• No results found

Electrochemical actuator with a short response time: A new actuation regime

N/A
N/A
Protected

Academic year: 2021

Share "Electrochemical actuator with a short response time: A new actuation regime"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Electrochemical

actuator

with

a

short

response

time:

A

new

actuation

regime

Vitaly

B.

Svetovoy

a,b,∗

,

Ilia

V.

Uvarov

a

,

Alexander

V.

Postnikov

a

,

Remco

G.P.

Sanders

b

,

Gijs

Krijnen

b

aYaroslavlBranchoftheInstituteofPhysicsandTechnology,RussianAcademyofSciences,150007Yaroslavl,Russia bMESA+InstituteforNanotechnology,UniversityofTwente,PO217,7500AEEnschede,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21December2015

Receivedinrevisedform26February2016 Accepted1March2016

Availableonline10March2016 Keywords: Actuators Electrolysis Bubbles Microsystems

a

b

s

t

r

a

c

t

Thelackoffastandstrongmicroactuatorsisawell-recognizedproblemintheMEMScommunity. Electro-chemicalactuatorscandevelophighpressurebuttheyarenotoriouslyslow.Waterelectrolysisproduced byshortvoltagepulsesofalternatingpolaritycanovercometheproblemofslowgasterminationdue tospontaneousignitionofthereactionbetweenhydrogenandoxygeninnanobubbles.Anactuation regimewiththeterminationtimeasshortas100␮swasdemonstratedpreviously.Herewedescribea newactuationregime,forwhichthegaspressureisrelaxedjustin10␮sandaminimaldegradationof theelectrodesisobserved.Theactuatorconsistsofamicrochamberfilledwithanelectrolyteand cov-eredwithaflexiblesiliconnitridemembrane.Themembranebendsoutwardwhenthepressureinthe chamberincreases.Thenewregimeischaracterizedbytheappearanceofshort-livedmicrobubblesin betweentheelectrodes.Fastterminationofgasandhighpressuredevelopedinthechamberarerelated toahighdensityofnanobubblesinthechamber.Thephysicalprocesseshappeninginthechamberare discussedaswellasproblemsthathavetoberesolvedforpracticalapplicationsofthisactuationregime. Theactuatorcanbeusedasadrivingengineformicrofluidics.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Thelastdecenniumhaswitnessedanimpressivetrendto minia-turizesystemsofvirtuallyanykind.Thistrendhasmanyreasons: smallsystemsareoftencheapertoproduce,theycanhave proper-tieslargesystemshavenot,andtheymayfacilitateuseoflarge systems (cars,for example). Animportant and generic compo-nentinmicrosystemsistheactuator.Itplaystheroleofamotor transforming electricity or other kindof energy into mechani-calmotion.Incontrastwithlargescalesystems,whereeffective engines are available (internal combustion or electromagnetic motors),microsystemssufferfromthelackofstrongandfast actu-ators[1,2].Smallelectromagneticmotorscannotgenerateforces ofusefulmagnitudeduetounfavorablyscalingofcoils,and inter-nalcombustionengines[3]performpoorlyduetoincreasedheat lossesviathevolumeboundary[4,5]whenthevolumedecreases. Existingmicroactuatorsareusingmostlytwo typesofforces [1,2,6,7]:electrostaticforces,whichareweak,andthosegenerated

∗ Correspondingauthorat:MESA+InstituteforNanotechnology,Universityof

Twente,PO217,7500AEEnschede,TheNetherlands. E-mailaddress:v.svetovoy@utwente.nl(V.B.Svetovoy).

bythermalexpansion,whichareslow.Fastandstrongpiezoelectric elementsaredifficulttocombinewithmicrotechnology,theyneed ahighvoltageforactuation,andhaveasmallstroke.Electroactive polymersarepromisinginthefieldofrobotics[8–11]buttheyare notwellsuitedforanumberofapplicationsinmicrosystems. Actu-atorsbasedontheelectrochemicaldecompositionofwaterwere alsodiscussedinmanypapers[12–19]buttheyarenotoriously slow.Onecanproducealargeamountofgasinashorttimebutit isimpossibletogetridofthisgasfastaswell.

