• No results found

Tunable capacitance in all-inkjet-printed nanosheet heterostructures

N/A
N/A
Protected

Academic year: 2021

Share "Tunable capacitance in all-inkjet-printed nanosheet heterostructures"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

EnergyStorageMaterials36(2021)318–325

ContentslistsavailableatScienceDirect

Energy

Storage

Materials

journalhomepage:www.elsevier.com/locate/ensm

Tunable

capacitance

in

all-inkjet-printed

nanosheet

heterostructures

Yang

Wang

a

,

Mohammad

Mehrali

a

,

Yi-Zhou

Zhang

b

,

Melvin

A.

Timmerman

a

,

Bernard

A.

Boukamp

a

,

Peng-Yu

Xu

a

,

Johan

E.

ten

Elshof

a,∗

a University of Twente, MESA + Institute for Nanotechnology, P. O. Box 217 7500AE Enschede, the Netherlands

b School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

a

b

s

t

r

a

c

t

Heterostructuresconstructedfromtwo-dimensional(2D)buildingblockshaveshownpromiseforfield-effecttransistors,memorydevices,photosensorsandother electronicapplications.2Dnanosheetcrystalsaretypicallyconstructedintomultilayerheterostructuresusinglayer-by-layermethods,whichcannotbeusedto fabricatelarge-scaleandthickheterostructures,duetothetime-consumingnatureandlowefficiencyoftheprocess.Analternativeapproachtodepositdifferent2D materialsinthecontrollablefashionisbyinkjetprinting.Hereweshowthefabricationofsupercapacitorsbasedon2DheterostructuresbyinkjetprintingTi3C2Tx

MXenenanosheetsaselectrodes,followedbyinkjetprintinggrapheneoxidenanosheetsassolid-stateelectrolyte.Thefreewatermoleculestrappedbetweengraphene oxidesheetsfacilitateprotonmovementthroughthelayeredsolidelectrolyte.Theas-madeheterostructuresshowhigharealcapacitance,goodcyclingstabilityand higharealenergyandpowerdensitiescomparablewithexistingprintedsupercapacitors.Moreover,thespecificcapacitancecanbeincreasedfurtherbyadditionof liquidelectrolytes.

1. Introduction

Two-dimensionalheterostructureswithverticalstacking configura-tionsareusefulforavastrangeofapplicationsduetotheirexciting prop-erties,suchassuperconductivity,magnetismandoptoelectronic prop-erties[1,2].However,2Dheterostructuresforenergystorage applica-tionhashithertoremainedunexplored.Wearguethatverticalstacking different2D materialsintoheterostructurescreatenewopportunities forenergystoragebycombiningtheadvantagesofindividualmaterials whileovercomingthelimitations[3].

Mechanicalexfoliationofthree-dimensionallayeredcompounds fol-lowedby drytransferof each 2Dnanosheetontoa substrateisstill themaintechniqueforvertical2Dheterostructurefabrication[4].The advantage of thistechnique is thatatomicallythin high-quality het-erostructurescanberealizedonasmallscale.However,thistechnique cannotbeappliedtofabricate2Dheterostructuresonalargescale. So-lutionprocessingmethodssuchasspraycoatingandvacuumfiltration havebeenattempted,butthesemethodsofferpoorcontrolover inter-faceandsurfaceroughness,resultingin poordeviceperformance[3]. Inkjetprinting,asimple,low-costandversatiletechnique,[5-9]provides analternativeroutetothefabricationoflarge-scalevertical heterostruc-tureswithcontrolledthickness,interface,roughnessandwell-designed configuration[10,11].Recently,variousheterostructure-baseddevices basedonprinted2Dmaterialssuchasfield-effecttransistors,[12] ca-pacitors,[13]photosensorsandmemorydevices[10]havebeen demon-strated.However,printedheterostructuresforenergystorage remain unexplored.Furthermore,realizingwell-controlledandsharpinterfaces stillpresents asignificantchallengeforprintedheterostructures.Full

Correspondingauthor.

E-mail address: j.e.tenelshof@utwente.nl(J.E.tenElshof).

controlovertheheterostructureinterfaceiskeytoachievinghigh per-formance,whichincludesavoidingredispersionofnanosheetsfromthe interfaceupondepositionofasubsequentlayer.Thepreparationof non-toxic, stableandprintable2Dinksisanothercriticalissueforinkjet printing.

2Dtransitionmetalcarbidesornitrides(MXenes)withgeneral for-mulaMn +1Xn Tx (n=1,2,3,4),whereMisanearlytransitionmetal,

Xiscarbonand/ornitrogenandTx aresurfaceterminalgroupslike-F, -O,or-OH,havebeenattractingtremendousattentionrecentlydueto theiroutstandingchemicalandphysicalproperties[14,15].MXeneswith atomicthicknessandhighelectricalconductivityhavebeenwidely stud-iedforapplicationinhydrogelsensors,[16]solarcells[17]and superca-pacitors(SCs)[18,19].MXeneshavebeencombinedwithother2D ma-terialsintomulti-materialstructureswithtunablepropertiesand func-tionalities,showingpromiseforenergystorageapplications[3]. Com-parewithother2Dmaterials,theoutstandingpropertiesofMXeneslike hydrophilicity,highelectricconductivityandexcellentdispersion qual-itymakethemsuitableforinkjetprinting[20].Ontheotherhand, hy-dratedgrapheneoxide(GO)nanosheetsareelectricallyinsulatingbut exhibithighionicconductivitywhichvariesbetween5×10-6Scm-1

and4×10-3Scm-1,suggestingtheirpotentialassolid-stateelectrolyte

andseparator.Asdemonstratedbyseveralgroups,GOnanosheetsshow high ionic conductivitywhile being electronically insulating[21-23]. Thesourceofionsforionicconductivityaretheprotonsthatarisefrom thehydrolysisofthefunctionalgroups(carboxyl,sulphonicacidand/or hydroxyl)presentonhydratedGO[21].Theprotonstransportviathe hydrogen-bonding networkor movingfreely in thehydronium form withinGOfilm[21].

https://doi.org/10.1016/j.ensm.2021.01.009

Received28September2020;Receivedinrevisedform9January2021;Accepted11January2021 Availableonline12January2021

(2)

Fig.1.Schematicillustrationofall-inkjet-printing-basedheterostructureSSC(top)andMSC(bottom)supercapacitors.Water-basedadditive-freeMXeneinkwas firstinkjetprintedintothinfilmsandinterdigitatedconfigurationsaselectrodes,followedbyinkjetprintingawater-basedGOinkontopofinterdigitatedMXene electrodestoformanall-solid-stateMSC(bottom).AsecondMXeneelectrodewasinkjetprintedontopofthesolid-stateGOelectrolytetocompletethefabrication processofanall-solid-stateSSC(above).

