• No results found

Ecosystem services of the groundwater and the subsurface : filling the knowledge gap

N/A
N/A
Protected

Academic year: 2021

Share "Ecosystem services of the groundwater and the subsurface : filling the knowledge gap"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

3.5 - Ecosystems services and combined approaches, Managing multiple functions of the subsurface ECOSYSTEM SERVICES OF THE GROUNDWATER AND THE SUBSURFACE; FILLING THE KNOWLEDGE GAP

Johannes P.A. Lijzen1, Sophie Vermooten2, Suzanne van der Meulen2, Michiel Rutgers1, Hans Peter

Broers3

1. National Institute for Public Health and the Environment RIVM, P.O. Box 1, 3720 BA Bilthoven, The

Netherlands, Phone: +31 30 2749111, E-mail: johannes.lijzen@rivm.nl; michiel.rutgers@rivm.n

2. Deltares, P.O. Box 85467, 3508 AL Utrecht, The Netherlands, Phone +31 (0)88 335 8273. E-mail

sophie.vermooten@deltares.nl; suzanne.vandermeulen@deltares.nl

3. TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, The Netherlands, Phone +3188 866 4798; E-mail: hanspeter.broers@tno.nl

Keywords: groundwater, subsurface, ecosystem services, pollution prevention, assessment framework 1. Introduction

2. Goal and framework

3. Descriptions of ecosystem services 4. Relevant human activities and factsheets 5. Technical decision support Framework 6. Example of elements in the framework

7. Practical application of the framework in current policy developments

1. Introduction

In densely populated areas, the use of groundwater and the subsurface for functions such as groundwater extraction, aquifer thermal energy storage and infrastructure is increasing. This results in a need for subsurface spatial planning and careful consideration of the use of groundwater for several (economic) activities. Since 2013, in the Netherlands special attention is given to ecosystem services (ES) of the groundwater and subsurface in order to assess how human activities make use of ES and influence ES. A technical assessment framework for the sustainable use of the groundwater and subsurface was

developed based on the ES concept. This study was commissioned by the Dutch Ministry of Infrastructure and the Environment. Beside the fact that the broadly available knowledge of the subsurface system was lagging behind compared to the top soil, it was also seen as a problem that information on groundwater and subsurface was not readily available to support decision makers in local management and spatial planning. In this paper, the goals of the framework are described (2), followed by the identified eleven ES (3) and the thirty-one human activities influencing the ES (4) and the relations between both (5). An example of elements in the framework is presented (6) and the practical application of ES in policy is described (7).

2. Goal and framework

The goal of the study was to generate information and data to enable the assessment of opportunities and bottlenecks for the sustainable use of the groundwater and subsurface system. It should include

information on the relation between human activities and Ecosystem Services (ES). Therefore, relevant ES and related human activities were identified and described in detail, and a technical decision support framework was developed. This information and data can be used to support national and local authorities to take informed decisions on the use of the subsurface and groundwater. For the definition of ES, the structure of CICES (2013) and MAES (2014) was used.

The technical framework gives insight into: 1. How human activities depend on ES ; 2. The impact of these activities on the ES;

(2)

3. Descriptions of ecosystem services

The knowledge gap of ES for the subsurface and groundwater was filled. Until now little has been published on that matter in comparison to the ES for top soil. To define the ES for groundwater and subsurface the terminology of ES for the soil system was followed (e.g. Starink et al., 2012; van der Meulen et al., 2013, Rutgers en Dirven-van Breemen, 2012) and linked to the international accepted definitions (MEA, 2005; Ranganathan, 2008; Maes et al., 2013 and 2014; CICES, 2013). Based on this information in a workshop we defined 11 ES for the groundwater and subsurface. A practical number of ES could be defined, because the combination of human activities with the ES leads to the actual benefit to the people and society.