Electrochemicaldecompositionofwaterisawell-known pro-cessbutelectrolysisperformedinmicrosystemsonashort-time scalebroughtunexpectedsurprises[20] (asarecent reviewsee [21]).Itwasfoundthatthelocalcurrentdensitycanbethreeorders ofmagnitudelargerthanthatforthenormallong-time(>1ms) elec-trolysis.Thelocalconcentrationofgasin theshort-timeregime (1–100␮s)wasmorethan1000timeslargerthanthesaturated concentrationofgasatnormalconditions(therelative supersatu-rationS>1000).Undertheseconditionsnucleationofbubblesmust happenhomogeneously,whichwasindeedobserved[22].Applying potentialwithfastchangesofpolarity(>20kHz)visibleproduction ofgasdisappearedbutthecurrentviatheelectrolytepractically didnotchange.Anumberofeffectsindicatedthatthegas disap-pearanceisrelatedtothereactionbetweenhydrogenandoxygen http://dx.doi.org/10.1016/j.sna.2016.03.002

(2)

[20]althoughlargeenergyproducedintheprocessmanifestsitself inanumberofmeasurableeffects.Combustionreactionsinsideof smallvolumesisanadditionalmysteryofnanobubbles.Theother well-knownproblemistheobservedunexpectedlylongstability ofsurface[25]andbulk[26]nanobubblesfilledinwiththegases, whicharenotabletoreact.

Inspiteofpoorunderstandingofthereactionmechanismthe discoveredphenomenoncanbeusedtobuildafastandstrong actu-ator[27].Thisactuatorconsistsofamicrochambercoveredwitha flexiblemembraneandisfilledwithanelectrolyte.The electroly-sisisobtainedbyshortvoltagepulsesofalternatingpolarity.The pressureinthechamberincreasesandbulgesthemembrane,but novisiblebubblesareformed.Thisisbecausemostofthegasis packedinnanobubbles,whichdonotscatterlight.Whenthepulses areswitchedoff,pressurerelaxationtakesplaceinlessthan100␮s orso.Theactuatorcannotbecomparedtotheelectrochemical actu-atorsusingwaterelectrolysis,forwhichtherelaxationtimescale isminutes[19].

Inthispaperwedescribeanewactuationregime,forwhicha highpressurecanbereachedwhilepressurerelaxationtakesplace inlessthan10␮s.Moreover,incontrastwiththeregimedescribed in[27]thedegradationofelectrodesismuchreduced.

2. Experimental

We didexperiments with devices (see Fig. 1) fabricatedon Siwafers coveredwithalayerofsilicon nitride(530nmthick). Platinumelectrodesweredepositedontopofthislayer. Under-neathoftheelectrodesthereisaheatsensormadeofpolysilicon. Within the chamber area the nitride was released by etching theSiwaferfromthebacksidesothatthenitridelayerplayed theroleofamembrane. Thechamberand fillingchannelswere isotropicallyetchedinborofloatglass.Thesiliconandglasswafers wereanodicallybonded.Nominaldimensionsofthechamberare 100␮m×100␮m×5␮m.Thedetailsofthedesignandfabrication werereportedearlier[27].Thechamberwasfilledviathe chan-nelwith1MsolutionofNa2SO4indeionizedwater.Thein/outlet openingsofthechannelweresealedafterthefilling.

Squarevoltagepulsesofalternatingpolaritywereappliedto theelectrodesatfrequenciesf∼100kHz.Togethighcurrentswe usetheelectrochemicalcellintheohmicregimeapplyingvoltage

nelsoftheinstrument.Themembranedeflectiondwascalibrated byapplyingastaticgaspressure,givingP=2.03d+0.27d3 [27], wherePistheoverpressureinbarsanddisin␮m.Notethat theresonancefrequencyofthemembraneisestimatedashighas 0.7MHzsothatthisexpressioncanbeappliedforthefrequencies usedinourexperiments.