Owingtothewiderangeofphysicalpropertiespresentin2D materi-als,[24]wedemonstrateherethatacombinationof2Dmaterialscanbe usedtorealizeanall-solid-statesupercapacitor,withoutanyliquidorgel electrolytepresentinthesystem.Inthiswork,weusedawater-based additive-freeMXeneinktoinkjet printelectrodes andcurrent collec-torsonpolyimidesubstrates,andawater-basedGOinktoinkjet-print thesolid-stateelectrolyte.Bothsandwichedsupercapacitors(SSCs)and micro-supercapacitordevices(MSCs)wereprintedonflexiblepolyimide substrates(Fig.1).TheSSCsachievedspecificarealcapacitances(CA)

upto9.8mFcm-2atacurrentdensityof40μAcm-2.Theadditionof

aqueouselectrolytesledtoanenhancementofCA,duetotheimproved

ionicconductivityoftheelectrolyteresultingfromthepresenceof ad-ditionalionsandaliquidphase.

2. ExperimentalSection

2.1. PreparationofMXeneink

Titaniumcarbide(Ti3C2Tx )MXenewassynthesizedfollowingamild etchingmethodasoutlinedelsewhere[25].Typically,theetchant solu-tionwaspreparedbydissolving3.2goflithiumfluoride(LiF, Sigm-Aldrich,−300meshpowder,98.5%)in40mLof9MHCl(Sigm-Aldrich, 37%solutioninwater).Subsequently,2gofsievedTi3AlC2powder(400 mesh)wasslowlyaddedtotheetchantsolutionoverthecourseof10 minandthereactiontemperaturewaskeptat35°C.Afterreactionfor 24h,theresultantwaswashedwithdeionizedwaterrepeatedlyand de-laminatedmanuallybyhandshakingagitationtoobtainTi3C2Tx MXene suspension.Thepreparedsolutionwasstoredinanitrogen-sealedvial andusedastheMXeneink.

2.2. Preparationofgrapheneoxide(GO)nanosheetsink

Graphite oxidewas synthesized from naturalgraphite (Nord-Min 802,ChemicalSchmitsSolutions)byamodifiedHummersmethod[26]. Graphite(2g)wasaddedto50mLconcentratedsulfuricacid(Fluka) ina1000mLflaskunderstirringinanicebathfor2h.Then7g potas-siumpermanganate(Merck)wasslowlyaddedtothesuspensionunder vigorousstirringtokeepthetemperatureofthemixtureunder10°C.

Themixturewastransferredtoa35°Coilbathunderstirringfor20h, yieldingathickpaste.Afterthemixturehadcooleddowntoroom tem-perature,100mLDIwaterwasslowlyaddedwithvigorousstirringfor 2hwhilekeepingtheflaskinanicebath.Anadditional500mLDI wa-terwasadded,followedbyadditionof15mLH2O2(30wt%,Aldrich)

untilnofurtherbubblescameout.Themixturewaswashedby1:10 HCl(37%,Acrosorganics)solution(250mL)toremovemetalions,and subsequentlywithDIwatertoapHaround6.Theresultingsolidwas freezedried.ThefreezedriedgraphiteoxidepowderwasdispersedinDI waterbyultrasonicationfor2htogetaGOsuspension.Toincreasethe GOconcentration,theGOsuspensionwascentrifugedat15000gfor1 h.Thecollectedsedimentwasre-dispersedinprintingsolvent contain-ing0.06wt%TritonX-100(Sigma-Aldrich)and1:10propyleneglycol (Sigma-Aldrich):waterbymass.

2.3. Inkjetprinting

AllpatternsanddeviceswereinkjetprintedbyaDimatixDMP-2800 inkjetprinter(FujifilmDimatix),whichwasequippedwitha10pL car-tridge(DMC-11610).ToperformAFMmeasurementsonsingledroplets, theMXeneandGOinkswereinkjetprintedonSi/SiO2withadrop

spac-ingof80μmat30°C.Fortheelectricalconductivitymeasurements,the MXeneinkwasprintedat30°ConSi/SiO2asathinfilmwithsize5mm

by5mmandvaryingnumbersoflayersatadropspacingof20μm.The substrates includingpolyimide andSi/SiO2 werecleanedbyethanol, acetone,isopropanolandwaterfollowedbyO2plasmatreatmentfor5

minbeforeprinting.

Tofabricateall-inkjet-printed solid-statesandwiched supercapaci-tors,theMXeneinkwasfirstprintedat30°Casbottomelectrodeon polyimidesubstratewithadropspacingof20μmfollowedbydrying at50°Cfor1h.ThenGOinkwasprintedontopofMXeneelectrode withadropspacingof20μmat30°Cfollowedbydryingat50°Cfor 1h.Finally,theMXeneinkwasprintedat30°ConGOelectrolyteas topelectrodewithadropspacingof20μm.Itisworthnotingthatthe GOelectrolyteareaislargerthantheMXeneelectrodetoprevent short-circuiting.

Tomakeall-inkjet-printedsolid-statemicro-supercapacitors,the MX-eneinkwasprintedwithaninterdigitatedconfigurationonpolyimide

(3)

Y. Wang, M. Mehrali, Y.-Z. Zhang et al. Energy Storage Materials 36 (2021) 318–325 substrateasinterdigitatedelectrodesat30°Cwithdifferentlayersata

dropspacingof20μmusing2nozzles,followedbydryingat50°Cfor1 h.Then,theGOinkwasprintedat30°ContopoftheMXeneelectrodes atadropspacingof20μm.

