• No results found

University of Groningen Characterisation of the M-locus and functional analysis of the male-determining gene in the housefly Wu, Yanli

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Characterisation of the M-locus and functional analysis of the male-determining gene in the housefly Wu, Yanli"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Characterisation of the M-locus and functional analysis of the male-determining gene in the

housefly

Wu, Yanli

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Wu, Y. (2018). Characterisation of the M-locus and functional analysis of the male-determining gene in the housefly. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W., and Dobson, S.L. (2010). Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311.

Bachtrog, D. (2005). Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res. 15, 1393–1401.

Bachtrog, D. (2006). A dynamic view of sex chromosome evolution. Curr. Opin. Genet. Dev. 16, 578–585.

Bachtrog, D. (2013). Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124.

Bachtrog, D., and Charlesworth, B. (2002). Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416, 323–326.

Bachtrog, D., Hom, E., Wong, K.M., Maside, X., and de Jong, P. (2008). Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol. 9, R30.

Bachtrog, D., Mank, J.E., Peichel, C.L., Kirkpatrick, M., Otto, S.P., Ashman, T.-L., Hahn, M.W., Kitano, J., Mayrose, I., Ming, R., et al. (2014). Sex determination: why so many ways of doing it? PLOS Biol. 12, e1001899. Barrett, L.W., Fletcher, S., and Wilton, S.D. (2012). Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 69, 3613–3634. Berghammer, A.J., Klingler, M., and A. Wimmer, E. (1999). A universal marker for transgenic insects. Nature 402, 370–371.

Bernstein, P., and Ross, J. (1989). Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14, 373–377.

Beukeboom, L.W. (1995). Sex determination in Hymenoptera: a need for genetic and molecular studies. BioEssays 17, 813–817.

Beukeboom, L., and Perrin, N. (2014). The evolution of sex determination (Oxford University Press, Oxford.).

Beye, M., Hasselmann, M., Fondrk, M.K., Page, R.E., and Omholt, S.W. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114, 419–429.

Blackmon, H., Ross, L., and Bachtrog, D. (2017). Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 108, 78–93.

de Boer, J.G., Ode, P.J., Rendahl, A.K., Vet, L.E.M., Whitfield, J.B., and Heimpel, G.E. (2008). Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics 180, 1525–1535. Bopp, D. (2010). About females and males: continuity and discontinuity in flies. J. Genet. 89, 315–323.

Bopp, D., Saccone, G., and Beye, M. (2013). Sex determination in insects: variations on a common theme. Sex. Dev. 8, 20–28.

(4)

Burghardt, G., Hediger, M., Siegenthaler, C., Moser, M., Dübendorfer, A., and Bopp, D. (2005). The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Dev. Genes Evol. 215, 165– 176.

Burtis, K.C., and Baker, B.S. (1989). Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56, 997–1010.

Cakir, S., and Kence, A. (1996). The distribution of males having XY and XX chromosomes in housefly populations (Diptera: Muscidae) of Turkey. Genetica

98, 205–210.

Charlesworth, B. (1991). The evolution of sex chromosomes. Science 251, 1030– 1033.

Charlesworth, B. (1996). The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162.

Chen, J.-M., Cooper, D.N., Chuzhanova, N., Férec, C., and Patrinos, G.P. (2007). Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775.

Ciofi, C., and Swingland, I.R. (1997). Environmental sex determination in reptiles. Appl. Anim. Behav. Sci. 51, 251–265.

Coates, C.J., Turney, C.L., Frommer, M., O’Brochta, D.A., and Atkinson, P.W. (1997). Interplasmid transposition of the mariner transposable element in non-drosophilid insects. Mol. Gen. Genet. MGG 253, 728–733. Concha, C., and Scott, M.J. (2009). Sexual development in Lucilia cuprina (Diptera, Calliphoridae) is controlled by the transformer gene. Genetics 182, 785–798. Concha, C., Li, F., and Scott, M.J. (2010). Conservation and sex-specific splicing of the doublesex gene in the economically important pest species Lucilia cuprina. J. Genet. 89, 279–285. Conover, D.O., and Heins, S.W. (1987). Adaptive variation in environmental and genetic sex determination in a fish. Nature 326, 496–498.