The terminology of ES is still in development in the Common International Classification of Ecosystem

Services (CICES 4.3 (2013), www.cices.eu). Harmonizing these definitions serves the goal to use it for economic accounting systems. The Millennium Ecosystem Assessment (MA 2005:

www.millenniumassessment.org) was the first to define a solid base of the ES by distinguishing four groups of ES: provisioning, regulating, cultural and supporting ecosystem services. The Economics of Ecosystems and Biodiversity (TEEB, 2010: www.teebweb.org) linked some of the ES to real life

economics. In CICES (2013) also a distinction was made between a potential service and a final service (being consumed). According to this definition a groundwater body with a specific quality is a potential

ecosystem service. A groundwater body with a certain quality (without consumption) can also be part of

the Natural Capital (see Figure 1; Maes et al., 2013). The ‘Natural Capital’ consists of four parts: the ecological capital (all ES and ecological assets), and the abiotic capital (renewable and non-renewable abiotic resources), see Figure 1.

The actual use now or in the future is less relevant for assessments, especially for non or slowly – renewable resources. The difference between the ecological and the abiotic capital was often not so practical for classification ES in the groundwater and subsurface.

The defined ES for groundwater and the subsurface fit in these definitions. Depending on International developments and the goal of an assessment can be a reason to make changes in the future. Depending on the goal also modifications can be needed.

Figure 1 Main components of the Natural Capital according to the European Environmental Agency (EEA): the ecological capital (all ES and ecological assets), and the abiotic capital (renewable and non-renewable abiotic resources). The groundwater system has elements in all components of this scheme (source: Maes et al., 2013).

(3)

Eleven ES were defined for the groundwater and subsurface compartment (after Broers and Lijzen, 2014, see Table 1):

Provisioning services

1. Availability of sufficient water with specific quality. Due to the fact that undisturbed groundwater has a constant temperature and composition, it is a reliable resource. This ES demands a chemical, physical and biological quality that meets the criteria of the different uses that are mentioned (agriculture, industry, domestic).

2. Energy content. At several kilometers depth hot and salt groundwater is present. Ata depth of 100-300 meter the temperature of the groundwater equals the yearly average of 10-12°C). In more shallow layers there is more fluctuation in the temperature. From all these layers thermal energy can be withdrawn or stored for later use.

Regulating services

3. Attenuation and purification capacity of the subsurface. This ES contributes to the (partial) removal of chemical or biological contamination from the groundwater. Different natural physical, chemical or biological processes can play a role (physical filtration, adsorption, degradation etc.).

4. bearing capacity of the soil (for buildings and infrastructure). It is defined as the extent to which the soil can support objects (like machines, buildings, roads, people, trees).. Besides the natural bearing capacity, extra bearing capacity can be realised for example by piling on deeper sand layers.

5. Storage capacity This ES includes the opportunity to use the subsurface to (temporarily) store rainwater and surface water, but also resources like CO2, oil, gas, heat and cold, and waste.

6. Bio-geochemical cycles (material and water cycles). This concerns the cycles of carbon, nitrogen, phosphorus and other elements. The groundwater flow contributes to the transport of these elements , besides transport and processes in air, vegetation, oceans etc. The subsurface system is also –

temporarily- sink of compounds.

7. Temperature regulation. This ES originates from the constant temperature and high heat capacity of the groundwater and subsurface. Due to evaporation of water by vegetation the temperature of the soil surface can also be lowered.

8. Providing surface water baseflow and surface water quality. Groundwater contributes to the surface water baseflow in streams and rivers and therefore supports aquatic systems and the navigability of rivers for shipping. The baseflow of groundwater has an important mitigating and buffering function in periods of drought, as streams will not dry out and remain flowing with water of sufficient quality. 9. Upward seepage to groundwater dependent nature reserves. This ES is defined as the seepage of sufficient groundwater of good quality so that dependant natural ecosystems can function normally. In the higher grounds and the lower parts in the Netherlands the processes are different.

Cultural services

10. Cultural–historical and experience values. This ES concerns value of the subsurface from the cultural historical perspective, for examplethe maintenance of knowledge and objects of human activities in the past. The experience values concern the relation of people with the groundwater and subsurface itself. 11. Biodiversity and habitat. This ES can be seen as the habitat for an unique collection of organisms that support essential processes. The biodiversity of the subsurface is a multidimensional concept in which size, diversity and stability (against changes) are all important aspects.