2.4. Electrochemicalcharacterization

Allelectrochemicalcharacterizationswereconductedonan Auto-labworkstation(PGSTAT128N).Bothmicro-supercapacitorsand sand-wichedsupercapacitorswerecharacterizedinatwo-electrode configu-ration.Electrochemicalimpedancespectroscopywasperformedby ap-plyinganACvoltageof10mVamplitudeinthefrequencyrangefrom 0.01Hzto10kHz.

2.5. Materialscharacterization

X-raydiffraction(XRD)analysiswasdonewithaPANalyticalX’Pert ProwithCuK𝛼 radiation(𝜆=0.15405nm).AtomicForceMicroscopy (AFM) (Veeco Dimension Icon) was conducted in standard tapping mode.TheAFMdatawereanalyzedbyGwyddion(version2.47) soft-ware.X-rayphotoelectronspectroscopy(XPS)wasconductedusingan OmicronNanotechnologyGmbH(OxfordInstruments)surfaceanalysis systemwithaphotonenergyof1486.7eV(AlK𝛼 X-raysource)witha scanningstepsizeof0.1eV.Thepassenergywassetto20eV.The spec-trawerecorrectedusingthebindingenergyofC1softhecarbonresidual onnanosheetsasareference.Ramanspectroscopywasperformedona BrukerSenterraRamanspectrometerusinga532nmlaserunder ambi-entconditions.Highresolutionscanningelectronmicroscopy(HRSEM; ZeissMERLIN)wasperformedtoacquireinformationofprintedMXene andGOfilms.Thesurfacetensionoftheinkswasmeasuredbyacontact anglesystemOCA(DataPhysicsCorporation).Theviscosityoftheinks wasdeterminedbyanAutomatedMicroviscometerAMVn(AntonPaar GmbH).

TheelectricalconductivityofprintedMXenefilmsonSi/SiO2 was

measuredinaVanderPauwgeometrybyPhysicalProperties Measure-mentSystem(PPMS)at300K.Copperwireswerebondedonfour cor-nersofprintedMXenefilmsbysilverpaste.Rswascalculatedfromthe

followingEq.(1):

𝑅s=𝜋𝑅∕ln2 (1)

Thespecificarealcapacitance(CA)ofdeviceswascalculatedfrom

theGCDcurvesbyusingEq.(2):

𝐶A=

[

𝐼∕(d𝑉∕d𝑡)]∕𝐴device (2)

whereIisthedischargecurrent,dV/dtistheslopeofdischargecurve, andAdevice referstothetotalgeometricalsurfaceareaof thedevices

includingtheelectrodesandthegapbetweentheelectrodes. Thearealenergydensities(EA,μWhcm-2)andpowerdensities(P

A,

μWcm-2)werecalculatedfromEqs.(3)and(4)

𝐸A=𝐶A𝑉2∕(2× 3.6) (3)

𝑃A=3600×𝐸A∕Δ𝑡 (4)

WhereΔtreferstodischargetime. 3. Resultanddiscussion

Additive-freewater-basedMXeneandGOinksweresuccessfully pre-paredasshowninFig.2a.DuetoitshighGOconcentration,theGOink hasadarkbrowncolor. ThethicknessofMXeneandGOnanosheets weredeterminedbyatomicforcemicroscopy(AFM)tobearound1.5 nmand1nm,respectively,indicatingaunilamellarstructureforboth types(SupplementaryFig.S1a,b).ThelateralsizesofMXeneandGO nanosheetsestimatedfromAFMimageswereabout0.76μmfor MX-enenanosheets and0.78μmforGOnanosheets (SupplementaryFig.

S1c)[27].Toevaluatetheinkprintability,theinverseOhnesorge num-berZ,whichisdefinedas𝑍=(𝛼𝜌𝛾)1∕2𝜂,wasemployed.Here,𝛼 isthe

nozzlediameter,𝜌 isthedensity,𝛾 isthesurfacetension,and𝜂 isthe viscosityofthefluid.ThesurfacetensionandviscosityofMXeneink were80.3mNm-1and1.4mPas,respectively.Thenozzlediameterof

21.5μmandthevalueofsurfacetension,viscosityresultinaZvalue of about30 forMXeneink. ThesurfacetensionandviscosityofGO inkswere129.4mNm-1and20.2mPas,respectively,leadingtoaZ

valueofabout3.TheZvaluethatiscommonlyusedtoevaluatethe inkprintabilityisbasedonatheoreticalmodelwithseveralsimplifying assumptions[28].Theinkisexpectedtobeprintableif1<Z<10[29]. However,inreality therehavebeenmanyexamplesof inksthatcan be consistentlyejected withnocloggingissuesforalongtimewhile havingaZvaluewelloutsidethatrange.Forinstance,awater/Triton X-100inkwaseasilyejectedandstableduringprintingwithZvalueof 20[10].SothefactthatourinkcanbeprintedwhilehavingaZvalue outside therange1-10showsthat thecommonlyusedtheory appar-entlyhasitslimitations.This hasalreadybeenrecognizedbyseveral otherauthors[30,31]includingourselves[32]. TheZvalueof MXene inkwasalsolargerthantherecommendedvaluerange(1<Z<10) forinkjetprinting.Stroboscopicimagesofinkdropletformation ver-sustimeillustratedthequalityoftheinks(SupplementaryFig.S2).No satellitedropletswereobservedforMXeneandGOinks.Therefore, MX-eneinkissuitableforinkjetprintingwithoutsatellites,irrespectiveof theactualZvalue.Toachieveahighqualityinkjetprintingprocess,the preparationofprintableandstableinksisveryimportant.Water-based MXeneinkwithoutanyadditivesshowedhighlystableprinting behav-iorduringjetting,whichmaybeattributedtothepresenceoffunctional groupslike–O,-OHand-FonthesurfaceofMXenesheets (Supplemen-taryFig.S2a)thathelpdispersioninwater.ToprepareaprintableGO ink,TritonX-100wasaddedtothewater-basedgrapheneoxideinkin ordertooptimizetheinksurfacetension[10].AsshowninFig.S2b,no satellitedropletsweregeneratedduringjetting,indicatingaprintable andstableGOink.Bothinksshowedgoodwettingonsiliconsubstrates, asconfirmedbyAFMmappings,andthecross-sectionalprofileofthe AFMimagesfurtherconfirmedtheuniformdepositionofbothMXene andGOinks(SupplementaryFig.S3)[27].ThewrinklesinprintedGO dropletswerecausedbyinteractionsbetweenadjacentGOsheets[33]. Fig.2bshowstwoexamplesofprintedpatternsobtainedbyMXeneink onflexiblepolyimidesubstrate,demonstratingflexibilityinpattern de-signandlargeareacoatingwithmultipleprintingpasses.Thescanning electronmicroscopy(SEM)imagesofprintedMXene(Fig.2c)andGO (Fig.2d) nanosheetfilms onSi/SiO2 substrates showuniformity and

