• No results found

Mesenchymal stem cells in skeletal muscle regeneration Garza-Rodea, A.S. de la

N/A
N/A
Protected

Academic year: 2021

Share "Mesenchymal stem cells in skeletal muscle regeneration Garza-Rodea, A.S. de la"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Mesenchymal stem cells in skeletal muscle regeneration

Garza-Rodea, A.S. de la

Citation

Garza-Rodea, A. S. de la. (2011, September 28). Mesenchymal stem cells in skeletal muscle regeneration. Retrieved from https://hdl.handle.net/1887/17877

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17877

Note: To cite this publication please use the final published version (if applicable).

(2)

Stellingen behorend bij het proefschrift / Propositions as part of this thesis  Mesenchymal stem cells in skeletal muscle regeneration 

1.  In  an  in  vivo  model  of  ongoing  skeletal  muscle  regeneration/remodeling  human  mesenchymal  stem  cells  and/or  their  derivatives  continue  to  contribute  to  skeletal  muscle repair for long periods of time. (This thesis) 

2. Ageing of human mesenchymal stem cells may occur in different tissues at different  rates. (This thesis) 

3. The presence of human‐specific β‐spectrin and dystrophin in murine skeletal muscle  tissue treated with human mesenchymal stem cells following cardiotoxin injury argues  for the myogenic reprogramming of the donor cell nuclei. (This thesis) 

4. Since downregulation of MHC class I surface expression renders human mesenchymal  stem cells (hMSCs) vulnerable to recognition and cytolysis by natural killer cells, multiple  immune  evasion  strategies  are  likely  required  to  make  hMSCs  non‐immunogenic  and  thereby universally transplantable. (This thesis) 

5.  For  mesenchymal  stem  cells,  identifying  a  standardized  tissue  and  donor  source,  isolation  and  expansion  procedures,  definition  of  markers  to  improve  homogeneity,  dosing and administration site will affect their safety and efficacy in cell therapy. (Myers  et al. Expert Opin Biol Ther 2010;10:1663‐1679)  

6. Adult mesenchymal stem cells may not be as 'powerful' or diverse as embryonic stem  cells  may  one  day  become,  but  at  present  they  offer  many  advantages  for  developing  cellular  therapeutics:  ease  of  isolation,  expansion  potential,  stable  phenotype,  shippability,  and  compatibility  with  different  delivery  methods  and  formulations.  (Le  Blank and Pittinger. Cytotherapy 2005;7:36‐45)  

7.  The  unexpected  recall  of  autoreactive  dystrophin‐specific  T  cells  suggests  that  the  monitoring  of  cellular  immune  responses  should  be  a  priority  for  any  experimental  therapy  designed  to  increase  the  number  of  dystrophin‐positive  myofibers  in  patients  with Duchenne muscular dystrophy. (Mendell et al. N Engl J Med 2010;363:1429‐1437)  8. If there were no regeneration, there could be no life. If everything regenerated, there  would be no death. (Richard J. Goss) 

9.  Three  main  challenges  in  science  are:  getting  funds,  getting  results  and  getting  publications. 

(3)

10. Short, simple and precise are valuable qualities in research. 

11. To accept a challenge is not hard, to bring it to a good end is. 

12. To grow a red wood sequoia tree you need more than the right soil and water. 

Referenties

GERELATEERDE DOCUMENTEN

Chapter 2 Long-term contribution of human bone marrow mesenchymal 65 stromal cells to skeletal muscle regeneration in mice. Chapter 3 Myogenic properties of human mesenchymal

Minced skeletal muscle tissue has also been transplanted between normal and dystrophic mice to establish whether duchenne muscular dystrophy is caused by a myogenic or

The length of the bars represents the parts of the muscle where β-gal + cells (pale blue) or HMs (dark blue) were observed. Notice that β-gal + cells are detected at the ends of

We investigated both hairless and hairy mice, different pressure exposures (7 to 20 hours) and mice that suffered from hyperglycemia for different periods of time (15 to 35

Transplantation of different human stem cell types including pericytes 1 , satellite cells 1 , mesenchymal stem cells (MSCs) 2 and muscle precursor cells 3 into damaged

The effect of MHC class I surface expression on the engraftment of hMSCs in mice was addressed by comparing the persistence of RV-US11-eGFP- transduced hMSCs (US11-hMSCs) with that

The gradual increase over time of the frequency and size of clustered hybrid myofibers in damaged TAMs suggest that MSCs may acquire characteristics of myogenic precursor

When different properties are elucidated, targeting specific CSCs without affecting normal stem cells, for example the CSC-specific signaling pathways, would be