• No results found

Effect of Electron Beam Irradiation on Structure and Properties of Styren-Butadiene Rubber

N/A
N/A
Protected

Academic year: 2021

Share "Effect of Electron Beam Irradiation on Structure and Properties of Styren-Butadiene Rubber"

Copied!
34
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Effect of Electron Beam Irradiation

on Structure and Properties of

Styrene-Butadiene Rubber

Katarzyna S. Bandzierz, Louis A.E.M. Reuvekamp, Grażyna Przybytniak, Wilma K. Dierkes, Anke Blume, Dariusz M. Bielinski

(2)

Crosslinking Density

[mol/cm3] Tear Strength Toughness Fatigue Life High Speed Dynamic Modulus Static Modulus Hardness Tensile Strength Hysteresis Permanent Set Friction Coefficient Crosslinking Density In -Ru b b er Pr o p er ti es

(3)

Sulfur Curing

Disadvantage of sulfur curing: § Presence of

§ double bond

§ Sulfur + accelerator in the compound § 130 – 160 °C required

(4)

Peroxide Curing

Disadvantage of peroxide curing:

§ Presence of peroxides in the compound § 130 – 160 °C required

R-O-O-R’ R-O* + *O-R’ + Heat

RO* R* + O2

(5)

Radiation Curing

Alternative crosslinking method: Radiation Curing

Ionizing ra

diation - E

N E RG Y

Electron beam – beam of high-energetic, accelerated

electrons generated in electron accelerator

Secondary electron

(6)

-Radiation Curing

Alternative crosslinking method: Radiation Curing § Independent of

§ double bonds § curing system

§ Curing at room temperature is possible

(7)

• Curatives are not necessary

• Process initiatated by high-energy ionizing radiation

C-C crosslink between polymer chains Degradation of the polymer

+ Degradation + irradiation

Radiation Curing

+

(8)

But which radiation dose is the best for a good performance of the created network?

+ Degradation + irradiation

Radiation Curing

+

The higher the dose and power of radiation the higher crosslinking density.

(9)

Radiation Curing

• E-SBR; KER 1500, Synthos (Poland); 23.5% of bound styrene • !" = 425 000 (/*+, * C H2 C H C H C H2 C H2 C H * n m Styrene-butadiene rubber (SBR)

• Irradiation with doses: 25, 50, 75, 100, 150, 200 kGy • Electron beam:

– energy of 10 MeV

– average power of 10 kW • Irradiation conditions:

– air atmosphere at room temperature

(10)

Radiation Curing

Radiation curing leads to:

• C-C crosslink between polymer chains • Degradation of the polymer

Charlesby-Rosiak tried to quantify both reactions by sol-gel analysis

(11)

Sol-Gel Analysis

0,2 g rubber extracted with THF

(30 days) – drying at 60 °C (7 days): → insoluble (gel) fraction

→ soluble (sol) fraction s

(12)

p0/q0 = 0.24 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 s+ Ös [-] (Dg+Dv)/(D+Dv) [-] p0/q0=0.24 Dg=17.5 kGy Dv=39.1 kGy

Chain scission vs crosslinking

! + ! = $% &% + 2 − $% &% )* + )+ )* + )

average chain scission density / average crosslinking density =

ca. 1 : 4

s – sol fraction

p0 – average chain scission density

per radiation dose unit

q0 – average crosslinking density

per radiation dose unit D – radiation dose

Dv – virtual dose Dg – gel dose

(13)

0 50 100 150 200 250 0.0 0.2 0.4 0.6 0.8 1.0 Ge l f ra ct io n [-] Dose [kGy]

Higher irradiation leads to higher insoluble (gel) fraction - crosslink density

Gel dose: 17.5 kGy

Effect of ionizing radiation on gel formation:

gel fraction

(14)

0 50 100 150 200 250 0E+00 1E-05 2E-05 3E-05 4E-05 Cr os sl in k de ns ity [ mo l/c m 3 ] Dose [kGy] 0.0 0.2 0.4 0.6 0.8 1.0 Ge l f ra ct io n [-]

New chemical bonds are formed mainly between already crosslinked polymer

chains at higher doses.