3. Results

Normalactuationofthedevicewasdescribedinref.[27].Itwas demonstratedthatthepressureinthechambercanbeashighas P=4.6barandthetimeforpressurerelaxationcanbeasshortas 100␮s.Theactuatorworkswellatfrequenciesf>20kHz.Athigh frequenciesverylittlegasisvisibleinthechamberasonecanseein Fig.2(a)and(b),whichcorrespondtof=150and200kHz, respec-tively.Bothimagesweremadeatthetimemomentt=400␮sand theprocessranatavoltageamplitudeU=8V.Atlowerfrequencies theamountofvisiblegasincreasesandbelow20kHzthechamber becomescompletelyfilledwithgasandactuationbecomes impos-sible.Asmallamountofvisiblegasinthechamberexistsintheform ofmicrobubbleslocatedabovetheelectrodes.Thenewactuation regimemanifestsitselfwhentheprocessisrunlonger.Inthiscase afaintcontrastappearsinbetweentheelectrodes.Forexample att=600␮sitcanbeseeninFig.2(c)and(d),whichalso corre-spondtof=150and200kHz,respectively.Thiscontrastresembles ratherlargemicrobubbles(10–20␮mindiameter),whichappear outoffocusduetomotionblur.Thesebubblesappearinthe cham-berjustforafewmicrosecondsandareaccompaniedbysignificant pressurejumpsinthechamber(seebelow,Fig.3(b)).

Atypicalresponseofthemembraneontheelectricalpulseswith amplitudeU=9Vatfrequencyf=100kHzisshowninFig.3(a).Well visibleoscillationsaresuperimposedonthemonotonously increas-ingmembranedeflection.Theseoscillationsareinphasewiththe drivingpulses.Aswasexplainedin[27]theyarerelatedtothe reac-tionhappeninginnanobubblescontainingastoichiometricmixture ofH2andO2gases.Thepressurerespondstobothpositiveand neg-ativehalvesofthepulsesbuttheresponseisasymmetricingeneral. Themonotonousdeflectionofthemembraneisduetounburned gas.Forexample,ifabubblecontainsonlyhydrogenoronlyoxygen thereactiondoesnothappenandsuchabubblewillcontributeto thepressureincreaseinthechamber.Thisgasisalsocollectedin

(3)

Fig.2. (a)and(b)Stroboscopicsnapshotsofthechamberatt=400␮sforafrequencyofdrivingpulsesf=150and200kHz,respectively.Thearrowshowsapinnedbubble, whichexistedbeforetheprocessstarted.Theseimagesshowthevisiblesituationinthechamberduringnormalactuation.(c)and(d)Thesameparametersofdrivingpulses buttheimagesweremadeatt=600␮s.Someofthebubblesthatappearinthechamberforaveryshorttimearezoomedintheinsetsandfittedwithcirclesforbetter visibility.Appearanceoftheshort-livedbubblesisanindicationofthenewactuationregime.

nanobubbles,whichdonotscatterlightandcannotbeobservedin visiblelight.Thegasvolumethatisvisibleinthechamberas,for example,inFig.2(a)and(b)cannotberesponsiblefortheobserved significantpressureincrease.Whenthedrivingpulsesareswitched offthepressuredropsdownevenfasterthanitwasbuildup.Itis explainedbymergingofnon-stoichiometricnanobubbles[29,21]. Thebubbleformedinthiswayonaveragecontainsthe stoichio-metricmixtureofgases.Thisbubbleisignitedspontaneouslyand disappearsdecreasingthepressure.Thetimescaleforthemerging isdefinedbytheconcentrationofnon-stoichiometricnanobubbles. Forverylargesupersaturations(S>1000)existinginthesystem thenanobubblesareformednearlyhomogeneously[20]. Accord-ingtoclassicalnucleationtheory[30] ahighenergybarrier for bubblenucleationisstronglyreducedatlargeSbutisstillan activa-tionprocess.Forthisreasonthenucleationrateisverysensitiveto theexternalorinternaltemperatureincrease.Thenucleationrate explainsalsothesensitivityofpressureinthechambertothe tem-perature.Particularly,thechangeoftheslopeofthemembrane deflectioninFig.3(a)isexplainedbytheinternalheatingofthe electrolytebytheheatproducedinthereactionofwater forma-tion.Sensitivitytotheexternaltemperaturewasdemonstratedin [27].