continuityoverlargesurfaceareas.Itisworthnotingthatthesheetsin bothprintedfilmsshowedahighdegreeofhorizontalorientationanda layer-by-layerstructure,whichwillfacilitatethetransportofelectrolyte ionsinin-planestructureddevicessuchasMSCs.AsshowninFig.2e, theXRDpatternofaprintedMXenefilmshowsstrongorderinginthec

directionwitha(002)peakat6.8°,thusconfirmingthehorizontal ori-entationofnanosheetsinprintedfilms[27].Thesmalleranglethanin dryMXenefilms,wherethesamepeakisat8.9° (SupplementaryFig. S4a),indicateswiderspacingbetweenthelayersintheprintedfilmand intercalationofspatiallyconfinedH2Omolecules[27,34].TheXRD

pat-ternofaprintedGOfilmshowsapeakat2𝜃 =9.6°,whichcorresponds withadspacingof0.92nm,suggestingthatelectrolyteiontransportis predominantinhorizontalratherthaninverticaldirection.Thesheet resistanceRsofprintedMXenefilmscouldbetunedbythenumberof printedlayers.AsshowninFig.2f,theRsofMXenefilmsonSi/SiO2

sub-stratesdecreasedrapidlyfrom116.7Ωsq-1(printedlayers<N>=1)to

around5.9Ωsq-1(<N>=40)withaninkconcentrationofaround4.5

mgml-1[27].

Thesolid-statesymmetricalSSCsconsistofaprintedsolid-stateGO electrolytesandwichedbetweentwoprintedMXeneelectrodes(Fig.1, SupplementaryFig.S6a,c).Aclearboundarybetweenelectrolyteand electrodescanbeidentified,demonstratingwell-definedspatial separa-tionbetweenthephases(SupplementaryFig.S6b).Toavoidremixing

(4)

Fig.2. CharacterizationofMXeneandGOnanosheets.(a)Opticalimageofwater-basedMXeneandGOinks.(b)Inkjetprinted“MESA+INSTITUTEFOR NAN-OTECHNOLOGY” logoandword“MXene” usingMXeneinkonpolyimidesubstratewithmultipleprintinglayers.Cross-sectionalSEMimageof(c)printedMXene and(d)GOfilmsonSi/SiO2substrates.(e)XRDpatternofprintedMXeneandGOfilmsonsiliconsubstrates.(f)Sheetresistance R sasfunctionofthenumberof

printedMXenelayers(5by5cm2)onSi/SiO

2.TheinsetshowsaschematicrepresentationofthesheetresistivityasmeasuredbytheVanderPauwmethod.Theink

concentrationwasaround4.5mgmL-1.

ofnanosheetsattheprintedinterfaces,printednanosheetlayerswere solidifiedbyheatingat50°Cfor1hbeforeprintinganothermaterialon top.Cross-sectionalSEManalysisindicatedanintimateandstable con-tactbetweentheMXeneelectrodesandtheGOelectrolyte(Fig.3a, Sup-plementaryFig.S6d-f).ThegoodadhesionattheGO/MXeneinterface canbeexplainedbystrongattractiveinteractionsbetweenpolar oxygen-containingfunctionalgroupspresentonthesurfaceofGO,e.g.O,OHor COOH,andthehighlypolarsurfaceofTi3C2Tx(T=O,OH,F;terminal

groups).Achievingwellcontrolledandsharpinterfacesisasignificant challengeforprintedheterostructures.Theinterfaceplaysanimportant roleindeviceperformance.Addingbinderssuchasxanthanguminto inkshasbeendemonstratedtocontrolthestructureoftheinkjetprinted heterostructureinterface[10].However,theperformancecouldalsobe affectedbythepresenceof(organic)binders.Annealingprinted het-erostructuresathightemperaturescanleadtoremovalofthebinder, butitlimitsthechoiceofsubstratestothermallystableones.Here,we successfullyinkjetprintedverticalheterostructureswithoutanysignof re-dispersionattheinterfacebydryingtheprintedpatternsbefore print-ingthenextlayerwithdifferentnanosheets.Dryingwasperformedat 50°C,whichisarelativelylowtemperatureandisapplicabletomost substratesincludingpaperandpolymersubstrates.Thetop-viewSEM imageofaMXeneelectrodeshowscontinuousfeaturesofprinted elec-trodeswithoutcracksorpinholes,illustratingthehighqualityofprinted films(Fig.3b).Duetothehighresolutionbroughtbyinkjetprinting,all printed30LSSCsexhibitedalowrootmeansquareroughness(RMS)of ≈130±25nmatadevicethicknessofaround4μm(Fig.3c).Element mappingsfromenergy-dispersivex-rayspectroscopy(EDS)further con-firmthestableandsharpinterfacebetweenMXeneelectrodesandGO electrolyte(SupplementaryFig.S7).Toinvestigatetheelectrochemical performancesofall-inkjet-printedSSCs,MXeneelectrodeswith

thick-nessesof10and30printedlayers(fromhereonreferredtoas10LSSC and30LSSC,respectively)werefabricated.AsshowninFig.3d,30LSSC showsahigherspecificcapacitancethan10LSSCfromcyclic voltamme-try(CV)atscanrateof10mVs-1[27].Thequasi-rectangularCVcurves

showthepseudo-capacitivebehaviorofthedevices.Morespecifically, 30LSSCstillexhibitsaquasi-rectangularshapeevenathighscanrate (SupplementaryFig.S8a,c).Galvanostaticcharge/discharge(GCD)data ofbothdevicesatcurrentdensitiesrangingfrom40-200μAcm-2

(Sup-plementaryFig.S8b,d)areshowninFig.3e[27].The30LSSCexhibits

CAashighas9.8mFcm-2atcurrentdensityof40μAcm-2,while10L

SSCexhibitsCAof3mFcm-2atsamecurrentdensity,indicatingthat

CAisroughlyproportionalwiththenumberofprintedMXenelayers.

