• No results found

University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Development of MAPC derived induced endodermal progenitors Sambathkumar, Rangarajan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sambathkumar, R. (2017). Development of MAPC derived induced endodermal progenitors: Generation of pancreatic beta cells and hepatocytes. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

                 

Chapter  2  

 

 

 

Rationale  and  Objectives  

(3)

 

Chapter  2  

 

Rationale  and  objectives  for  studies  in  chapter  3  and  4  

 

Human   MAPCs   have   extended   proliferative   potential   (>70   population   doublings).   They   differentiate   in   vitro   to   osteogenic,   chondrogenic,   adipogenic,   and   smooth   muscle  cells  and  unlike  classical  MSC  (mesenchymal  stem  cells),  also  into  endothelial   cells  [1-­‐3].  However,  by  applying  growth  factors  used  for  rodent  MAPCs  or  human   ESCs  to  differentiate  hMAPCs  to  pancreatic  endocrine  β-­‐cells  and  hepatocytes  [4-­‐7],   differentiation  is  not  robust.    

The   discovery   of   induced   pluripotent   stem   cells   (iPSCs)   demonstrated   that   the   differentiation   state   of   mature   cells   can   be   manipulated   and   reprogrammed   to   a   pluripotent  state  [8]  from  which  mature  functional  pancreatic  endocrine  cells  [9]  and   hepatocyte   like   cells   [10]   can   be   created.   In   addition,   numerous   studies   have   demonstrated   that   in   mouse,   rat   and   more   recently   in   human,   multiple   different   mature  cells  by  using  TFs  alone  or  combined  with  growth  factors  and  /or  multiple   small  molecules  can  be  converted  to  cells  with  at  least  some  characteristics  of  β-­‐cells   [11-­‐23]  [24-­‐31]  or  hepatocytes  [32-­‐36]  and  this  by  using  TFs  alone  or  combined  with   growth  factors  and/or  multiple  small  molecules.    

 

To   overcome   the   restricted   differentiation   of   human   MAPCs   towards   pancreatic   endodermal   cells   and   hepatocytes,   I   tested   the   hypothesis   that   by   using   a   complement   of   TFs,   chosen   based   on   insights   from   early   endoderm   development   and  differentiation  to  pancreatic  β-­‐cell  and  hepatocyte  fate  specifications,  it  might   be   possible   to   transdifferentiate   hMAPC   to   an   induced   endoderm   progenitor   (iENDO)   state   that   then   could   be   differentiated   towards   pancreatic   β-­‐cells   or   hepatocytes.  To  address  this  hypothesis,  I  formulated  the  following  objectives.  

     

(4)

Objective  1:  To  determine  if  reprogramming  with  16  (or  fewer)  TFs  can  create  iENDO  

cells,  defined  as  cells  expressing  (mes)  endodermal  transcription  factors,  not  mature   endodermal   genes,   that   can   be   expanded   in   vitro,   and   can   then   be   committed   to   maturing  endodermal  progeny  (pancreatic  and  hepatic).  

Objective   2:   Determine   the   in   vivo   differentiation   potential   and   tumorogenicity   of  

iENDO   cells   by   grafting   these   cells   under   the   kidney   capsule   of   immunodeficient   mice.  

Objective   3:   Determine  if  iENDO  cells  can  be  differentiated  in  vitro  into  pancreatic  

endocrine  and  hepatocyte  like  cells  using  established  protocols  obtained  from  PSC   differentiation  studies.  

Objective   4:   Determine   the   in   vivo   differentiation   potential   and   tumorogenicity   of  

iENDO  cells  pre-­‐differentiated  to  the  hepatocyte  and  β-­‐cell  lineage,  by  grafting  under   the  kidney  capsule  of  immunodeficient  mice.  

  Figure.1  Schematic  representation  of  research  hypothesis  of  studies  in  Chapter  3  and  4.  

2.1  Rationale  for  the  study  (related  to  chapter  5)  

A  number  of  studies  have  demonstrated  that  small  molecule  DNA  methyltransferase   inhibitors   5’Azacytidine   (5’AZA)   and   Histone   deacetylase   inhibitor   (HDACi)   Trichostatin-­‐A,  (TSA)  can  change  cell  fate  into  the  pancreatic  cell  lineage,  both  in  the   setting   of   differentiation   from   lineage   specific   progenitors   and   transdifferentiation   [37-­‐43].   Therefore,   I   tested   if   a   combination   of   the   epigenetic   modifiers   5AZA   and   TSA   with   combination   of   chromatin   remodeling   medium   (CRM)   could   reprogram   primary   human   skin   and   BJ1   foreskin   fibroblasts   to   an   endodermal   and   pancreatic   endodermal  cell  fate.  