Ifthesameprocessisrunathigherfrequency,forexample,at f=150kHzasinFig.3(b),thepressurefirstincreasesslowerbut thensuddenlyjumpstohighvaluesforaveryshorttime.These pressurejumpsmarkatransitiontothenewregime.Aswasalready explainedthesejumpsarerelatedtotheshort-livedmicrobubbles

appearinginthechamber.Thejumpsneverappearimmediately afterswitchingonthecurrent.Theremustbeanincubationperiod beforethejumpscanappear.Theincubationtimedecreaseswith increasingvoltageamplitudeanddecreasesstronglywith temper-aturerise,evenforsmallchanges(∼10◦C).Wedidnotobservethe pressurejumpsatfrequenciesbelow100kHz.Ontheotherhand, theaverageamplitudeofthejumpsincreaseswithfrequencyabove 100kHz.Athighfrequenciesthejumpscanbesoviolentthatthey breakthemembrane.Fig.4showsoneoftheseevents.Theprocess ranatextremeparametersU=10Vandf=500kHz.Inthemoment t≈560␮sthemembraneburstasthevibrometersignalinpanel(c) demonstrates.Inthesamemomentthecurrentinthesystemstops asonecanseeinpanel(d).

Iftheprocessrunsforasufficientlylongtime,thepressurein thechamberreachesasaturationpointonaveragebutcontinues tofluctuatearoundthispoint. Thissituationisdemonstratedin Fig.5(a)fortheamplitudeU=8Vandfrequencyf=300kHz.A typ-icalpressurejumpisshowninFig.5(b).Onecanseethatthejumps areveryshortandhighlyenergeticevents.Thewidthofaseparate peakisestimatedas3␮s.Theenergyreleasedinthepressurejump isıE=ıPVch≈3.5nJ,whereıP≈0.7bar(asfollowsfromFig.5(b)) istheamplitudeofthejumpandVch=5×104␮m3isthevolume ofthechamber.Sincethejumpisrelatedtotheappearanceand termination ofoneshort-livedbubble witha sizeofD∼10␮m, the pressure change inside of this bubble can beestimated as Pb=ıE/Vb∼100bar, where Vb=D2h/4 is bubble volume and h=5␮misthechamberheight.Theonlyprocesswhichisableto

Fig.3. (a)Normalactuationregime.Membranedeflectionasafunctionoftimeispresentedasmeasuredwiththevibrometer.Thefrequencyofthedrivingpulsesisf=100kHz. Theinsetshowsadetailedviewaroundthepointofmaximaldeflection.(b)Transitiontothenewactuationregimeathigherfrequencyf=150kHz.Highandshortpeaksare acharacteristicfeatureofthisregime.ThedeflectionwasmeasuredatroomtemperatureT=21◦C.

(4)

Fig.4. Breakingofthemembrane.(a)Chamberbeforetheprocess.Thedirtiscollectedduringtheprevioususeofthesampleinthenormalactuationregime.(b)Chamber aftertheprocess.(c)Rawsignalofthevibrometer(velocity)showsthemomentwhenthemembranewentoff.(d)Thecurrentinthesystemaroundthemomentofthe breaking. 0 200 400 600 800 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 time (µs) deflection ( µ m) 445 449 453 0.3 0.4 0.5 0.6 time (µs) deflection ( µ m) a b