These ES were described extensively in 2014 in factsheets per ecosystem service,the main question being what conditions would allow for a sustainable functioning of the ES. The factsheets are giving answers to the following questions;:

- How do we define the ES and what processes determine the performance of the ES? - How is the ES used?

- Is the ES positively or negatively influenced by an anthropogenic activity? - What measures can we take to optimize the ES?

(4)

- What future trends (supply and demand) have influence on the ES? - What data is available to measure, quantify and map the ES?

Table 1 Ecosystem services defined for the subsurface related to CICES (2013)

Type of ecosystem service

Ecosystem service of the groundwater and subsurface

Example of economic activity using ES Provisioning

services

1. Availability of sufficient water with specific quality;

Abstraction for drinking water supply 2. Energetic content Thermal energy production

Regulating services 3. Attenuation capacity of the subsurface In-situ remediation of historical contamination

4. Soil bearing capacity Water level management for construction purposes

5. Storage capacity Aquifer Storage and recovery (ASR) 6. Bio-geochemical cycles (material and

water cycles)

Buffering excess CO2 in groundwater resources

7. Temperature regulation Aquifer Thermal Energy Storage 8. Providing surface water baseflow and

surface water quality

Recreational fishing and bathing in natural streams

9. Upward seepage to groundwater dependent nature reserves

Recreation in wetlands

Cultural services 10.cultural-historical values Recreation related to subsurface

conservation of cultural heritage (springs) 11. Biodiversity and habitat Recreation related to biodiversity (e.g. bird

watching) 4. Relevant human activities and factsheets

A central element in the framework is how we can assess and weigh different human activities using the groundwater and subsurface (management, planning, trade-offs) and make optimal use of the ES. This is about win-win situations and trade-offs between human activities and about the impacts of human activities and values of the subsurface. For this analysis, inn a workshop we distinguished 31 activities within 7 main categories. These activities rely on ES or can have substantial impact on these ES. This list is intended to cover most relevant activities in the Netherlands and can be extended or reduced when applying the method to a different country or region. Table 2 shows these activities.

Abstraction of water. Different types of use were distinguished (irrigation, drinking water, industrial water).

The requirements for the quantity and quality of the water and the periods of abstraction show large differences between these types of use.

Storage of water and other compounds. Storage means that water or other substances temporarily are

stored and might be used later.

Reservations. Mostly these reservations are implicitly made, but are not being formalized.

Extraction of other resources than water. These extractions can have a high impact on the groundwater

system and subsurface and are often irreversible.

Subsurface spatial occupation. This category contains activities that have a spatial claim in the subsurface

soil, without storing or extracting elements as described in the activities 7 to 14. The spatial claim for the management of groundwater contamination for example consists of the size of the contaminant plume for which management or monitoring is needed.

Water level management. Management of surface water in the Netherlands has a large impact on the

(5)

of the groundwater and subsurfacein deep polders in the western of the Netherlands. Water level management includes drainage of agricultural land and dewatering of polders as well as the inlet of surface water from outside the area that might infiltrate in de groundwater.

Aboveground activities. Aboveground activities can influence the ES of the groundwater and subsurface andcan affect other activities we want to perform in the subsurface. An example is the leaching of manure and pesticides that can influence the deep groundwater, leading to problems with the quality of the abstracted drinking water. Five aboveground activities were identified.

For nine of the 31 activities defined, detailed factsheets were developed (underlined in table 2). This set of factsheets summarizes the available knowledge about the mentioned relations and forms a preliminary guidance for local and regional authorities for decision-making.

Table 2. Human activities in groundwater and subsurface. The underlined human activities were described extensively in factsheets.