Thus,theentireelectrodescontributetothechargestorageprocess,and protontransportisnothinderedbyincreasingelectrodethickness.

Bothtypesofdeviceswerecharacterizedwithoutliquidelectrolyte. The mobile electrolyte which are protons ions needed for charg-ing/dischargingthesedevicesarethereforethoughttoarisefromthe hydrolysisof functionaloxygen-bearinggroupsonthesolidGO elec-trolyte[21].FreewatermoleculespresentbetweenGOsheetsmay fa-cilitateprotontransportviatheGrotthussmechanism[35]orby diffu-sionofhydroniumionswithintheinterlayerspaces[21].Thepathof proton movementpathfromone layertothesurrounding layers oc-cursthroughnanoporesinmultilayerGO.ThesingleanddoubleGO wallssupporttheprotonmobilityandhydrogenbondreformationin GOfilms[23].IntimatecontactbetweentheGOelectrolyteandMXene electrodeswillfacilitateprotontransferbetweendifferentSSC compo-nents.ProtonmovementinsidetheMXeneelectrodesprobablyproceeds viaconfinedwatermoleculesthataretrappedbetweenMXenesheets.

Electrochemical impedance spectroscopy (EIS)was conducted on bothdevicesinthefrequencyrangefrom10mHzto10kHz.The

(5)

ex-Y. Wang, M. Mehrali, ex-Y.-Z. Zhang et al. Energy Storage Materials 36 (2021) 318–325

Fig.3. Electrochemicalperformanceofall-inkjet-printedSSCs.(a)Cross-sectionalSEMimageofinkjet-printedSSC.Thedashedlineroughlyindicatestheboundary betweenMXene(above)andGO(below)phasesasaguidetotheeye.(b)TopviewSEMoftopMXeneelectrode.(c)AFMtopographyof30×30μm2scanareain

device.(d)CVofas-made10LSSCand30LSSCat10mVs-1.(e)C

Aofas-made10LSSCand30LSSCatdifferentcurrentdensities.(f)Nyquistplotsofas-made10L

SSCand30LSSC.Theinsetshowstheequivalentcircuittowhichtheexperimentaldatawerefitted.(g)CVdiagramof1,2and4supercapacitorsconnectedinseries andinparallel.(h)C Aof30LSSCwithdifferentelectrolytes(DIwater,5MLiCland0.5MNa2SO4inwater,respectively)ontopofthedevices.(i)Ragoneplotof

all-inkjet-printedSSCwithotherdifferentsystems.

perimentaldatawerefittedtotheequivalentcircuitshownintheinset ofFig.3f[27].Itconsistsofaconstantphaseelement(CPE)Q2that

rep-resentsthesurfacecapacitanceofthedevice,inparallelwithaCPEQ3 thatrepresentstheslowerdiffusion-controlledvolumecapacitance.The electrolyteisrepresentedbytheR2(Q1)sub-circuit,andtheelectrode

resistancebyR1.Sample10LSSChasalargerR1than30LSSC,showing

thatthickerelectrodesexhibitalowerresistance(TableS1;5.9kΩ ver-sus2.1kΩ).Theimpedanceinthelowfrequencyrangesuggestsmixed

surfaceabsorptionanddiffusionalcontrolofthedevices,whicharethe doublelayercapacitance(Q2)andchargetransferdiffusionimpedance

Q3.The30LSSCdevicehasasmallerchargetransferresistance(R3)in thelowerfrequencyrangethan10LSSC(1.9kΩversus12.9kΩ).From the30LSSCEISdatainFig.3f,theionicconductivityofGOelectrolyte wascalculatedtobeatleast0.38μScm-1.

Todemonstratethepotentialforpracticalapplicationsathigh volt-ages, theas-made30LSSCswereconnectedinseriesandinparallel

(6)

Fig.4. Electrochemicalperformanceofall-inkjet-printedMSCs.(a,b)Cross-sectionalSEMimagesofall-inkjet-printedMSC.ThedashedlineroughlydividesMXene electrode(below)andGOelectrolyte(above).(c)AFMtopographyoftopGOelectrolytein(b).(d)CVof30LMSCwithandwithoutaddedwaterontopofthedevice at20mVs-1.(e)CVofprinted10L/20L/30LMSCsat10mVs-1.(f)GCDofprinted10L/20L/30LMSCsat15μAcm-2.(g)C

Aofprinted10L/20L/30LMSCswith

differentcurrentdensities.(h)Nyquistplotsofprinted10L/20L/30LMSCs.Theinsetisthefittedequivalentcircuitforthelowfrequencyrangeoftheimpedance response.(i)C Aof30LMSCwithexcessH2Oand0.5MH2SO4atcurrentdensityof50μAcm-2.

configurations.AsshowninFig.3g,thevoltagewindow reached1.2 Vand 2.4Vwith twoandfour devicesconnectedin series, respec-tively[27]. Thecurrent wasincreasedbyafactorof~ 2and4with twoandfourdevicesconnectedinparallel,respectively.The electro-chemicalperformanceofSSCscouldbeenhancedbyadditionofliquid electrolytes.AsshowninFig.3h,excessdeionized(DI)waterresultedin ahigherCAof12.1mFcm-2thanintheas-madedevice,probablydue

toenhancediontransportinliquidmedia.Aqueouselectrolytessuchas 5MLiCland0.5MNa2SO4 introduceadditionalelectrolyteionsthat

enhanceionictransportatthesametime,increasingtheCAfurtherto

13.6-14.1mFcm-2(SupplementaryFig.S9)[27].Theas-made30LSSC

exhibited anarealenergydensity(EA)of 0.49μWhcm-2atapower

density(PA)of12.55μWcm-2,whileEAincreasedto0.71μWhcm-2

atPAof12.48μWcm-2byaddingadropof5MLiClelectrolyteinto

theas-madedevice(Fig.3i). Apparently,thepresenceofliquid elec-trolyte hasa positiveeffect ontheenergydensity, howeverthe pre-cisemechanismremainsunclear.TheEAofas-made30LSSCishigher

thantherecentlyreportedextrusion-printedMXeneMSCwithH2SO4

-poly(vinyl alcohol,PVA) gelelectrolyte (EA of0.32μWhcm-2 atP A

(7)