Fig.5.(a)Pressurefluctuationsinthesaturatedregime.Theprocessisdrivenat U=8Vandf=300kHz.(b)Zoomedviewofoneseparatepeak.

providethisenergyscaleisthecombustionbetweenhydrogenand oxygeninsideoftheshort-livedbubbles.Weexpectthatthese bub-blesappearinthechamberduetomergingofnon-stoichiometric nanobubbleswhen thedensityofnanobubbles becomes critical [29,21].Theformedmicrobubblecontainsthestoichiometric mix-tureofgases,whichareabletoreact.Thereasonfortheignitionof thereactionisstillnotknown.However,therearenodoubtsthat

thereactionhappens[27]becauseahugeamountofgasproduced bytheFaradaycurrentdoesnotshowupinthechamber.

Themost prominentfeature ofthe newactuationregime is thetimeforthepressurerelaxationwhenthedrivingpulsesare switched off. As one cansee in Fig. 5(a)it happens extremely fastjustin10␮sorso.Duetoaveryhighconcentrationof non-stoichiometricnanobubbles they merge in shorter time than it happens in the regime without pressure fluctuations. Actually, thepressurerises muchslowerthanit isgoingdown.Thisis a veryimportantpropertyforthefastactuation.Fig.6demonstrates actuationofthemembranebyseriesofpulsesperformedintwo differentregimesofactuation.Panel(a)showsthedeflectionofthe membraneinthenormalregime[27](withoutfluctuations).First seriesofpulseslastsfor200␮sandthesecond100␮s-longseries followsaftera100␮spause.Onecanseethattherelaxationtimeis oftheorderof100␮sandthatthesecondseriesgiveslarger deflec-tionofthemembranethanthefirstone.Ithappensbecausethefirst seriesheatsupthesystem.Panel(b)showstheactuationinthe regimewiththepressurefluctuations.Thefirstseriesofpulsesis 400␮slong.Itislongerthantheothertwoseries,whichare200␮s longeachandfollowaftera200␮spause,becauseoftheincubation period.Inthiscasethepressurerelaxesforatimeof∼10␮s.This isthefirstexampleofactuationinthenewregime.Forquiteastiff SiNmembranethestrokeisaround0.5␮mandoverpressureinthe

0 100 200 300 400 500 0 0.2 0.4

t (

µs)

d (

µ

m)

0 400 800 1200 0 0.2 0.4

t (

µs)

d (

µ

m)

a

b

Fig.6. Actuationofthemembranebyseriesofpulsesseparatedbytimegaps.(a)Actuationinthenormalregime.Thedeflectioninducedbythesecondseriesislargerdue tointernalheating.TheprocessisdrivenatU=9Vandf=100kHz.(b)Actuationinthefluctuatingregime.Threeseriesofpulsesseparatedby200␮spausesarepresented. ThedrivingpulseshavetheamplitudeU=8Vandfrequencyf=150kHz.

(5)

chamberisaround1bar.Theresponsetimeislimitedbythe pro-ductionofgasbutthegasterminationinthecombustionreaction happensmuchfaster.

4. Discussion

Longincubationperiodsgivea restrictiononthefast perfor-manceoftheactuator.Thephysicalreasonforthisdelaytimeis thatonehastoproduceasignificantconcentrationofnanobubbles beforetheystarttomerge.Thisincubationtimeisverysensitiveto thetemperatureandcanbeeasilyreducedafewtimesby increas-ingtemperatureby10–20◦C.Itcanbedone,forexample,witha heatingelement,whichkeepstheactuatorataslightlyelevated temperature.

Fluctuationsofpressureinthechamberarenotfavorablefor smoothactuation.Thisproblemcanbesolvedbytheproperdesign of the electrodes. The size of the short-lived microbubbles is relatedtothedistancebetweentheelectrodes.Makingthis dis-tancesmalleranddistributingelectrodesmorehomogeneouslyin thechamberwecansmoothoutthefluctuations.Thechoiceof workingfrequencyisalsoanimportantparameterinthisrespect.