Category Human activities

1. Abstraction of groundwater

1. Public and private drinking water abstraction from groundwater 2. Irrigation of agricultural crops

3. Process water for food industry 4. Cooling water

5. Building, e.g. dewatering.

6. Management of groundwater remediation. 2. Storage of water

and other substances

7. Storage of rainwater for process water

8. Aquifer Thermal Energy Storage (ATES)

9. Storage of sediment soil or waste in former sand pits 10. Subsurface storage of radioactive waste

11.Subsurface CO2-storage

12. Abstraction of brackish groundwater combined with injection of brine for production of irrigation water

13. Artificial recharge for drinking water production from surface water (ASR, MAR).

14. Natural Water Retention Measures; temporal storage to guarantee summer baseflow and prevent flooding

3. Reservation 15.Preservation of biodiversity and habitat of the subsurface 16. Preservation of cultural historical land archaeological values. 17. Reservation of strategic groundwater resources

4. Extraction of resources (other than water)

18. Extraction of gravel, sand and clay 19. Extraction of salt

20. Extraction of shale gas (including groundwater use) 21. Oil and gas extraction

22. Geothermal energy (deep) 5. Subsurface spatial

occupation

23.Subsurface infrastructure and buildings

24. Management of groundwater contamination, including on-site remediation

6. Groundwater level management

25. Groundwater level management of polder systems in lower Netherlands

26. Groundwater level management of freely draining areas in the higher Netherlands

7. Aboveground activities

27. Nature conservation measures in terrestrial or aquatic ecosystems 28. Recreation (fishing, nature, watersports)

29. Soil sealing

30. Application of manure and pesticides 31. Diffuse inputs to soil in rural areas

(6)

5 Technical decision support Framework

The framework is based on three cross tables that give insight into the relation between human activities and ES. Table 3 (first cross) shows whether an ES is used by a human activity. The term ‘using’ here means that without the existence of the ES the activity would not be possible.

Table 3 ES which are used by human activities

Table 4 (second cross table) shows how the ES are influenced by the activities in the subsurface and aboveground using 5 different scores. The influence can be positive, negative, positive as well as negative, neutral of unknown. It was scored negative when part of the ES is taken and is not available for future use or if the value of the ES is decreased. When for example an Aquifer Thermal Energy Storage claims capacity in the subsurface, this cannot be used by other human activities. The influence of an activity can be positive for maintaining the ES, or it can be negative. Positive and negative impact also can occur both, depending on the time scale or approach.

Anthropogenic activity specific activity 1. Av

a ila b ili ty  of  s u ff ic ie n t  wa te r  wi th  sp e ci fi c  qu ali ty ;  2.   En e rg et ic  co n te n t 3.  Atten u a ti o n  ca p a ci ty  of  th e  su b so il   4.  Soi l be ar in g  ca p a ci ty    5.  St o ra ge  ca p a ci ty   6.  Bi o ‐ge o ch e m ic a l cy cl e s  (ma te ri a l an d  wa te r  cy cl e s) 7.  Te m p e ra tur e  re gu la ti o n 8.  P ro vid in g  su rfa ce  wa te r  ba se fl ow   an d  su rf a ce  wa te r  qu ali ty 9.  Up w a rd  s eep a ge  to  gr o u n d w a te r  de p e nd e n t  na tu re  re se rv e s 10.cu lt u ra l‐ hi st or ic al  va lu es 11.  Bi o d iv er si ty  and  ha bi ta t Abstraction of groundwater 1. Drinking water abstraction from groundwater J N J N N J J N N N N 2. Irrigation with groundwater for agricultural crops J N J N N N N N N N N 3. Process water for food industry  J N J N N J J N N N N 4. Cooling water  J J N N N J J N N N N 5. Building, e.g. dewatering.  N N N J N N N N N N N 6. Abstractions for management of groundwater remediation. 1.  N N N N N N N N N N N Storage 7. Storage of rainwater for process water  N N N N J N N N N N N 8. Aquifer thermal energy storage (ATES) N J N N J N J N N N N 9. Storage of sediment soil or waste in former sand pits N N J N J N N N N N N 10. Subsurface storage of radioactive waste  N N N N J N J N N N N 11. Sub soil CO2‐storage N N N N J N J N N N N 12. Abstraction of salt water combined with injection of brine for produc J N N N J N N N N N N 13. Artificial infiltration for drinking water production from surface wate J N J N J N J J N N N 14. Natural Water Retention Measures;  Reservations 15.Preservation of biodiversity and habitat of the sub soil  N N N N N J J J J N J 16. Preservation of cultural historical land archaeological values. N N N N N J J J N J N 17. Reservation of strategic groundwater resources J N J N J J J N N N N Extraction of resources 18. Extraction of gravel, sand and clay N N N J N N N N N N N 19. Extraction of salt  N N N N N N N N N N N 20. Shale gas extraction (including groundwater use) J N N N N N N N N N N 21. Oil and gas extraction  N N N N N N N N N N N 22. Geothermal energy (deep)  J J N N N N J N N N N Spatial occupation 23. Sub soil infrastructure and buildings N N N J N N N N N N N 24. Management of groundwater contamination, including on‐site reme N N J N N J N J N N N Groundwater level management 25. Groundwater level management of lower Netherlands  N N N N J N N J N N N 26. Groundwater level management of higher Netherlands J N N N J N N N N N N Activities on the soil surface 27. Nature conservation measures in terrestrial or aquatic ecosystems J N J N J J J J J N J 28. Recreation (fishing, nature, watersports) J N N N N N J J J J J 29. Soil sealing  N N N J N N N N N N N 30. Application of manure and pesticides N N J J N J N N N N N 31. Diffuse inputs in soil in rural areas N N J N N J N N N N N Legenda J activity uses the ecosystem service N activity does not use the ecosystem service ? unclear if activity uses ecosystemservice Ecosystem service of subsurface and groundwater