Gel fraction vs crosslink density

0 50 100 150 200 250 0.0 0.2 0.4 0.6 0.8 1.0 Ge l f ra ct io n [-] Dose [kGy]

Samples swollen in toluene for 4 days at RT, dried 4 days at 60 °C, calculation

according to Flory-Rehner

(15)

0 50 100 150 200 250 0E+00 1E-05 2E-05 3E-05 4E-05 Cr os sl in k de ns ity [ mo l/c m 3 ] Dose [kGy]

What happens at higher dosage rates?

Crosslink density

Samples swollen in toluene for 4 days at

RT, dried 4 days at 60 °C, calculation according to Flory-Rehner

?

0E+00 1E-05 2E-05 3E-05 4E-05 0 2 4 6 8 10 12 0 50 100 150 200 250 C ro ssl in k de nsi ty [m ol /cm 3 ] F re ezi ng p oi nt d ep re ssi on [° C] Dose [kGy]

?

Samples swollen in toluene for 4 days at RT, dried 4 days at 60 °C, swollen in cyclohexane

for 4 days at RT, freezing point depression evaluated by DSC (heating rate 5 K/min)

(16)

What happens at higher dosage rates?

Crosslink density

Q. Wang, Radiation Physics and Chemistry 78

(2009) 1001 – 1005: Influence on irradiation dosage on crosslinking density of E-SBR, measured by Magnetic Resonance Crosslink

Density Spectrometer (MRCDS) 0E+00 1E-05 2E-05 3E-05 4E-05 0 2 4 6 8 10 12 0 50 100 150 200 250 C ro ssl in k de nsi ty [m ol /cm 3 ] F re ezi ng p oi nt d ep re ssi on [° C] Dose [kGy]

?

(17)

What happens at higher dosage rates? Polymer degradation becomes more likely!

Gel fraction vs crosslink density

0E+00 1E-05 2E-05 3E-05 4E-05 0 2 4 6 8 10 12 0 50 100 150 200 250 C ro ssl in k de nsi ty [m ol /cm 3 ] F re ezi ng p oi nt d ep re ssi on [° C] Dose [kGy]

Q. Wang, Radiation Physics and Chemistry 78 (2009) 1001 – 1005: Influence on irradiation

(18)

• Higher crosslinks lead to higher hardness

• Few crosslinks lead to significant increase in modulus

Effect of ionizing radiation on SBR structure:

mechanical properties

uncrosslinked SBR

uncrosslinked SBR

0E+00 1E-05 2E-05 3E-05 4E-05 15 20 25 30 35 40 Hard ne ss [Sho re A]

Crosslink density [mol/cm3]

0E+00 1E-05 2E-05 3E-05 4E-05 0.0 0.2 0.4 0.6 0.8 1.0 Stress at 500% elongation [ MPa]

(19)

0E+000 1E-05 2E-05 3E-05 4E-05 500 1000 1500 2000 2500 E lo ng at io n at b re ak [% ]

Crosslink density [mol/cm3]

0E+000 1E-05 2E-05 3E-05 4E-05 1 2 3 4 5 T e nsi le st re ng th [MPa ]

Crosslink density [mol/cm3]

• Maximum tensile strength: ca. for 100 kGy

• Few crosslinks lead to significant reduction of EaB

Effect of ionizing radiation on SBR structure:

mechanical properties

uncrosslinked SBR

(20)

• SBR can be cured by radiation

• Radiation dose influences crosslink density

• Increasing crosslink density influences hardness and stress-strain behavior

(21)

• Required radiation dose for sufficient SBR crosslinking network ca. 150 kGy

• Charlesby-Rosiak model is applicable for radiation-curing process

• Chain scission density / Crosslinking density = ca. 1 : 4

Summary

Which radiation dose is the best for a good performance of the created network?

(22)

Acknowledgements

Institute of Polymer and Dye Technology

Łódź University of Technology, Poland

Thanks to the Ministry of Science and Higher Education (Republic of

(23)

katarzyna.bandzierz@gmail.com a.blume@utwente.nl

Thank you for your kind attention!