Combustionofhydrogenandoxygenisahighlyexothermic pro-cess.Forthisreasonthereactionbetweengasesinnanobubbles, whichareformedincloseproximitytotheelectrodes,has signifi-cantinfluenceontheelectrodesresultingintheirdegradationwith time.Theeffectisespeciallystrongatrelativelylowfrequencies 20–50kHz[20]andcanbeseeninFig.4(a).Whenthe combus-tionhappensinmicrobubblesonecouldexpectfasterdegradation oftheelectrodes.However,wedidnotobservethiseffectinthe newactuationregime.Thisisbecausemostof thegasreactsin microbubbleslocatedinbetweentheelectrodes.Inthiscasehighly energeticeventsofbubbleterminationdonotharmtheelectrodes. Also,inthisregimemuchhigherfrequenciesareusedtogeta sim-ilarstrokeofthemembrane.Thehigherthefrequencythesmaller isthesizeofstoichiometricnanobubblesandtheweakeristhe influenceontheelectrodes.Nevertheless,long-timestabilityofthe electrodeswasnotanalyzedyet.Materialfortheelectrodesisalso animportantissue.Itwasestablishedthatelectrodewear corre-lateswiththematerial’syieldstrength[20].Theweakesteffectwas observedfortungstenandthestrongestoneforgold.Uptonowwe testedtheactuatorsonlywithplatinumelectrodes.

Oneofthemostimportantactuationparametersisthestroke. Thecurrentversionoftheactuatorusesaratherstiffsiliconnitride membranes.Forthismembrane,withasizeof100␮m×100␮m thestrokethathasbeenreachedis∼1␮m.Itcanbeincreased fur-therusingsoftermaterialforthemembrane.Aconvenientmaterial inthisrespectisSU8.IthasaYoung’smodulus100timessmaller thanthatforSiNanditsthicknesscanbeeasilychangedinawide rangetoprogramadesiredstroke.Thestrokecanalsobeincreased duetohigher pressurein thechamber.It ispossibletodo this byincreasingtheFaradaycurrent,forexample,bydecreasingthe distancebetweentheelectrodesandincreasingtheirarea.

Duringoperationoftheactuatoroneorafewpinnedbubbles oftenappearinthechamberasonecanseeinallfourimagesin Fig.2.Inmostcasespinninghappensattheedgeofthechamberat structuralinhomogeneities.Sometimesapinnedbubblecangrow duringoperation.In thiscaseit becomesa realproblem, which preventsnormalfunctioningofthedevice.Forpracticalapplication oftheactuatoronehastocontrolthepinning.

Summarizing, the fast electrochemical microactuator has a numberofveryattractivefeatures.Ithasarelativelylargestroke even for a stiff SiN membrane, it needs rather low actuation voltage,ithasashortresponsetimeandcandevelopahigh pres-sure.Finally,theactuatoriscompletelycompatiblewithstandard microtechnological processes. The main disadvantage is a low

efficiencyoftheactuator.Onlypartofthegasproduced electro-chemicallydoesausefulwork;asignificantpartofthegasisburned instoichiometricnanobubbleswithoutproductionofthe mechan-icalwork.Forexample,thetotalpowerconsumptioninFig.6(b) correspondsto25mWwhilethepoweravailablefromthe actua-torisjust1␮W.Ofcourse,thereisplentyofroomforoptimization ofthedevice.Significantimprovementisexpectedfromthe reduc-tionoftheelectroderesistanceandfromaslightincreaseofthe workingtemperature.