Cook, J.M. (1993). Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71, 421–435.

Crespo, D.C., Lecuona, R.E., and Hogsette, J.A. (1998). Biological control: an important component in integrated management of Musca domestica (Diptera: Muscidae) in caged-layer poultry houses in Buenos Aires, Argentina. Biol. Control

13, 16–24.

Crozier, R.H. (1971). Heterozygosity and sex determination in haplo-diploidy. Am. Nat. 105, 399–412.

Denholm, I., Franco, M.G., Rubini, P.G., and Vecchi, M. (1983). Identification of a male determinant on the X chromosome of housefly (Musca domestica L.) populations in South-East England. Genet. Res. 42, 311–322.

(5)

variation in house-fly (Musca domestica L.) sex determinants within the British Isles. Genet. Res. 47, 19–27.

Dübendorfer, A., Hediger, M., Burghardt, G., and Bopp, D. (2003). Musca

domestica, a window on the evolution of sex-determining mechanisms in insects.

Int. J. Dev. Biol. 46, 75–79.

Erickson, J.W., and Quintero, J.J. (2007). Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLOS Biol. 5, e332. Este, S.V., and Rovati, C. (1982). Inheritance of the arrhenogenic factor Ag of

Musca domestica L. Bolletino Zool. 49, 269–278.

Feldmeyer, B., Kozielska-Reid, M.A., Kuijper, A.L.W., Weissing, F., Beukeboom, L., and Pen, I. (2008). Climatic variation and the geographical distribution of sex-determining mechanisms in the housefly. Evol. Ecol. Res. 10, 797–809. Feschotte, C., and Pritham, E.J. (2007). DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368.

Franco, M.G., Rubini, P.G., and Vecchi, M. (1982). Sex-determinants and their distribution in various populations of Musca domestica L. of Western Europe. Genet. Res. 40, 279–293.

Gallie, D.R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.

Gantz, V.M., and Bier, E. (2015). The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444. Gempe, T., Hasselmann, M., Schiøtt, M., Hause, G., Otte, M., and Beye, M. (2009). Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLOS Biol. 7, e1000222.

Hall, A.B., Basu, S., Jiang, X., Qi, Y., Timoshevskiy, V.A., Biedler, J.K., Sharakhova, M.V., Elahi, R., Anderson, M.A.E., Chen, X.-G., et al. (2015). A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270.

Hamm, R.L., Shono, T., and Scott, J.G. (2005). A cline in frequency of autosomal males is not associated with insecticide resistance in house fly (Diptera: Muscidae). J. Econ. Entomol. 98, 171–176.

Harland, R., and Misher, L. (1988). Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Dev. Camb. Engl. 102, 837–852.

Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., and Strüssmann, C.A. (2012). A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci. U. S. A. 109, 2955–2959.

Hediger, M., Minet, A.D., Niessen, M., Schmidt, R., Hilfiker-Kleiner, D., Çakır, Ş., Nöthiger, R., and Dübendorfer, A. (1998). The male-determining activity on the Y chromosome of the housefly (Musca domestica L.) consists of separable elements. Genetics 150, 651–661.

(6)

Hediger, M., Niessen, M., Wimmer, E.A., Dübendorfer, A., and Bopp, D. (2001). Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol. 10, 113–119.

Hediger, M., Burghardt, G., Siegenthaler, C., Buser, N., Hilfiker-Kleiner, D., Dübendorfer, A., and Bopp, D. (2004). Sex determination in Drosophila

melanogaster and Musca domestica converges at the level of the terminal

regulator doublesex. Dev. Genes Evol. 214, 29–42.

Hediger, M., Henggeler, C., Meier, N., Perez, R., Saccone, G., and Bopp, D. (2010). Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly. Genetics 184, 155–170.

Heim, R., Cubitt, A.B., and Tsien, R.Y. (1995). Improved green fluorescence. Nature 373, 663–664.

Hiroyoshi, T. (1964). Sex-limited inheritance and abnormal sex ratio in strains of the housefly. Genetics 50, 373–385.

Horn, C., and Wimmer, E.A. (2003). A transgene-based, embryo-specific lethality system for insect pest management. Nat. Biotechnol. 21, 64–70.