(5)

 

References  

 

1.   Roobrouck,  V.D.,  et  al.,  Differentiation  potential  of  human  postnatal  

mesenchymal  stem  cells,  mesoangioblasts,  and  multipotent  adult  progenitor   cells  reflected  in  their  transcriptome  and  partially  influenced  by  the  culture   conditions.  Stem  Cells,  2011.  29(5):  p.  871-­‐82.  

2.   Roobrouck,  V.D.,  K.  Vanuytsel,  and  C.M.  Verfaillie,  Concise  review:  culture  

mediated  changes  in  fate  and/or  potency  of  stem  cells.  Stem  Cells,  2011.  

29(4):  p.  583-­‐9.  

3.   Sohni,  A.  and  C.M.  Verfaillie,  Multipotent  adult  progenitor  cells.  Best  Pract   Res  Clin  Haematol,  2011.  24(1):  p.  3-­‐11.  

4.   Cai,  Q.,  et  al.,  Prospectively  isolated  NGN3-­‐expressing  progenitors  from  

human  embryonic  stem  cells  give  rise  to  pancreatic  endocrine  cells.  Stem  Cells  

Transl  Med,  2014.  3(4):  p.  489-­‐99.  

5.   Kumar,  A.,  et  al.,  Reversal  of  hyperglycemia  by  insulin-­‐secreting  rat  bone  

marrow-­‐  and  blastocyst-­‐derived  hypoblast  stem  cell-­‐like  cells.  PLoS  One,  

2013.  8(5):  p.  e63491.  

6.   Roelandt,  P.,  et  al.,  Human  embryonic  and  rat  adult  stem  cells  with  primitive  

endoderm-­‐like  phenotype  can  be  fated  to  definitive  endoderm,  and  finally   hepatocyte-­‐like  cells.  PLoS  One,  2010.  5(8):  p.  e12101.  

7.   Roelandt,  P.,  et  al.,  Differentiation  of  rat  multipotent  adult  progenitor  cells  to  

functional  hepatocyte-­‐like  cells  by  mimicking  embryonic  liver  development.  

Nat  Protoc,  2010.  5(7):  p.  1324-­‐36.  

8.   Takahashi,  K.  and  S.  Yamanaka,  Induction  of  pluripotent  stem  cells  from  

mouse  embryonic  and  adult  fibroblast  cultures  by  defined  factors.  Cell,  2006.  

126(4):  p.  663-­‐76.  

9.   Kunisada,  Y.,  et  al.,  Small  molecules  induce  efficient  differentiation  into  

insulin-­‐producing  cells  from  human  induced  pluripotent  stem  cells.  Stem  Cell  

Res,  2012.  8(2):  p.  274-­‐84.  

10.   Si-­‐Tayeb,  K.,  et  al.,  Highly  efficient  generation  of  human  hepatocyte-­‐like  cells  

from  induced  pluripotent  stem  cells.  Hepatology,  2010.  51(1):  p.  297-­‐305.  

11.   Li,  K.,  et  al.,  Small  molecules  facilitate  the  reprogramming  of  mouse  

fibroblasts  into  pancreatic  lineages.  Cell  Stem  Cell,  2014.  14(2):  p.  228-­‐36.  

12.   Zhu,  S.,  et  al.,  Human  pancreatic  beta-­‐like  cells  converted  from  fibroblasts.   Nat  Commun,  2016.  7:  p.  10080.  

13.   Zhou,  Q.,  et  al.,  In  vivo  reprogramming  of  adult  pancreatic  exocrine  cells  to  

beta-­‐cells.  Nature,  2008.  455(7213):  p.  627-­‐32.  

14.   Li,  W.,  et  al.,  In  vivo  reprogramming  of  pancreatic  acinar  cells  to  three  islet  

endocrine  subtypes.  Elife,  2014.  3:  p.  e01846.  

