics, 1989, 90, 1007–1023. [192] P. Hohenberg and W. Kohn, Physical review, 1964, 136, B864.

(15)

[194] J.-D. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics, 2008, 10, 6615– 6620.

[195] S. Grimme, Journal of computational chemistry, 2006, 27, 1787–1799.

[196] S. Maeda, K. Ohno and K. Morokuma, Journal of chemical theory and computation, 2010, 6, 1538–1545.

[197] K. D. Closser, O. Gessner and M. Head-Gordon, The Journal of chemical physics, 2014,

140, 134306.

[198] D. L. Beveridge and H. Jaffe, Journal of the American Chemical Society, 1966, 88, 1948–1953.

[199] J. Bouwstra, A. Schouten and J. Kroon, Acta Crystallographica Section C: Crystal

Structure Communications, 1983, 39, 1121–1123.

[200] T. Tsuji, H. Takashima, H. Takeuchi, T. Egawa and S. Konaka, The Journal of Physical

Chemistry A, 2001, 105, 9347–9353.

[201] E. V. Brown and G. R. Granneman, Journal of the American Chemical Society, 1975, 97, 621–627.

[202] L. Yu, C. Xu and C. Zhu, Physical Chemistry Chemical Physics, 2015, 17, 17646–17660. [203] L. Yu, C. Xu, Y. Lei, C. Zhu and Z. Wen, Physical Chemistry Chemical Physics, 2014, 16,

25883–25895.

[204] T. Ishikawa, T. Noro and T. Shoda, The Journal of Chemical Physics, 2001, 115, 7503– 7512.

[205] P. Cattaneo and M. Persico, Physical Chemistry Chemical Physics, 1999, 1, 4739–4743. [206] J. Casellas, M. J. Bearpark and M. Reguero, ChemPhysChem, 2016, 17, 3068–3079. [207] H. Fliegl, A. Köhn, C. Hättig and R. Ahlrichs, Journal of the American Chemical Society,

2003, 125, 9821–9827.

[208] J.-Å. Andersson, R. Petterson and L. Tegnér, Journal of Photochemistry, 1982, 20, 17–32.

[209] C. Xu, L. Yu, F. L. Gu and C. Zhu, Physical Chemistry Chemical Physics, 2018, 20, 23885–23897.

(16)

[210] M. Rebic, A. Laaksonen, J. Sponer, J. Ulicny and F. Mocci, The Journal of Physical

Chemistry B, 2016, 120, 7380–7391.

[211] M. Rebic, A. Laaksonen, J. Sponer, J. Ulicny and F. Mocci, The Journal of Physical

Chemistry B, 2016, 120, 7380–7391.

[212] S. Mamatkulov and N. Schwierz, The Journal of chemical physics, 2018, 148, 074504. [213] D. Bhattacharyya, G. Mirihana Arachchilage and S. Basu, Frontiers in chemistry, 2016,

4, 38.

[214] E. Largy, J.-L. Mergny and V. Gabelica, in The Alkali Metal Ions: Their Role for Life, Springer, 2016, pp. 203–258.

[215] B. Heddi, V. V. Cheong, H. Martadinata and A. T. Phan, Proceedings of the National

Academy of Sciences, 2015, 112, 9608–9613.

[216] M. C. Chen, R. Tippana, N. A. Demeshkina, P. Murat, S. Balasubramanian, S. Myong and A. R. Ferré-D’Amaré, Nature, 2018, 558, 465–469.

[217] I. Ivani, P. D. Dans, A. Noy, A. Pérez, I. Faustino, A. Hospital, J. Walther, P. Andrio, R. Goñi, A. Balaceanu et al., Nature methods, 2016, 13, 55.

[218] P. C. T. Souza, R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grunewald, I. Patmanidis, H. Abdizadeh, B. M. H. Bruininks, T. Wassenaar, P. Kroon, J. Melcr, V. Nieto, V. Corradi, H. M. Khan, J. Domanski, R. B. Best, M. Javanainen, H. Martinez-Seara, N. Reuter, D. P. Tieleman, I. Vattulainen, L. Monticelli, X. Periole, A. H. de Vries and S. J. Marrink, in preparation.

[219] W. Kabsch and C. Sander, Biopolymers: Original Research on Biomolecules, 1983, 22, 2577–2637.

[220] I. G. Tironi, R. Sperb, P. E. Smith and W. F. van Gunsteren, The Journal of chemical

Referenties

GERELATEERDE DOCUMENTEN

Furthermore, anionic disordered proteins are associated with mineralization processes (Table 3b, entries Dn3 and Dn11), calcium storage (entry Dn5), muscle contraction

Marco, thank you for helping arranging the electrochemistry stuff and wish you proceeds well in your PhD work. Yu, thanks for your help on protein expression

Using a quantum mechanics/molecular mechanics (QM/MM) scheme, we carried out a series of simulations to identify the effect of the size and substitution patterns of three

The results revealed that the arrangement of amido bond in quinazolone derivatives improves binding affinity toward G-quadruplex and the terminal amino substituents play a cru-

Ten slotte hebben we in Hoofdstuk 6 een reeks simulaties uitgevoerd met verschillende krachtvelden om de bindingsinteracties te onderzoeken tussen RHAU-eiwitten en twee

teractions of quinazolone derivatives with c-KIT G-quadruplex: insight from molecular dynamics simulation study for rational design of ligands, RSC Adv., 2015, 5, 76642.

I would also like to thank the members of the molecular dynamics group, especially Ignacio, Haleh and Maria for the great help on CG simulations.. Of course, thanks to all members

Understanding photoswitchable G-quadruplex structures via computational methods provides an opportunity to develop novel functional nanodevices (Chapter 5 of this thesis). While