• No results found

One-dimensional Bose gas on an atom chip - Contents

N/A
N/A
Protected

Academic year: 2021

Share "One-dimensional Bose gas on an atom chip - Contents"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

One-dimensional Bose gas on an atom chip

van Amerongen, A.H.

Publication date 2008

Link to publication

Citation for published version (APA):

van Amerongen, A. H. (2008). One-dimensional Bose gas on an atom chip.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

1 Introduction 1

1.1 1D Bose gas . . . 1

1.2 Integrated atom optics . . . 3

1.3 This thesis . . . 4

2 Theoretical background 5 2.1 Introduction . . . 5

2.2 Magnetic trapping . . . 6

2.3 Ideal Bose gas . . . 8

2.3.1 Ideal Bose gas harmonically trapped in 3D and 1D . . . 10

2.3.2 Ideal Bose gas in the 3D-1D cross-over . . . 11

2.4 Weakly interacting (quasi-)condensate . . . 11

2.4.1 Mean-field 3D . . . 12

2.4.2 Mean-field 1D . . . 13

2.4.3 Mean-field 3D-1D crossover . . . 13

2.4.4 Excitations in elongated quasi-condensates . . . 14

2.5 Exact solutions in 1D . . . 15

2.5.1 Tonks-Girardeau . . . 15

2.5.2 Lieb-Liniger . . . 17

2.5.3 Yang-Yang . . . 18

2.6 Overview of ultracold Bose gas regimes . . . 20

2.6.1 Regimes for T = 0 . . . 20

2.6.2 Regimes in 1D . . . 21

2.7 Previous models for T > 0 . . . 22

2.7.1 Semi-ideal Bose gas . . . 22

2.7.2 Self-consistent Hartree-Fock . . . 22

2.8 Evaporative cooling . . . 23

3 Experimental Setup 27 3.1 Introduction . . . 27

3.2 Design considerations . . . 28

3.3 Microtrap for cold atoms . . . 31

3.3.1 Layout and construction . . . 33

3.4 Thermal properties of the microtrap . . . 37

3.4.1 Thermal conduction – analytic approach . . . 38

3.4.2 Thermal conduction – Finite Element Method . . . 40

3.5 Vacuum system . . . 42

3.6 Dispenser pulsed atom source . . . 44 v

(3)

vi CONTENTS

3.7 Magnetic field coils . . . 46

3.8 Lasers . . . 48

3.9 Imaging system . . . 51

3.10 Experimental control . . . 54

3.10.1 Output control . . . 55

3.10.2 Radio frequency source . . . 55

3.11 Concluding remarks . . . 56

4 Realizing Bose-Einstein condensation 57 4.1 Introduction . . . 57

4.2 Trapping and cooling sequence . . . 57

4.2.1 MOT . . . 58

4.2.2 Compressed MOT . . . 58

4.2.3 Optical pumping . . . 59

4.2.4 Minitrap . . . 59

4.2.5 Z-trap – compression . . . 60

4.2.6 Reaching BEC by evaporative cooling . . . 60

4.2.7 BEC in the 3D-1D cross-over . . . 61

4.3 Potential roughness . . . 62

5 Focusing phase-fluctuating condensates 65 5.1 Introduction . . . 65

5.2 Gaussian and nonideal optical beams and ABCD matrices . . . 67

5.2.1 Paraxial wave equation and Huygens-Fresnel integral . . . 67

5.2.2 Nonideal beam . . . 69

5.3 Atom optics and ABCD matrices . . . 70

5.3.1 Schr¨odinger equation and Wigner function . . . 70

5.3.2 ABCD matrices for matter waves . . . 72

5.3.3 Temperature of a focused non-interacting gas . . . 76

5.4 Quasi-condensate as nonideal atomic beam . . . 77

5.5 Weakly interacting condensate in a time dependent trap . . . 79

5.6 Experiments . . . 82

5.7 Discussion . . . 87

5.8 Conclusion and outlook . . . 89

6 Yang-Yang thermodynamics on an atom chip 91 6.1 Introduction . . . 91

6.2 Methods . . . 93

6.3 In situ density profiles . . . 93

6.4 In focus density profiles . . . 94

6.5 Analysis and discussion . . . 95

6.6 Conclusion and outlook . . . 96

(4)

Summary 111

Samenvatting 113

(5)

Referenties

GERELATEERDE DOCUMENTEN

The definition is sim ply stated as: “Entrepreneurship describes the econom ic activity undertaken by social individuals in their pursuit o f self- identity.” The definition

The goal of the research is to recommend appropriate water rate structures and strategies to achieve water pricing principles for BC that encompass economic efficiency,

Taking these health status factors into account, our findings also revealed that those who experienced greater declines in ADL functioning over time were more likely to

At the end of this unit, students will share their thoughts and feelings pertaining to specific images in a minimum of two wordless picturebooks, use a rich vocabulary (with

Linear algebra 2: exercises for Chapter 2 (Direct sums).. You may use Theorem 3.1 (Cayley-Hamilton) for

De aantrekkelijkheid van deze methode ligt voor de hand: werknemers zijn direct betrokken bij de inrichting van de medezeggenschap voor hun eigen bedrijf, maatwerk

Daarnaast moet dit systeem worden aange­ past aan de gedachte dat iedereen, op welk mo­ ment in zijn of haar loopbaan dan ook, indien gewenst weer aansluiting bij het

voor het verschijnen van de M iljoenennota pu­ bliceerde het bureau een internationaal verge­ lijkende studie naar de inrichting en werking van het sociaal-economisch