(7)

Table 4 Influence of human activities on ES

Table 5 (third cross table with activities versus activities) visualizes whether human activities are or are not compatible with each other. Five labels were chosen: ‘activities exclude each other’ (U), Activities are known to have significant negative impact on each other (B), activities are likely to have a negative impact on each other (expert judgement), (W), activities likely do not have a negative impact on each other (N), or the mutual potential impact is unknown (?).

The resulting cross table gives an overview of activities for which a more extensive assessment is needed when these are planed near to each other.

Anthropogenic activities Specific activity 1. Av

ai la b ili ty  of  su ffic ie n t  wa te r  wit h  sp ec if ic  qu a lit y;   2.   En er g eti c  co nt e n t 3.  At te n u at io n  ca p aci ty  of  th e  sub so il  4.  So il  b e ar in g  cap a ci ty    5.  St o ra g e  ca p ac it y  6.  Bi o ‐ge o che m ical  cy cl e s  (mat e ri a l an d  wa te r  cy cl e s) 7.  Tem p er a tu re  re g u la ti o n 8.  Pr o v id in g  sur fa ce  wa te r  ba sefl o w   an d  su rf a ce  wa te r  qu a lit y 9.  Up wa rd  seep a g e  to  gr o u ndw at e r  dep e n d en t  na tu re  re se rve s 10 .c u lt u ra l‐ hist o ri ca l va lu e s 11 . Bi o d iv e rsi ty  an d  ha b it a t Abstractions 1. Drinking water abstraction from groundwater o o o o o o o 2. Irrigation with groundwater for agricultural crops o o o +/‐ o 3. Process water for food industry  o o o o o o o 4. Cooling water  o o o o +/‐ o o 5. Building, e.g. dewatering.  o o +/‐ o o o 6. Abstractions for management of groundwater remediation. 1.  o o o o o o +/‐ Storage 7. Storage of rainwater for process water  o o o o o + o o o 8. Aquifer thermal energy storage (ATES) +/‐ ? o o +/‐ o o o ? 9. Storage of sediment soil or waste in former sand pits o o o o o o o o 10. Subsurface storage of radioactive waste  o o o o o o o o 11. Sub soil CO2‐storage ? o o o o o o o o o 12. Abstraction of salt water combined with injection of brine for production  o o o o o o o o 13. Artificial infiltration for drinking water production from surface water. +/‐ o o o o + o o o Preservations 14.Preservation of biodiversity and habitat of the sub soil  o o + o + o o o + + 15. Preservation of cultural historical land archaeological values. o o o o o o o o + o 16. Preservation of strategic groundwater resources + o o o o o + + o + Extractions 17. Extraction of gravel, sand and clay o o +/‐ o o o o 18. ligninte mining (German type) +/‐ o o 19. Extraction of salt  o o o +/‐ o o o o o o 20. Shale gas extraction (including groundwater use) ? o o o o o 21. Oil and gas extraction  o +/‐ o o o o o o 22. Geothermal energy (deep)  o o o o o o o o o o Spatial occupation 23. Sub soil infrastructure and buildings o o o o o o o +/‐ o 24. Management of groundwater contamination, including on‐site remediati +/‐ o o o o o +/‐ o o water level management 25. Groundwater level management of lower Netherlands  +/‐ o o +/‐ +/‐ +/‐ +/‐ o +/‐ +/‐ o 26. Groundwater level management of higher Netherlands +/‐ o o +/‐ +/‐ o +/‐ +/‐ +/‐ +/‐ o Above ground activities 27. Nature conservation measures in terrestrial or aquatic ecosystems + o o o o + + + + o + 28. Recreation (fishing, nature, watersports) o o o o o o o o o o o 29. Soil sealing  o o o o o o o 30. Application of manure and pesticides o o o o o 31. Diffuse inputs in soil in urban areas o o o o o + positive effect of activity on the maintainance or strenghtening the ESS  ‐ negative influence of activity on ESS (decreasing of value) +/‐ positive as well as negative influence, depending on timescale and point of view 0 no  positive and/or negative influence of activity ? unknown, or when behind other sign (?) the effect is uncertain Ecosystem service of the sub surface and groundwater