Horsfall, W.R., and Anderson, J.F. (1963). Thermally induce genital appendages on mosquitoes. Science 141, 1183–1184.

Imataka, H., and Sonenberg, N. (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17, 6940–6947.

Inoue, H., and Hiroyoshi, T. (1982). A male-determining factor on autosome 1 and occurrence of male-recombination in the housefly, Musca domestica L,. Jpn. J. Genet. 57, 221–229.

Inoue, H., Tomita, T., and Hiroyoshi, T. (1986). Location of fourth chromosomal male-determining factors of the housefly, Musca domestica. ResearchGate 61, 119–126.

Jakšić, A.M., and Schlötterer, C. (2016). The interplay of temperature and genotype on patterns of alternative splicing in Drosophila melanogaster. Genetics

204, 315–325.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.

Keiding, J. (1986). The house-fly: biology and control. World Health Organization. Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., Ishihara, G., Kawaoka, S., Sugano, S., Shimada, T., et al. (2014). A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509, 633–636.

Knipling, E.F. (1955). Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462.

(7)

Kondo, M., Nanda, I., Hornung, U., Schmid, M., and Schartl, M. (2004). Evolutionary origin of the medaka Y chromosome. Curr. Biol. 14, 1664–1669. Kozielska, M., Feldmeyer, B., Pen, I., Weissing, F.J., and Beukeboom, L.W. (2008). Are autosomal sex-determining factors of the housefly (Musca domestica) spreading north? Genet. Res. 90, 157–165.

Krafsur, E.S. (1998). Sterile insect technique for suppressing and eradicating insect population: 55 Years and counting. J. Agric. Entomol. 15, 303–317. Krzywinska, E., Dennison, N.J., Lycett, G.J., and Krzywinski, J. (2016). A maleness gene in the malaria mosquito Anopheles gambiae. Science 353, 67–69. Kuhn, S., Sievert, V., and Traut, W. (2000). The sex-determining gene doublesex in the fly Megaselia scalaris: conserved structure and sex-specific splicing. Genome 43, 1011–1020.

Lagos, D., Koukidou, M., Savakis, C., and Komitopoulou, K. (2007). The

transformer gene in Bactrocera oleae: the genetic switch that determines its sex

fate. Insect Mol. Biol. 16, 221–230.

Li, Y.-C., Korol, A.B., Fahima, T., Beiles, A., and Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453–2465. Lindquist, D.A., Abusowa, M., and Hall, M.J. (1992). The New World screwworm fly in Libya: a review of its introduction and eradication. Med. Vet. Entomol. 6, 2– 8. Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476. Lynch, M., and Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends Genet. TIG 20, 544–549.

Malik, A., Singh, N., and Satya, S. (2007). House fly (Musca domestica): A review of control strategies for a challenging pest. J. Environ. Sci. Health Part B 42, 453– 469.

Marı́n, I., and Baker, B.S. (1998). The evolutionary dynamics of sex determination. Science 281, 1990–1994.

Mcdonald, I. c, Evenson, P., Nickel, C.A., and Johnson, O.A. (1978). House fly genetics: isolation of a female determining factor on chromosome 4. Ann. Entomol. Soc. Am. 71, 692–694.

Metz, C.W. (1916). Chromosome studies on the Diptera. II. The paired association of chromosomes in the Diptera, and its significance. J. Exp. Zool. 21, 213–279. Mimoto, M.S., and Christian, J.L. (2011). Manipulation of gene function in Xenopus

laevis. Methods Mol. Biol. 770, 55–75.

Munhenga, G., Brooke, B.D., Gilles, J.R.L., Slabbert, K., Kemp, A., Dandalo, L.C., Wood, O.R., Lobb, L.N., Govender, D., Renke, M., et al. (2016). Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory

(8)

and semi-field conditions: steps towards the use of the sterile insect technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasites& Vectors 9. Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z., Haaf, T., Shimizu, N., Shima, A., et al. (2002). A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. 99, 11778–11783.

Ohbayashi, F., Suzuki, M.G., Mita, K., Okano, K., and Shimada, T. (2001). A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128, 145–158.