15.   Lee,  J.,  et  al.,  Expansion  and  conversion  of  human  pancreatic  ductal  cells  into  

insulin-­‐secreting  endocrine  cells.  Elife,  2013.  2:  p.  e00940.  

16.   Baeyens,  L.,  et  al.,  In  vitro  generation  of  insulin-­‐producing  beta  cells  from  

adult  exocrine  pancreatic  cells.  Diabetologia,  2005.  48(1):  p.  49-­‐57.  

17.   Minami,  K.,  et  al.,  Lineage  tracing  and  characterization  of  insulin-­‐secreting  

cells  generated  from  adult  pancreatic  acinar  cells.  Proc  Natl  Acad  Sci  U  S  A,  

2005.  102(42):  p.  15116-­‐21.  

18.   Prevot,  P.P.,  et  al.,  Role  of  the  ductal  transcription  factors  HNF6  and  Sox9  in  

(6)

19.   Ferber,  S.,  et  al.,  Pancreatic  and  duodenal  homeobox  gene  1  induces  

expression  of  insulin  genes  in  liver  and  ameliorates  streptozotocin-­‐induced   hyperglycemia.  Nat  Med,  2000.  6(5):  p.  568-­‐72.  

20.   Zalzman,  M.,  L.  Anker-­‐Kitai,  and  S.  Efrat,  Differentiation  of  human  liver-­‐

derived,  insulin-­‐producing  cells  toward  the  beta-­‐cell  phenotype.  Diabetes,  

2005.  54(9):  p.  2568-­‐75.  

21.   Tang,  D.Q.,  et  al.,  Reprogramming  liver-­‐stem  WB  cells  into  functional  insulin-­‐

producing  cells  by  persistent  expression  of  Pdx1-­‐  and  Pdx1-­‐VP16  mediated  by   lentiviral  vectors.  Lab  Invest,  2006.  86(1):  p.  83-­‐93.  

22.   Tang,  D.Q.,  et  al.,  Role  of  Pax4  in  Pdx1-­‐VP16-­‐mediated  liver-­‐to-­‐endocrine  

pancreas  transdifferentiation.  Lab  Invest,  2006.  86(8):  p.  829-­‐41.  

23.   Cao,  L.Z.,  et  al.,  High  glucose  is  necessary  for  complete  maturation  of  Pdx1-­‐

VP16-­‐expressing  hepatic  cells  into  functional  insulin-­‐producing  cells.  Diabetes,  

2004.  53(12):  p.  3168-­‐78.  

24.   Akinci,  E.,  et  al.,  Reprogramming  of  various  cell  types  to  a  beta-­‐like  state  by  

Pdx1,  Ngn3  and  MafA.  PLoS  One,  2013.  8(11):  p.  e82424.  

25.   Ham,  D.S.,  et  al.,  Generation  of  functional  insulin-­‐producing  cells  from  

neonatal  porcine  liver-­‐derived  cells  by  PDX1/VP16,  BETA2/NeuroD  and  MafA.  

PLoS  One,  2013.  8(11):  p.  e79076.  

26.   Yoshida,  S.,  et  al.,  PDX-­‐1  induces  differentiation  of  intestinal  epithelioid  IEC-­‐6  

into  insulin-­‐producing  cells.  Diabetes,  2002.  51(8):  p.  2505-­‐13.  

27.   Grapin-­‐Botton,  A.,  A.R.  Majithia,  and  D.A.  Melton,  Key  events  of  pancreas  

formation  are  triggered  in  gut  endoderm  by  ectopic  expression  of  pancreatic   regulatory  genes.  Genes  Dev,  2001.  15(4):  p.  444-­‐54.  

28.   Chen,  Y.J.,  et  al.,  De  novo  formation  of  insulin-­‐producing  "neo-­‐beta  cell  islets"  

from  intestinal  crypts.  Cell  Rep,  2014.  6(6):  p.  1046-­‐58.  

29.   Ariyachet,  C.,  et  al.,  Reprogrammed  Stomach  Tissue  as  a  Renewable  Source  of  

Functional  beta  Cells  for  Blood  Glucose  Regulation.  Cell  Stem  Cell,  2016.  

18(3):  p.  410-­‐21.  

30.   Kaneto,  H.,  et  al.,  PDX-­‐1/VP16  fusion  protein,  together  with  NeuroD  or  Ngn3,  

markedly  induces  insulin  gene  transcription  and  ameliorates  glucose   tolerance.  Diabetes,  2005.  54(4):  p.  1009-­‐22.  