(8)

Table 5

 Influences between human activities 

6. Example of elements in the framework

One of the selected human activities that were described is the ‘Aquifer Thermal Energy Storage (ATES). The factsheet contains different types of information that can be used to assess relations and impacts. The following subjects are presented:

 Description of activity;

 Spatial and temporal impact of activity;  Dependence of ecosystem services;

 Environmental quality and quantity requirements;  Impact of the activity on ecosystem services;  Considerations related to trade-offs;

 Future trends that make (re)consideration necessary;

 Regional differences;

 References.

Table 3 shows that the activity ATES uses the following ES: energy content, storage capacity and

temperature regulation. Table 4 shows that this human activity can influence the quality and quantity of the groundwater and the attenuation capacity of the soil. In table 5 for example it was concluded that at a location with ATES drinking water abstraction will be limited and that on sites with strategic groundwater

Intended activity Specific activity 1. Dr in ki n g  wa te r  abs tr a ct io n  fro m  g roundw a te r 2.  Ir ri ga ti o n  wi th  g roundw a te r  fo r  ag ri cu lt ur al  cr o p s 3.  Pr o ce ss  wa te r  fo r  food  indus tr y  4.  C ool ing  wa te r  5.  B u ild in g,  e. g.  de w a te ri ng .  6.  Abs tr ac tions  fo r  ma n age m e n t  of  g roundw at er  r em edi a ti o n.  1.   7.  Sto ra ge  of  ra in w at er  fo r  pr o ce ss  wa te r  8.  Aqu if e r  th e rm a l en er gy  st o ra ge  (A T ES ) 9.  Sto ra ge  of  s e di m ent  so il  or  wa st e  in  fo rm er  sa n d  pi ts 10 . S ubs ur fa ce  st o ra ge  of  ra d io ac ti ve  wa st e  11 . Su b  so il  CO 2‐ sto ra ge 12 . Ab st ra ct io n  of  sa lt  wa te r  co m b in e d  wi th  in je ct io n  of  br in e  fo r  pr oduc ti o n  of  ir ri g 13 . Ar ti fi ci a l in fi lt ra ti o n  fo r  dr in ki ng  wa te r  p roduc ti on  fro m  su rf a ce  wa te r. 14 .Pre se rv a ti o n  of  bi o d iv er si ty  and  habi ta t  of  th e  su b  so il  15 . Pr es e rv at io n  of  cu lt u ra l hi st or ic al  la n d  ar ch a eol og ic al  va lu es . 16 . Res e rv a ti o n  of  st ra te gi c  gro u n d w a te r  re so u rc es 17 . Ex tr a cti o n  of  gra ve l,  sa n d  and  cl ay 19 . Ex tr a cti o n  of  sa lt   20 . Sh al e  ga s  ex tr ac ti o n  (i nc ludi ng  g rou ndw a te r  us e) 21 . Oi l and  ga s  e xtr a cti o n   22 . Geo th er m a l en e rg y  (d eep )  23 . Su b  so il  in fr a st ru ct u re  an d  b u ild in gs 24 . Ma nag e m e nt  of  g ro undw at er  c o n tam in at io n , i n cl udi ng  on ‐si te  re m e d ia ti o n   25 . G roundw at er  le