Oliveira, D.C.S.G., Werren, J.H., Verhulst, E.C., Giebel, J.D., Kamping, A., Beukeboom, L.W., and Van De Zande, L. (2009). Identification and characterization of the

doublesex gene of Nasonia. Insect Mol. Biol. 18, 315–324.

O’Neil, M.T., and Belote, J.M. (1992). Interspecific comparison of the transformer gene of Drosophila reveals an unusually high degree of evolutionary divergence. Genetics 131, 113–128.

Ospina-Álvarez, N., and Piferrer, F. (2008). Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLOS ONE 3, e2837.

Pane, A., Salvemini, M., Bovi, P.D., Polito, C., and Saccone, G. (2002). The

transformer gene in Ceratitis capitata provides a genetic basis for selecting and

remembering the sexual fate. Development 129, 3715–3725.

Peichel, C.L., Ross, J.A., Matson, C.K., Dickson, M., Grimwood, J., Schmutz, J., Myers, R.M., Mori, S., Schluter, D., and Kingsley, D.M. (2004). The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr. Biol. 14, 1416–1424. Pires-daSilva, A. (2007). Evolution of the control of sexual identity in nematodes. Semin. Cell Dev. Biol. 18, 362–370. Ponting, C.P. (2000). Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem. Sci. 25, 423–426. Ramos, D.M., Kamal, F., Wimmer, E.A., Cartwright, A.N., and Monteiro, A. (2006). Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter. BMC Dev. Biol. 6, 55. Reisser, C.M.O., Fasel, D., Hürlimann, E., Dukič, M., Haag-Liautard, C., Thuillier, V., Galimov, Y., and Haag, C.R. (2017). Transition from environmental to partial genetic sex determination in Daphnia through the evolution of a female-determining incipient W chromosome. Mol. Biol. Evol. 34, 575–588. Rey, R., Lukas-Croisier, C., Lasala, C., and Bedecarrás, P. (2003). AMH/MIS: what we know already about the gene, the protein and its regulation. Mol. Cell. Endocrinol. 211, 21–31.

(9)

Rice, W.R. (1996). Evolution of the Y sex chromosome in animals. BioScience 46, 331–343.

Robinson, A.S. (2002). Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica 116, 5–13.

Rosales, A.L., Krafsur, E.S., and Kim, Y. (1994). Cryobiology of the face fly and house fly (Diptera: Muscidae). J. Med. Entomol. 31, 671–680.

Ruiz, M.F., Eirín-López, J.M., Stefani, R.N., Perondini, A.L.P., Selivon, D., and Sánchez, L. (2007a). The gene doublesex of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. Dev. Genes Evol. 217, 725–731.

Ruiz, M.F., Milano, A., Salvemini, M., Eirín-López, J.M., Perondini, A.L.P., Selivon, D., Polito, C., Saccone, G., and Sánchez, L. (2007b). The gene transformer of

Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. PLOS

ONE 2, e1239. Saccone, G., Pane, A., Simone, A.D., Salvemini, M., Milano, A., Annunziata, L., Mauro, U., and Polito, L.C. (2007). New sexing strains for Mediterranean fruit fly Ceratitis capitata: transforming females into males. In Area-Wide Control of Insect Pests, pp. 95–102. Saccone, G., Salvemini, M., Pane, A., and Polito, L.C. (2008). Masculinization of XX Drosophila transgenic flies expressing the Ceratitis capitata DoublesexM isoform. Int. J. Dev. Biol. 52, 1051–1057. Salvemini, M., Mauro, U., Lombardo, F., Milano, A., Zazzaro, V., Arcà, B., Polito, L.C., and Saccone, G. (2011). Genomic organization and splicing evolution of the

doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue

and yellow fever mosquito Aedes aegypti. BMC Evol. Biol. 11, 41.

Sánchez, L. (2004). Sex-determining mechanisms in insects. Int. J. Dev. Biol. 52, 837–856.

Sarre, S.D., Georges, A., and Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26, 639– 645.

Scali, C., Catteruccia, F., Li, Q., and Crisanti, A. (2005). Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene. J. Exp. Biol. 208, 3701– 3709.

Schmidt, R., Hediger, M., Nöthiger, R., and Dübendorfer, A. (1997). The mutation

masculinizer (man) defines a sex-determining gene with maternal and zygotic

functions in Musca domestica L. Genetics 145, 173–183.