This paper is already published in:

(24)

Radiation Curing

Radiation curing leads to:

• C-C crosslink between polymer chains • Degradation of the polymer

1959: Charlesby and Pinner tries to quantify both reactions by sol-gel analysis

(25)

Sol-Gel Analysis

0,2 g rubber extracted with THF

(30 days) – drying at 60 °C (7 days): → insoluble (gel) fraction

→ soluble (sol) fraction s

(26)

Sol-Gel Analysis

s – sol fraction

p0 – average chain scission density

per radiation dose unit

q0 – average crosslinking density per radiation dose unit

!",$ – average degree of

polymerization of the primary polymer chains D – radiation dose Charlesby-Pinner equation % + % = ($ )$ + 2 )$!",$+

(27)

Assumptions:

• Chain scission and crosslinking occur at random spatial distribution and proportionally to radiation dose

• Ratio between chain scission and crosslinking is constant over the whole range of doses

• Crosslinking leads to formation of tetra-functional crosslinks X, not tri-functional endlinks Y

• Initial molecular weight distribution is random:

polydispersity index PDI = !"#/ !"% = '

( !() - weight-average molecular weight !

( - number-average molecular weight)

(28)

Charlesby-Pinner equation

Chain scission vs crosslinking

! + ! = $% &% + 2 &%(),%+ , + , -+ / kGy-1 . /0/ ./2 = 3

(29)

0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5 1.0 1.5 2.0 s+ Ös [-] 1/D [kGy]-1 p0/q0=0.61 Dg=22.6 kGy

Chain scission vs crosslinking

Charlesby-Pinner equation NO linear correlation! ! "#/ !"% > ' (GPC: PDI = (!) ! (* = ', - )

→ Limitation of this model if "!!#

(30)

Chain scission vs crosslinking

→ Limitation of Charlesby-Pinner if ""!!# $ ≠ & Charlesby-Rosiak equation ' + ' = *+ ,+ + 2 − *+ ,+ /0 + /1 /0 + / s – sol fraction

p0 – average chain scission density

per radiation dose unit

q0 – average crosslinking density

per radiation dose unit D – radiation dose

Dv – virtual dose Dg – gel dose

(31)

0E+00 1E-05 2E-05 3E-05 4E-05 -57 -56 -55 -54 -53 -52 -51 -50 DS C g la ss tr an si tio n [° C]

Crosslink density [mol/cm3]

Increase of Tg: formation of crosslinks

Effect of ionizing radiation on SBR structure:

DSC glass transition temperature (T

g

)

uncrosslinked SBR

(32)

Condition for effective crosslinking: Gs/Gx < 4

Yield of

chain scission (G

s

)

and

crosslinking (G

x

)

Gs/ Gx

Investigated SBR 0.49

cis-1,4 BR [1] 0.10

EPDM [2] 0.26

• SBR, BR and EPDM can be crosslinked by irradiation • Irradiation of SBR leads to higher chain scission than

(33)

- styrene ring absorbs radiation – dissipate it = more resistant to crosslinking but also to degradation

- styrene blocks stiffen the polymer chain = crosslinking is less likely

Effect of ionizing radiation on SBR structure

Why does the irradiation of SBR leads to higher chain scission than in EPDM or BR?

Ionizing ra diation - E N E RG Y * C H2 C H C H C H2 C H2 C H * n m 23.5% of bound styrene

(34)

Influence of styrene content on

crosslinking (G

x

)

Gx in µmol / J [3]

SBR (16% of styrene) 0.30

SBR (28% of styrene) 0.16

SBR (85% of styrene) 0.03

Increasing amount of styrene hinders crosslinking.

Referenties

GERELATEERDE DOCUMENTEN

Voor de soorten met geringe dispersie worden ofwel geen significante relaties gevonden met veel of weinig dood hout in het bos, ofwel relaties die sterk afhankelijk zijn van

In de biologische landbouw is dit zelfs één van de be- langrijkste knelpunten voor realisering van de be- leidswens om in het jaar 2010 op 10% van het areaal biologische landbouw

In the fruit case, the selected novel product originated from outside the Dutch production chain and, consequently, other factors like the origin of the raw materials were judged

Op de Horti Fair van 2002 presenteerde Ridder Drive Systems voor het eerst de nauwkeurig aanstuurbare motor met geïntegreerde intelligente besturing, die via een zogenaamd

De ondertekenaars van dit manifest vragen aan politiek en bestuur: Ondersteun de vorming en de activiteiten van een Task Force Multifunctionele Landbouw voor een veelzijdig

3.2 Gebruikte dataset en gevolgde werkwijze 11 3.3 Ontwikkeling van een verbeterde formule voor de voeropnamecapaciteit 12 3.4 Invloed celwandfracties op