ve l m a nag e m e nt  of  lo w e r  Ne th er la nds   26 . G roundw at er  le ve l m a nag e m e nt  of  hi gh e r  Ne th e rl ands 27 . Nat u re  co n ser va ti o n  mea su re s  in  te rr e stri al  or  aq u a ti c  eco sy st ems 28 . Recr e ati o n  (fi sh in g,  na tu re , wa te rs p o rt s) 29 . So il  se alin g  30 . A ppl ic at io n  of  m anur e  and  p es tic id e s 31 . Dif fu se  input s  in  so il  in  ur ban  ar ea s Abstractions 1. Drinking water abstraction from groundwater W W W N W W B W W W N N N N W W W W N N W W B B B W W B B 2. Irrigation with groundwater for agricultural crops W W W N W W W N N N N N N W U N N N N N N W N B B B N B N 3. Process water for food industry  4. Cooling water  5. Building, e.g. dewatering.  6. Abstractions for management of groundwater remediation. 1.    Storage 7. Storage of rainwater for process water  8. Aquifer thermal energy storage (ATES) B W W W N W W N N N W W W N U N N N N N N W N N N N N N N 9. Storage of sediment soil or waste in former sand pits 10. Subsurface storage of radioactive waste  B N N N N N N N N W N N N N W N U W W W N N N N N N N N N 11. Sub soil CO2‐storage 12. Abstraction of salt water combined with injection of brine for produW W W W W W W W W W W W W U W W W W W W W W W W W W N W 13. Artificial infiltration for drinking water production from surface water. Reservations 14.Preservation of biodiversity and habitat of the sub soil  15. Preservation of cultural historical land archaeological values. 16. Reservation of strategic groundwater resources W U W W N W W W N W N N N N N N W N N N W N W N N N W W Extraction of resources 17. Extraction of gravel, sand and clay 19. Extraction of salt  20. Shale gas extraction (including groundwater use) 21. Oil and gas extraction  22. Geothermal energy (deep)  Spatial occupation 23. Sub soil infrastructure and buildings 24. Management of groundwater contamination, including on‐site remB W W N W N U W N N N N U W W U N N N N N W N N W W N N W water level management 25. Groundwater level management of lower Netherlands  N N N N N N N W W N N W W N B N W N N N N B W N B B B B B 26. Groundwater level management of higher Netherlands Aboveground activities 27. Nature conservation measures in terrestrial or aquatic ecosystemsB B W W W N N N W N N N B N N N W N N N N B W B B N W B N 28. Recreation (fishing, nature, watersports) 29. Soil sealing  30. Application of manure and pesticides B W W N N N N N N N N N B W N B N N N N N N N B B B W N N 31. Diffuse inputs in soil in urban areas

(9)

reserves ATES is not possible. Figure 2 presents the amount of authorized open ATES installations in the Netherlands. These installations can hamper other activities now or in the future.