Scott, J.G., Warren, W.C., Beukeboom, L.W., Bopp, D., Clark, A.G., Giers, S.D., Hediger, M., Jones, A.K., Kasai, S., Leichter, C.A., et al. (2014). Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 15, 466.

Sharma, A., Heinze, S.D., Wu, Y., Kohlbrenner, T., Morilla, I., Brunner, C., Wimmer, E.A., Zande, L. van de, Robinson, M.D., Beukeboom, L.W., et al. (2017). Male sex in

(10)

houseflies is determined by Mdmd, a paralog of the generic splice factor gene

CWC22. Science 356, 642–645.

Shearman, D.C.A., and Frommer, M. (1998). The Bactrocera tryoni homologue of the Drosophila melanogaster sex-determination gene doublesex. Insect Mol. Biol.

7, 355–366.

Sheng, G., Thouvenot, E., Schmucker, D., Wilson, D.S., and Desplan, C. (1997). Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 11, 1122–1131.

Shukla, J.N., and Palli, S.R. (2012a). Doublesex target genes in the red flour beetle,

Tribolium castaneum. Sci. Rep. 2, 948.

Shukla, J.N., and Palli, S.R. (2012b). Sex determination in beetles: production of all male progeny by Parental RNAi knockdown of transformer. Sci. Rep. 2, 602. Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., and Lukyanov, S.A. (1995). An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23, 1087–1088.

Steckelberg, A.-L., Boehm, V., Gromadzka, A.M., and Gehring, N.H. (2012). CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2, 454–461.

Stevens, N.M. (1908). A study of the germ cells of certain diptera, with reference to the heterochromosomes and the phenomena of synapsis. J. Exp. Zool. 5, 359– 374.

Strüssmann, C.A., Saito, T., Usui, M., Yamada, H., and Takashima, F. (1997). Thermal thresholds and critical period of thermolabile sex determination in two altherinid fishes, Odontesthes bonariensis and Patagonina Hatcheri. J. Exp. Zool.

278, 167–177.

Tange, T.Ø., Nott, A., and Moore, M.J. (2004). The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284.

Tomita, T., and Wada, Y. (1989). Multifactorial sex determination in natural populations of the housefly (Musca domestica) in Japan. Jpn. J. Genet. 64, 373– 382.

Traut, W., and Willhoeft, U. (1990). A jumping sex determining factor in the fly

Megaselia scalaris. Chromosoma 99, 407–412.

Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509– 544.

Verhulst, E.C., van de Zande, L., and Beukeboom, L.W. (2010). Insect sex determination: it all evolves around transformer. Curr. Opin. Genet. Dev. 20, 376– 383.

Wagoner, D.E. (1969). Presence of male determining factors found on three autosomes in the house fly, Musca domestica. Nature 223, 187–188.

van Wilgenburg, E., Driessen, G., and Beukeboom, L.W. (2006). Single locus complementary sex determination in Hymenoptera: an “unintelligent” design?

(11)

Front. Zool. 3, 1.

Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., and Guiguen, Y. (2012). An immune-related gene evolved into the master sex-determining gene in Rainbow Trout, Oncorhynchus mykiss. Curr. Biol. 22, 1423–1428. Yoshimoto, S., Okada, E., Umemoto, H., Tamura, K., Uno, Y., Nishida-Umehara, C., Matsuda, Y., Takamatsu, N., Shiba, T., and Ito, M. (2008). A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A. 105, 2469–2474.

Referenties

GERELATEERDE DOCUMENTEN

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the

Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)..

The research described in this thesis was carried out in the Evolutionary Genetics group at the Centre for Ecology and Evolutionary Studies (CEES ) and from

This candidate male-determining gene from the M III strain (M-locus on autosome III) was named Mdmd (for Musca domestica male determiner) and a BLAST search

In addition, some sequences are always interspersed by identical or similar genomic sequences that exist in both the male and the female genome, indicating that amplification of

Comparison of Mdmd protein sequences and its paralog CWC22/NCM revealed that Mdmd protein sequences have a closer phylogenetic relationship with Md-NCM, suggesting that the