31.   Yechoor,  V.,  et  al.,  Neurogenin3  is  sufficient  for  transdetermination  of  hepatic  

progenitor  cells  into  neo-­‐islets  in  vivo  but  not  transdifferentiation  of   hepatocytes.  Dev  Cell,  2009.  16(3):  p.  358-­‐73.  

32.   Sekiya,  S.  and  A.  Suzuki,  Direct  conversion  of  mouse  fibroblasts  to  hepatocyte-­‐

like  cells  by  defined  factors.  Nature,  2011.  475(7356):  p.  390-­‐3.  

33.   Huang,  P.,  et  al.,  Induction  of  functional  hepatocyte-­‐like  cells  from  mouse  

fibroblasts  by  defined  factors.  Nature,  2011.  475(7356):  p.  386-­‐9.  

34.   Zhu,  S.,  et  al.,  Mouse  liver  repopulation  with  hepatocytes  generated  from  

human  fibroblasts.  Nature,  2014.  508(7494):  p.  93-­‐7.  

35.   Huang,  P.,  et  al.,  Direct  reprogramming  of  human  fibroblasts  to  functional  

and  expandable  hepatocytes.  Cell  Stem  Cell,  2014.  14(3):  p.  370-­‐84.  

36.   Du,  Y.,  et  al.,  Human  hepatocytes  with  drug  metabolic  function  induced  from  

fibroblasts  by  lineage  reprogramming.  Cell  Stem  Cell,  2014.  14(3):  p.  394-­‐403.  

37.   Pennarossa,  G.,  et  al.,  Brief  demethylation  step  allows  the  conversion  of  adult  

human  skin  fibroblasts  into  insulin-­‐secreting  cells.  Proc  Natl  Acad  Sci  U  S  A,  

(7)

 

38.   Katz,  L.S.,  E.  Geras-­‐Raaka,  and  M.C.  Gershengorn,  Reprogramming  adult  

human  dermal  fibroblasts  to  islet-­‐like  cells  by  epigenetic  modification  coupled   to  transcription  factor  modulation.  Stem  Cells  Dev,  2013.  22(18):  p.  2551-­‐60.  

39.   Thatava,  T.,  et  al.,  Chromatin-­‐remodeling  factors  allow  differentiation  of  bone  

marrow  cells  into  insulin-­‐producing  cells.  Stem  Cells,  2006.  24(12):  p.  2858-­‐

67.  

40.   Haumaitre,  C.,  O.  Lenoir,  and  R.  Scharfmann,  Directing  cell  differentiation  

with  small-­‐molecule  histone  deacetylase  inhibitors:  the  example  of  promoting   pancreatic  endocrine  cells.  Cell  Cycle,  2009.  8(4):  p.  536-­‐44.  

41.   Haumaitre,  C.,  O.  Lenoir,  and  R.  Scharfmann,  Histone  deacetylase  inhibitors  

modify  pancreatic  cell  fate  determination  and  amplify  endocrine  progenitors.  

Mol  Cell  Biol,  2008.  28(20):  p.  6373-­‐83.  

42.   Liu,  J.,  et  al.,  Direct  differentiation  of  hepatic  stem-­‐like  WB  cells  into  insulin-­‐

producing  cells  using  small  molecules.  Sci  Rep,  2013.  3:  p.  1185.  

43.   Lefebvre,  B.,  et  al.,  5'-­‐AZA  induces  Ngn3  expression  and  endocrine  

differentiation  in  the  PANC-­‐1  human  ductal  cell  line.  Biochem  Biophys  Res  

Commun,  2010.  391(1):  p.  305-­‐9.          

 

 

                                             

Referenties

GERELATEERDE DOCUMENTEN

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the

Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)..

Duration of antibiotic treatment and symptom recovery in community-acquired pneumonia.. El

The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an

Nadat hij dit voorbeeld behandeld had, wierp Fourier de vraag op of men ook een willekeurige periodieke functie f (t) – stel voor de eenvoud maar weer dat de periode van die functie

Mijn dank gaat in eerste instantie uit naar alle studenten theaterweten- schap van de Universiteit van Amsterdam die in de loop van vier jaar door hun deelname aan het onderwijs