5. Conclusions

Wepresentedhereanewactuationregimeofthe electrochem-icalactuatorthatis drivenbyshortalternatingpolarity voltage pulses.Extremelyshort(∼10␮s)terminationtimeoftheproduced gascanbereachedinthisregime.Thisfastterminationofgasis possibleduetoaveryhighdensityofnanobubblesinthe cham-berof theactuatorasexplainedin [29,21].Thehighdensityof nanobubblesisalsoresponsibleforthehighpressuredeveloped bytheactuator.Theresponsetimeislimitedbytherateofthegas productionbutnotbythegasterminationtimeasonecouldexpect foranelectrochemicalactuator.Theotherattractivefeatureofthe newactuationregimeisaminordegradationoftheelectrodes.We discussedproblemsandpossiblewaystoimproveperformanceof theactuator.

Acknowledgements

ThisworkissupportedbytheRussianScienceFoundation(grant 15-19-20003) and by the Dutch Technology Foundation (grant 13595).

References

[1]F.Abhari,H.Jaafar,N.A.M.Yunus,Int.J.Electrochem.Sci.7(2012)9765. [2]M.W.Ashraf,S.Tayyaba,N.Afzulpurkar,Int.J.Mol.Sci.12(2011)3648. [3]K.Maruta,Proc.Combust.Inst.33(2011)125.

[4]G.Veser,Chem.Eng.Sci.56(2001)1265.

[5]A.C.Fernandez-Pello,Proc.Combust.Inst.29(2002)883. [6]L.Weiss,Int.J.Therm.Sci.50(2011)639.

[7]M.D.Volder,D.Reynaerts,J.Micromech.Microeng.20(2010)043001. [8]R.Pelrine,R.Kornbluh,Q.Pei,J.Joseph,Science287(5454)(2000)836http://

science.sciencemag.org/content/287/5454/836.full.pdf. [9]P.Brochu,Q.Pei,Macromol.RapidCommun.31(1)(2010)10.

[10]C.Plesse,A.Khaldi,Q.Wang,E.Cattan,D.Teyssié,C.Chevrot,F.Vidal,Smart Mater.Struct.20(12)(2011)124002.

[11]S.Shian,R.M.Diebold,D.R.Clarke,Opt.Express21(7)(2013)8669. [12]C.R.Neagu,J.G.E.Gardeniers,M.C.Elwenspoek,J.J.Kelly,J.Microelectromech.

Syst.5(1996)2.

[13]C.G.Cameron,M.S.Freund,Proc.Natl.Acad.Sci.U.S.A.99(2002)7827. [14]S.Z.Hua,F.Suchs,D.X.Yang,H.D.Chopra,Anal.Chem.74(2002)6392. [15]D.A.Ateya,A.A.Shah,S.Z.Hua,Rev.Sci.Instrum.75(2004)915. [16]D.D.Meng,C.J.Kim,LabChip8(2008)958.

[17]E.Kjeang,N.Djilali,D.Sinton,J.PowerSources186(2009)353.

[18]P.-Y.Li,R.Sheybani,C.A.Gutierrez,J.T.W.Kuo,E.Meng,J.Microelectromech. Syst.19(2010)215.

[19]Y.Yi,U.Buttner,A.A.A.Carreno,D.Conchouso,I.G.Foulds,J.Micromech. Micro-eng.25(10)(2015)105011.

[20]V.B.Svetovoy,R.G.P.Sanders,T.S.J.Lammerink,M.C.Elwenspoek,Phys.Rev.E 84(2011)035302(R).

[21]V.Svetovoy,A.Postnikov,I.Uvarov,R.Sanders,G.Krijnen,Energies9(2)(2016) 94.

[22]V.B.Svetovoy,R.G.P.Sanders,M.C.Elwenspoek,J.Phys.:Cond.Matter25(2013) 184002.

[23]A.G.Smart,Phys.Today64(2011)17.

[24]B.Lewis,G.vonElbe,Combustion,FlamesandExplosionsofGases,Academic Press,NewYork,1987.

[25]X.Zhang,D.Lohse,Biomicrofluidics8(2014)041301.

[26]K.Ohgaki,N.Q.Khanh,Y.Joden,A.Tsuji,T.Nakagawa,Chem.Eng.Sci.65(2010) 1296.