Y. Wang, M. Mehrali, Y.-Z. Zhang et al. Energy Storage Materials 36 (2021) 318–325 printedMSCwithgrapheneelectrodesandprintedpolyelectrolyte,[38]

printedgrapheneMSC,[39]andMXene/single-walledcarbonnanotube supercapacitor[40]. The30LSSCexhibitsgoodcyclingstabilitywith acapacitanceretentionof~100%after10000cycles(Supplementary Fig.S10a).Moreover,theall-printedSSCshowshighmechanical stabil-itywithabendingradiusofabout1cm,asshowninSupplementaryFig. S10b[27].

MSCswerefabricatedbyprintingMXenenanosheetswith interdig-itated structure as electrodes on polyimide substrate, followed by a printedlayerofGOnanosheetsontopof/overtheMXeneelectrodesto serveassolid-stateelectrolyte(Fig.1,bottom).MXeneelectrodeswith 10,20and30printedlayers(referstoas10LMSC,20LMSCand30L MSC,respectively)wereprinted(SupplementaryFig.S11).Theprinted MXeneelectrodesshowsharpfeaturesattheedges,indicatingthe sta-bilityoftheMXeneinkandthehighreliabilityoftheinkjetprinting pro-cess,andthesharpedgeswerestillretainedafterprintingGOnanosheets ontop.EDSelementalmappingconfirmsthepresenceofawell-defined andstabletopinterfacebetweenMXeneelectrodeandGOelectrolyte (SupplementaryFig.S12).Theall-inkjet-printed30LMSCsexhibiteda lowRMS of≈157 ±20nmat adevicethicknessof around2.3μm (Fig.4c).However,thecontactatthecross-sectionbetweenMXene elec-trodeandGOelectrolyteispoor(Fig.4a,b),whichislikelythecauseof lowcurrentresponseintheCVmeasurement(Fig.4d).Mostlikely,only GOsheetsneartheheterostructureinterfacecontributetothe capaci-tance,becausetheprotonsaregeneratedviahydrolysisoffunctional groupsonGO.

Electrochemicalmeasurementswereperformedonas-made all-solid-stateMSCsandonMSCstowhichexcessaqueouselectrolytehadbeen added.Theelectrochemical performanceof 30LMSC improved con-siderably upon addition of water, due to enhancedproton mobility (Fig.4d)[27].TheCVcurvesofMSCswithvaryingelectrodethicknesses demonstratethatthickerelectrodeswithmoreactivesurfacesitesshow higherCA(Fig.4e,SupplementaryFig.S13a-c).GCDfurtherconfirms

that30LMSCexhibitsahighercapacitancethantheothertwodevices (Fig.4f,SupplementaryFig.S13d-f).TheCAof30LMSCreachedto3.1

mFcm-2,while10and20layerdevicesreached1.2and1.9mFcm-2

atacurrentdensityof20μAcm-2,respectively(Fig.4g).EISsuggests

thatthecharge transferresistance(R1) ofthe30layersthickMXene electrodedeviceislowerthantheothertwodevices(4.1kΩ,11.9kΩ and12.0kΩfor10LSSC, 20LSSCand30LSSC,respectively;Fig.4h, TableS2).Similar totheSSC, theequivalentcircuitsin thelow fre-quencyrangesuggestsmixedsurfaceabsorptionanddiffusionalcontrol, i.e.thedoublelayercapacitance(Q1)andthechargetransferdiffusion

impedance(Q2).Additionofa0.5MH2SO4 electrolytesolutiononto 30LMSCresultedinaahighercapacitancethanindeviceswithexcess water(Fig.4i,SupplementaryFig.S14)[27].TheH2SO4electrolyte

pro-videsadditionalprotonsthatenhancetheionicconductivity,leadingto lowerseriesresistances.

ComparedwithSSCs,as-madeMSCsshowmuchlowerareal capac-itance,whichisprobablyduetothepoorcontactatthecross-section betweenMXeneelectrodeandGOelectrolyte.Itis notedthatdevice structureoptimizationcouldfurtherimprovetheelectrochemical per-formanceoftheseMSCs.Furthermore,thenormalizedarealcapacitance inbothSSCandMSCdevicesareindependentofelectrodesthickness withinexperimentalerror,indicatingthattheentireelectrodes partici-pateinthechargestorageprocess(SupplementaryFig.S15).

4. Conclusion

Inconclusion,wedemonstratedall-inkjet-printedsolid-state super-capacitorsbasedon2DMXene/GO/MXene.Duetothehighionic con-ductivityofGOfilms,theprintedSSCwithoutliquidelectrolyteshowed anEAof0.49𝜇Whcm-2ataPAof12.55𝜇Wcm-2.TheCAcanbe

in-creasedfurtherbyaddingliquidelectrolytes.Furtheroptimizationof materials,printedelectrodesthicknessandelectrodesconfigurationwill

enhancedeviceperformancefurther.Printedsupercapacitorsshowhigh potentialforuseinsmallpowersourceunitsforflexibleelectronics. DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

CRediTauthorshipcontributionstatement

YangWang:Conceptualization,Methodology,Investigation, Vali-dation,Visualization,Writing-originaldraft.MohammadMehrali: In-vestigation,Methodology.Yi-ZhouZhang:Investigation,Formal anal-ysis.MelvinA.Timmerman:Investigation,Methodology.BernardA. Boukamp:Formalanalysis.Peng-YuXu:Investigation.JohanE.ten Elshof:Conceptualization,Writing-review&editing,Supervision. Acknowledgements

Y.W. thanksDr.B.Chenfor thehelpwithelectricalconductivity measurementsandDr.Y.Liuforthehelpwithsurfacetension measure-ments.M.SmithersisacknowledgedforperformingtheHR-SEMand EDSelementalmapping.Y.W.acknowledgesthefinancialsupportofthe ChinaScholarshipsCouncilprogram(CSC,No.201608340058).Y.Z.Z. acknowledgesthefinancialsupportfromtheNationalNaturalScience FoundationofChina(21805136)andtheNaturalScienceFoundationof JiangsuProvince(BK20170999).