 

Figure 2: Authorized open ATES systems in the Netherland s in 2010. Source : Land+Water 11, November 2011   7. Practical application of the framework in current policy developments

Currently a National Structural Vision on the subsurface is being made by the National Government in close cooperation with local and regional authorities (MinIenM, 2014). For example, this will include some choices and priorities on a national scale and determines who is the competent authority for other subjects Some of the generated information from this study was already used in this process. On the basis of sustainable resource-driven management, priority can be given for example to scarce services. Similar priorities can also be drawn up using an assessment framework in which various forms of potential use are ranked according to what currently the government deems to be in the public interest. An important question for making choices is what criteria should be leading when making choices for the subsurface. For example in Griffioen et al. (2014) a set of recommendations for sustainable management of the subsurface resources (incl. space) was established.

The Structural Vision of the subsurface is expected to be finished by the end of 2015 and will give policy decisions and guidance on future spatial planning, such as : groundwater for drinking water, conventional oil and gas exploration, Geothermal energy, salt extraction , Storage in former salt caverns and storage in former oil and gas fields.

Another important policy development is the National Ecosystem Assessment that has to be carried out within the context of the EU Biodiversity Strategy. Geographical data and maps of Natural Capital and ES are being made available on a website. This site also includes the ES related to the groundwater and subsurface. The information in this project will also be available through this website and contributes to the purpose of sustainable use of our natural resources.

(10)

References

- Broers and Lijzen, 2014. Afwegingskader grondwater Deltares-no. 1207762-016, RIVM-no 607710003/2014

- Vermooten and Lijzen, 2015. Ecosysteemdiensten van grondwater en ondergrond. Beschrijvingen en relaties met activiteiten en maatregelen RIVM-rapport 2014-167, Deltares Briefrapport 1209468-012-BGS-0002.

- CICES (2013) Common International Classification of Ecosystem Services (CICES): Consultation on Version 4, August-December 2012 (Haines-Young R, Potschin M, eds.), EEA Framework Contract No EEA/IEA/09/003 (Download at www.cices.eu or www.nottingham.ac.uk/cem)

- Maes J, et al. (2013) Mapping and assessment of ecosystems and their services. An analytical

framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020. Publications of the European Union, Luxembourg.

(http://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/MAESWorkingPaper2013 .pdf).

- Griffioen, J. et al. A technical investigation on tools and concepts for sustainable

management of the subsurface in The Netherlands. Sci Total Environ. 2014 Jul 1;485-486:810-9. - Min IenM, 2014. ‘Opgaven voor de ondergrond; Probleemstelling van het Programma STRONG, juni 2014 (Min IenM, 2014).

- Land+Water 11, november 2011

- EU Biodiversity Strategy (http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm

- Ranganathan et al., 2008. Ecosystem Services, A Guide for Decision Makers. World resources institute. ISBN 978-1-56973-669-2.

Referenties

GERELATEERDE DOCUMENTEN

Die Staatsdienskommissie (watter kommissie is dit?) het 'n spesifieke aanduiding ten opsigte van die vorm van amp tel ike briewe gegee, en dit is goed dat julie reeds

Simulations: Monte Carlo simulations were performed to compare a simple staircase method, PSI method and a random staircase method. A stochastic psychophysical model was applied

EXCELS IO R \VYNMAKERY ( EDMS... Ult

Nietemin moet, soos hierbo reeds aangedui is, daarmee re- kennig gehou word dat daar baie jongmeisies is wat tuis nie die nodige voorbereiding vir en

To summarize, we see that in volatility forecast accuracy the extended HAR-RV-J and HAR-RV-CJ models of Andersen, Bollerslev, and Diebold (2007) outperform the HAR-RV model of

Kijken we apart naar de componenten van schoolbetrokkenheid dan blijkt dat de globale vragenlijst meer betrokken leerlingen meet voor het gedragsmatige component

In deze studie werd onderzocht op welke manier de emotionele expressie van kinderen tijdens het lichamelijk letselonderzoek mogelijk geobserveerd kon worden..

Catherine’s College, Oxford University, UK (Financial Intermediation and Economic Growth in Economic Integration: The case of SACU); (4) OECD Development Centre