[27]V.B.Svetovoy,R.G.P.Sanders,K.Ma,M.C.Elwenspoek,Sci.Rep.4(2014)4296. [28]D.M.vandenBroek,M.Elwenspoek,J.Micromech.Microeng.18(2008)064003. [29]A.V.Postnikov,I.V.Uvarov,A.V.Prokaznikov,V.B.Svetovoy,Appl.Phys.Lett.

(2016)(tobepublished).

(6)

1985to2003hehasbeenwiththeInstituteof Micro-electronics,RussianAcademyofSciencesworkingonthe physicalbasesofmicrotechnologies.Hereceivedhis doc-toraldegreein1985intheoreticalandmathematicalphysics.

IliaV.UvarovwasborninYaroslavl(Russia)in1988.He receivedamaster’sdegreewithhonorsinradiophysics andelectronicsin2010fromYaroslavlStateUniversity. Since2009heisworkingontheYaroslavlBranchofthe InstituteofPhysicsandTechnology,RASintheLaboratory ofMicro-andNanosystemTechnologyasaresearcher.He receivedhisdoctoraldegreein2013inmicro-and nano-electronicsfromInstituteofPhysicsandTechnology,RAS. HisresearchinterestsareinMEMSsensorsandactuators andinmicrofluidics.

AlexanderV.PostnikovisaseniorresearcherinYaroslavl BranchoftheInstituteofPhysicsandTechnology, Rus-sianAcademyofSciences,whereheisworkingsince1989 aftergraduationinMoscowStateUniversity.Hisscientific interestsareinthelaserscanningmicroscopy, microsys-tems,andinmeasurementtechniquesformicrodevices.

GijsKrijnen,prof.dr.ir.,headstheTransducersScience &Technology(TST)ChairintheElectricalEngineering departmentoftheUniversityofTwente(since2011).His currentinterestsareinLifelike(MEMS)transducersin general,bio-mimeticflow-sensorsinparticular, paramet-ricsensingschemesandadditivemanufacturing.In2005 hewasawardedaVICIgrantbytheNetherlands Orga-nization forScientificResearchfora5-years program onLifelikeMEMS-sensors(BioEARS).Since1998hehas beenintheTSTgroupoftheMESA+researchinstitute

fornanotechnologyandresponsibleformicro-actuator research.From1995to1997heworkedonintegrated opticdevicessimultaneouslyattheUniversityofTwente andtheDelftUniversityofTechnology.From1992to1995hewasafellowofthe RoyalNetherlandsAcademyofArtsandSciencesandstudiedsecond-and third-ordernon-linearintegratedopticsdevicesafterhereceivedthedoctoratedegree withhonorsfromUniversityofTwentein1992onthesubjectofnonlinear inte-gratedopticsdevices.Prof.Krijnenhas(co-)authoredover100refereedjournal papers,10bookchaptersand230conferencecontributions.

Referenties

GERELATEERDE DOCUMENTEN

Numerous studies of flame interaction with a single vortex and recent simulations of burning in vortex arrays in open tubes demonstrated the same tendency for the turbulent burning

The eddy currents induced in this plate, which is part of a controlled atmosphere chamber, cause not only damping but also deteriorate the actuator performance by disturbing

Several politicians emphasized the importance and the need for a clear task portfolio of the Chamber of Commerce in relation to other, public and private,

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

100 MHz corresponds to a permeability of about 100. ln general the permeability of ferromagnetic materials is higher than that corresponding to the value of the

This study hopes to address the above needs by investigating the hygiene practices and food safety of street vendors outside pension pay-out points in urban poor communities in the

en Heyl' het gevind dat slegs 0,4% van foto- dermatoses by rue-Blankes voorgekom het, terwyl ons ondersoek die getal op 4,0% stel.. Hulle het ook 'n be- sonder lae voorkomssyfer

Het komt er op neer dat de volgende veronderstellingen moeten worden bijgesteld: - grasopbrengst de eerste 5 jaar 10 % minder opbrengst vanwege hogere oogstkosten -