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.ensm.2021.01.009.

References

[1] K.S. Novoselov , A. Mishchenko , A. Carvalho , A.H. Castro Neto , 2D materials and van der Waals heterostructures, Science 353 (2016) aac9439 .

[2] A.K. Geim , I.V. Grigorieva , Van der Waals heterostructures, Nature 499 (2013) 419 . [3] E. Pomerantseva , Y. Gogotsi , Two-dimensional heterostructures for energy storage,

Nat. Energy 2 (2017) 17089 .

[4] Y. Liu , N.O. Weiss , X.D. Duan , H.C. Cheng , Y. Huang , X.F. Duan , Van der Waals heterostructures and devices, Nat. Rev. Mater. 1 (2016) 16042 .

[5] X. Lin , J. Wang , X. Gao , S. Wang , Q. Sun , J. Luo , C. Zhao , Y. Zhao , X. Yang , C. Wang , R. Li , X. Sun , 3D Printing of Free-Standing “O 2 Breathable ” Air Electrodes for High-

-Capacity and Long-Life Na–O 2 Batteries, Chem. Mater. 32 (2020) 3018 .

[6] X. Gao , X. Yang , S. Wang , Q. Sun , C. Zhao , X. Li , J. Liang , M. Zheng , Y. Zhao , J. Wang , M. Li , R. Li , T.-K. Sham , X. Sun , A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries, J. Mater. Chem. A 8 (2020) 278 . [7] X. Gao , X. Yang , Q. Sun , J. Luo , J. Liang , W. Li , J. Wang , S. Wang , M. Li , R. Li ,

T.-K. Sham , X. Sun , Converting a thick electrode into vertically aligned “Thin elec- trodes ” by 3D-Printing for designing thickness independent Li-S cathode, Energy Storage Mater. 24 (2020) 682 .

[8] X.J. Gao , Q. Sun , X.F. Yang , J.N. Liang , A. Koo , W.H. Li , J.W. Liang , J.W. Wang , R.Y. Li , F.B. Holness , A.D. Price , S.L. Yang , T.K. Sham , X.L. Sun , Toward a remarkable Li-S battery via 3D printing, Nano Energy 56 (2019) 595 .

[9] X. Gao , X. Yang , K. Adair , X. Li , J. Liang , Q. Sun , Y. Zhao , R. Li , T.K. Sham , X. Sun , 3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm −2 /20 mAh cm −2 Realized by Selective Nucleation within Microchannel

Walls, Adv. Energy Mater. 10 (2020) 1903753 .

[10] D. McManus , S. Vranic , F. Withers , V. Sanchez-Romaguera , M. Macucci , H. Yang , R. Sorrentino , K. Parvez , S.K. Son , G. Iannaccone , K. Kostarelos , G. Fiori , C. Casir- aghi , Water-based and biocompatible 2D crystal inks for all-inkjet-printed het- erostructures, Nat. Nanotechnol. 12 (2017) 343 .

[11] P.H. Yang , H.J. Fan , Inkjet and Extrusion Printing for Electrochemical Energy Stor- age: A Minireview, Adv. Mater. Technol. 5 (2020) 2000217 .

[12] A.G. Kelly , T. Hallam , C. Backes , A. Harvey , A.S. Esmaeily , I. Godwin , J. Coelho , V. Nicolosi , J. Lauth , A. Kulkarni , S. Kinge , L.D. Siebbeles , G.S. Duesberg , J.N. Cole- man , All-printed thin-film transistors from networks of liquid-exfoliated nanosheets, Science 356 (2017) 69 .

[13] R. Worsley , L. Pimpolari , D. McManus , N. Ge , R. Ionescu , J.A. Wittkopf , A. Alieva , G. Basso , M. Macucci , G. Iannaccone , K.S. Novoselov , H. Holder , G. Fiori , C. Casir- aghi , All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Cir- cuits, ACS Nano 13 (2019) 54 .

[14] B. Anasori , M.R. Lukatskaya , Y. Gogotsi , 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098 .

(8)

[15] M. Naguib , V.N. Mochalin , M.W. Barsoum , Y. Gogotsi , 25th anniversary article: MX- enes: a new family of two-dimensional materials, Adv. Mater. 26 (2014) 992 . [16] Y.Z. Zhang , K.H. Lee , D.H. Anjum , R. Sougrat , Q. Jiang , H. Kim , H.N. Alshareef , MX-

enes stretch hydrogel sensor performance to new limits, Sci. Adv. 4 (2018) eaat0098 . [17] A. Agresti , A. Pazniak , S. Pescetelli , A. Di Vito , D. Rossi , A. Pecchia , M. Auf der Maur , A. Liedl , R. Larciprete , D.V. Kuznetsov , D. Saranin , A. Di Carlo , Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater. 18 (2019) 1228 .

[18] M. Ghidiu , M.R. Lukatskaya , M.Q. Zhao , Y. Gogotsi , M.W. Barsoum , Conductive two-dimensional titanium carbide ’clay’ with high volumetric capacitance, Nature 516 (2014) 78 .

[19] Y. Xia , T.S. Mathis , M.Q. Zhao , B. Anasori , A. Dang , Z. Zhou , H. Cho , Y. Gogotsi , S. Yang , Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes, Nature 557 (2018) 409 .

[20] Y.Z. Zhang , Y. Wang , Q. Jiang , J.K. El-Demellawi , H. Kim , H.N. Alshareef , MX- ene Printing and Patterned Coating for Device Applications, Adv. Mater. 32 (2020) e1908486 .

[21] W. Gao , N. Singh , L. Song , Z. Liu , A.L. Reddy , L. Ci , R. Vajtai , Q. Zhang , B. Wei , P.M. Ajayan , Direct laser writing of micro-supercapacitors on hydrated graphite ox- ide films, Nat. Nanotechnol. 6 (2011) 496 .

[22] M.R. Karim , K. Hatakeyama , T. Matsui , H. Takehira , T. Taniguchi , M. Koinuma , Y. Matsumoto , T. Akutagawa , T. Nakamura , S. Noro , T. Yamada , H. Kitagawa , S. Hayami , Graphene oxide nanosheet with high proton conductivity, J. Am. Chem. Soc. 135 (2013) 8097 .

[23] K. Hatakeyama , M.R. Karim , C. Ogata , H. Tateishi , A. Funatsu , T. Taniguchi , M. Koinuma , S. Hayami , Y. Matsumoto , Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets, Angew. Chem. Int. Ed. 53 (2014) 6997 .

[24] H. Zhang , Ultrathin Two-Dimensional Nanomaterials, ACS Nano 9 (2015) 9451 . [25] J.D. Cain , A. Azizi , K. Maleski , B. Anasori , E.C. Glazer , P.Y. Kim , Y. Gogotsi ,

B.A. Helms , T.P. Russell , A. Zettl , Sculpting Liquids with Two-Dimensional Mate- rials: The Assembly of Ti 3 C 2 T x MXene Sheets at Liquid-Liquid Interfaces, ACS Nano

13 (2019) 12385 .

[26] W.S. Hummers , R.E. Offeman , Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339 .

[27] J.E. ten Elshof, Y. Wang, Tunable capacitance in all-inkjet-printed nanosheet het- erostructures, Mendeley Data V1 (2020), doi: 10.17632/prmcmwdsgs.1 .

[28] N. Reis , B. Derby , Ink jet deposition of ceramic suspensions: Modeling and exper- iments of droplet formation, MRS Online Proceeding Library Archive 625 (2000) 117–122 .

[29] M. Gao , L.H. Li , Y.L. Song , Inkjet printing wearable electronic devices, J. Mater. Chem. C 5 (2017) 2971 .

[30] D.J. Finn , M. Lotya , G. Cunningham , R.J. Smith , D. McCloskey , J.F. Donegan , J.N. Coleman , Inkjet deposition of liquid-exfoliated graphene and MoS 2 nanosheets

for printed device applications, J. Mater. Chem. C 2 (2014) 925 .

[31] F. Torrisi , T. Hasan , W. Wu , Z. Sun , A. Lombardo , T.S. Kulmala , G.-W. Hsieh , S. Jung , F. Bonaccorso , P.J. Paul , D. Chu , A.C. Ferrari , Inkjet-printed graphene electronics, ACS Nano 6 (2012) 2992 .

[32] Y. Wang , Y.-Z. Zhang , D. Dubbink , J.E. ten Elshof , Inkjet printing of 𝛿-MnO 2

nanosheets for flexible solid-state micro-supercapacitor, Nano Energy 49 (2018) 481 . [33] X. Shen , X.Y. Lin , N. Yousefi, J.J. Jia , J.K. Kim , Wrinkling in graphene sheets and

graphene oxide papers, Carbon 66 (2014) 84 .

[34] X.P. Mu , D.S. Wang , F. Du , G. Chen , C.Z. Wang , Y.J. Wei , Y. Gogotsi , Y. Gao , Y. Dall’Agnese , Revealing the Pseudo-Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte, Adv. Funct. Mater. 29 (2019) 1902953 .

[35] N. Agmon , The Grotthuss mechanism, Chem. Phys. Lett. 244 (1995) 456 . [36] C.J. Zhang , L. McKeon , M.P. Kremer , S.H. Park , O. Ronan , A. Seral-Ascaso , S. Bar-

wich , C.O. Coileain , N. McEvoy , H.C. Nerl , B. Anasori , J.N. Coleman , Y. Gogotsi , V. Nicolosi , Additive-free MXene inks and direct printing of micro-supercapacitors, Nat. Commun. 10 (2019) 1795 .

[37] S. Sollami Delekta , K.H. Adolfsson , N. Benyahia Erdal , M. Hakkarainen , M. Ostling , J. Li , Fully inkjet printed ultrathin microsupercapacitors based on graphene elec- trodes and a nano-graphene oxide electrolyte, Nanoscale 11 (2019) 10172 . [38] J. Li , S. Sollami Delekta , P. Zhang , S. Yang , M.R. Lohe , X. Zhuang , X. Feng ,

M. Ostling , Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing, ACS Nano 11 (2017) 8249 .

[39] S. Sollami Delekta , A.D. Smith , J. Li , M. Ostling , Inkjet printed highly transparent and flexible graphene micro-supercapacitors, Nanoscale 9 (2017) 6998 . [40] C.J. Zhang , B. Anasori , A. Seral-Ascaso , S.H. Park , N. McEvoy , A. Shmeliov ,

G.S. Duesberg , J.N. Coleman , Y. Gogotsi , V. Nicolosi , Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance, Adv. Mater. 29 (2017) 1702678 .

Referenties

GERELATEERDE DOCUMENTEN

De testzalen waren meestal volledig bezet, verscheidene malen traden korte wachttijden op. Hoewel in principe elke student vanwege zijn rooster slechts één middag in de week

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

or larger samples are recommended for better assessment of the impact on adherence of partner support and acceptance of HIV. Approaches to partner disclosure prior to commencing

Although evidence of climate change (especially warming) in the sub-Antarctic is now well documented (Adamson et al. 2003) and some of the consequences on the terrestrial ecosystem

To destroy any true correlation of the gene expression profiles with the ALL-AML class distinction, we randomly and independently permuted the components of each gene expression

In previous work [3] we showed that by producing click-sounds with their tongue, most sighted people without prior echolocation experience were able to detect

The two traditional national museums that will be used as case study for this thesis are Ditsong National Cultural History Museum in Pretoria and Iziko Slave Lodge

Uit de literatuur komen echter ook aanwijzingen naar voren van elementen die effectief zijn bij het bevorderen van ouderbetrokkenheid zoals ouders zich welkom laten voelen op